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Zusammenfassung / Abstract
auf Deutsch: lorem ipsum dolor sit amet ...

Visualization has emerged as a critical component in deriving understanding
from the vast amounts of data generated from both simulations and modern scan-
ning technologies such as computed tomography. The organization of these data
dictates how they are algorithmically processed and thereby the performance of
processes that operate on the data. For these performance reasons as well as sim-
plicity of implementation, a regular ND grid organization has heretofore dominated
in the simulation, medical, and visualization domains.

Yet the regular organization of data alone is not enough. The pace of data
growth has exceeded that of hardware growth for many years now, and the ensuing
performance gap creates difficulties for visualization algorithms. As basically all
sciences move to a data-centric approach, these performance limitations become
the limiting factor in forward scientific progress.

To deal with this delude of data, many have turned to in situ visualization: cou-
pling simulation and visualization software together in an effort to minimize delay.
This is presently a daunting process, one that cannot be sustained at large scale
with the dearth of software engineering resources across the research community.

This dissertation presents a number of community-vetted ideas aimed at remov-
ing these barriers. The algorithm targetted is volume rendering, a popular method
for data understanding in a number of scientific disciplines. As we dissipate these
challenges, we turn to the related problem of integrating volume rendering solu-
tions with simulation software in situ, specifically focusing on ways to minimize
the engineering investment.
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Chapter 1

Introduction

The purpose of computing is insight, not numbers.
Richard Hamming

The growth in data-based science has exploded in recent years. As Figure 1.1
shows, the size of data is increasing exponentially. While the increased fidelity
enables new levels of understanding, this is only possible if we can interrogate and
analyze the increased scale of data.

Humans are effective pattern recognizers, but error-prone with repetitive tasks
and inherently visual thinkers. Among even small sets of data, it is much easier for
us to apprehend a change in color than a change in repeated sequences of numbers.
Mapping raw numbers to color or another visual representation is thus an effective
way to take advantage of the pattern recognition capabilities of the human visual
system. The growth of data only increases the need for data visualization, else we
will be left with massive piles of numbers with no insight into the mechanisms or
processes that sourced them.

There are a variety of data types we might apply our efforts to. In this disserta-
tion, we concentrate on regular gridded data, as might be output by medical (CT,
MRI) scanners or used in simulation software. These kinds of structured grids
account for a disproportionately large subset of data types used in the scientific
and medical domains. It is one of the ‘important’ data types highlighted by a
report discussing the future scalability of computing in science [1]. Furthermore,
operations on such data are easily mappable to promising data-parallel hardware,
unlike many other data types, suggesting its continued future use at scale.

There are a number of visualization techniques that are widely appreciated for
such volumetric data. Much effort has been focused on the performance aspects

11
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Figure 1.1: The growth of data in recent years. Hardware capabilities have not kept
pace with the exponential pace of data growth.
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of a few well-known techniques: mapping the algorithms to novel architectures,
identifying special cases of interest, and reducing constants in the algorithms’
execution. This work builds on the previous performance-oriented efforts in
volume visualization.

1.1 Volume visualization

Direct volume rendering produces visualizations that accurately model tenuous
mediums such as fire, smoke, and clouds. However, it is seldom applied for its
ability to produce photorealistic imagery. Scientific and medical researchers use
volume rendering to see inside a data set and highlight its internal structure. This
can be extremely useful both in interrogating data as well as communicating known
features.

The precision instrument used to control volume rendering is called the transfer
function. A transfer function maps the value at every datum to colors and opacities.
The control of opacity gives users an effective mechanism for filtering out data
irrelevant to the point of interest. Color control enables the user to flexibly highlight
different regions. In contrast to other volume visualization methods, this gives
comparatively more power and flexibility to the user to communicate a feature
exactly as intended.

Unfortunately this increased flexibility comes at the cost of considerable com-
putational complexity as compared to other volume visualization techniques. In the
general case, volume rendering is an O(n3) algorithm, requiring the consideration
of every voxel in a three-dimensional dataset. Each of these samples typically
requires a trilinear interpolation coupled with a set of multiply-adds needed to
compute the volume rendering integral. For data of even small sizes, a naı̈ve
CPU-based computation is far from interactive.

1.2 Systems opportunities

There are a number of systems-oriented challenges in accelerating volume visual-
ization techniques.
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1.2.1 Hardware & programmability

The end of Moore’s law necessitates a reorganization in software architecture
to continue to see performance gains on novel hardware architectures. Serial
algorithms must be amended to identify and exploit parallelism, often at multiple
scales. Whereas old optimization principles emphasized eschewing computation,
new strategies must reduce communication instead.

Some of the recent research in high-performance computing (HPC) has been
focused on elucidating the appropriate architecture for future HPC systems. In
part due to the results of this thesis, this architecture is now known to be based on
the ‘fat node’ idea: fewer nodes with very high levels of shared memory-based
concurrency on each node. Both companies leading the HPC space, NVIDIA and
Intel, have invested heavily in an architecture based on accelerator cards: boards
with a large number of shared memory computational units. While this is due in
part due to promising performance results, such as those contained herein, much of
this architecture is dictated by the practical concerns of energy and the ability to
dissipate heat from processing units.

The exact characteristics of accelerators is a current topic of industry competi-
tion, but the general characteristics are large numbers of low-power cores connected
to limited but high-bandwidth memory. High-powered cores need more power and
there are issues dissipating the heat they generate, so it is unlikely that this basic
component of the architecture will change soon. Memory faces similar problems,
and thus it seems that the trend of reduced memory per core will continue.

The challenges these new architectures present gives rise to a number of pro-
grammability concerns. There are a number of proposals to ameliorate this problem,
but as of yet no solution has arisen as a clear winner. Conflating the problem are
a number of languages, libraries, or approaches that are intimately tied with par-
ticular hardware—including CUDA, OpenCL, Threaded Building Blocks (TBB),
OpenMP, OpenAcc, Cilk, and UPC—forcing programmability issues to be inextri-
cably linked with hardware choices.

1.2.2 I/O

The storage hierarchy is the single most limiting factor in high-performance vi-
sualization. Long term storage is slower than other subsystems by many orders
of magnitude: far wider than the gap between processor and memory speeds, for
example. Furthermore, there is little hope that this gap will shrink in the coming
years. This poses a pernicious problem for visualization, whose primary interaction
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with the storage hierarchy is via synchronous read operations. Worse, this type of
workload is unique to visualization: other high-performance computing consumers
are unlikely to be allies when negotiating architectural trade offs for HPC resources.

While parallel storage continues to make significant progress, the problems
elucidated in recent years are a cause for concern. Parallel filesystems must
intelligently partition and provide access to a distributed set of disks, but the
decomposition of the parallel job is frequently opaque and only a traditional serial
API is presented. This presents difficulties in avoiding issues such as false sharing,
or central and thus contentious repositories for metadata. At the core of the issue is
the rapidly increasing cost of data movement.

There are no imminent advances on the horizon for the storage hierarchy
problems plaguing modern high-performance visualization and analysis software.
While solid state drives ameliorate some of these concerns, from a scalability
perspective they have only a minor impact. Given the realities of current and future
architectural limitations, we must consider alternate approaches to the visualization
and analysis problems. Efforts that eschew data movement in favor of redundant
computation will be favored in future algorithms.

1.2.3 In situ visualization
In situ visualization addresses the ‘too big to read’ problem in large-scale visu-
alization and analysis. The simple act of loading data significantly changes the
visualization and analysis work flow. There is an inflection point in the relationship
between data sizes and the performance of the storage hierarchy. Past the inflection,
the impracticality of loading the full dataset precludes exploratory visualization
and analysis. In situ visualization solves this by foregoing such use cases entirely:
instead, all visualization and analysis is ‘baked into’ the simulation run itself,
running concurrently with the parallel simulation. The advantage of this approach
is that it obviates the most expensive step in the majority of visualization pipelines:
reading data from disk.

To achieve this coupling of visualization and simulation requires a combination
of software from multiple communities, notably simulation and visualization &
analysis. This creates sizable technical and social challenges. First and foremost,
these are often distinct groups, with varying research motivations, methods for
assessing engineering contributions, and software processes. Data models are often
radically different and data must often be shared across multiple programming
languages. Finally, scalable visualization software is typically large, and both sides
tend to have unique but overlapping dependency stacks.
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Prior effort into in situ visualization is often focused on scalability and perfor-
mance. At the largest scale—the most promising candidates for benefiting from
in situ techniques—there is great concern that visualization will severely impact
the execution time of highly parallel simulation software. The scalability of these
results is promising, but often comes at large increases in software complexity and
thereby technical debt.

This dissertation is perhaps the first to address the concerns associated with
coupling increasingly complex visualization software with the simulations it uses
as input. The starting thesis is that embedding visualization into simulation code
should not require a visualization expert. It should be possible for the simulation
author or even an independent user to perform this task. For the monumental task of
integrating in situ visualization into the thousands of available simulation packages,
coupling efforts must be measured in minutes, not weeks or months. Starting from
these premises requires a radically different approach to in situ visualization than
traditional solutions permit.

1.3 Contribution

The contributions of this dissertation fall along two broad lines. First, this work
redefined the data sizes and methods in use to volume render and understand
regularly-gridded three-dimensional data. Second, this dissertation is the first to
radically rethink in situ visualization approaches for the purpose of accelerating
the task of coupling simulation and visualization.

Prior to the ImageVis3D desktop volume rendering tool developed in relation
to the research appearing here, ‘large data’ visualization was limited to ‘big iron’
multi-million dollar supercomputing facilities. Chapters 2 and 3 demonstrate that it
is possible to use workstation computing resources to visualize the multi-terabyte
datasets normally processed on supercomputers, as shown in Figure 1.2. Despite
using vastly less hardware, the performance and user experience is even better than
on the large-scale infrastructure. Chapter 4 demonstrates that these techniques
can still be applied at scale and uses them to produce the largest-ever volume
renderings, and Chapter 5 takes that concept further by investigating parallel IO
concerns at scale.

Volume visualization is a means to an end: that of understanding the structures
and processes present in a volume data set. However, massive data sizes preclude
post hoc visualization for extremely large data sizes, even when taking advantage
of the methods highlighted above. In recent years, many have turned to in situ
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Figure 1.2: ImageVis3D interacting with a 5 terabyte data set of a rabbit eye. The
research in this thesis demonstrated to the community that what was previously
considered ‘large data’ could in fact be processed by workstations using commodity
hardware.
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visualization to tame the growing performance concerns of large-scale visualization.
However, engineering groups have long coupled ad hoc visualization and analysis
routines into their simulations to understand their simulation while it runs. The
work developed here in Chapters 6 and 7 is the first to consider in situ visualization
from the engineers’ point of view: quick and easy visualization of their data.

Much of this work has been vetted in field-leading conferences and journals.

• Chapter 2 is based on, “Tuvok, an Architecture for Large Scale Volume
Rendering” that appeared in VMV 2010 [2].

• Chapter 3 is based on, “An analysis of scalable GPU-based ray-guided
volume rendering” that appeared at LDAV 2013 [3].

• Chapter 4 is based on, “Large Data Visualization on Distributed Memory
Multi-GPU Clusters” that appeared at HPG 2010 [4].

• Chapter 5 is based on, “Efficient I/O for Parallel Visualization” that was
presented at EGPGV 2011 [5].

• Chapter 6 is based on, “Freeprocessing: Transparent in situ visualization via
data interception” that was presented at EGPGV 2014 [6].

• Chaper 7 substantially appeared as “An approach to lowering the in situ
visualization barrier” in ISAV 2015 [7].

There are also a number of publications by the author that are not considered
‘core’ components of this thesis [8, 9, 10, 11, 12, 13, 14, 15]. They are mentioned
in this text only peripherally.

1.3.1 How to read this dissertation

The chapters in this dissertation can be read in any order. However the author
recommends digesting the content in three groups, roughly concerned with GPU
parallel volume rendering, distributed memory parallelism, and in situ visualization.

1. GPU volume rendering is covered by Chapters 2 and 3. The former chapter
sets the stage for the problems that need to be solved, while the latter chapter
delves deep into performance aspects. These chapters are therefore best read
in the order presented.
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2. Distributed parallelism is covered from multiple angles by Chapters 4
and 5. Understanding the work presented in the first group will be useful in
following that presented in Chapter 4.

3. in situ visualization is covered by Chapters 6 and 7. Within this group
Chapter 6 sets the stage for the overall goal—simpler in situ visualization—
and thus the author recommends reading at least Chapter 6’s introduction
before moving on to Chapter 7.
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Chapter 2

An architecture for large-scale
volume rendering

2.1 Modern GPU-based volume rendering

In the past decade texture-based volume rendering on graphics hardware has
positioned itself as a powerful tool for interactive visual analysis of modestly
sized data sets. In earlier years slice-based approaches [17, 18] were utilized
due to the limited capabilities of older graphics hardware, with the drawback of
distracting visual artifacts. Later, GPU-based ray casting became possible on
consumer GPUs, producing superior image quality and allowing for the integration
of various acceleration strategies [19]. In addition to improvements in volume
traversal methods, various approaches have been presented to efficiently render
data larger than the video or even the system’s main memory.

As data sizes grow, however, an efficient rendering system only solves part of

Figure 2.1: Large data sets rendered with the Tuvok framework. The Visible
Human [16] CT scan (a), the Wholebody data set (b) and a Richtmyer-Meshkov
instability (c).

21
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the visualization problem. Along a different line of research, novel methods have
been proposed to effectively interrogate, search, highlight and present data with
an increasing number of high resolution features. In the course of this research
multi dimensional- [20] spatialized- [21], size-based- [22], motion controlled- [23],
topology-based [24], and style transfer functions [25], as well as other focus and
context enhancing techniques [26, 27, 28] have been developed. For a complete
and detailed survey on volume rendering we refer the reader to the state of the art
report, course, and books by Engel et al. [29, 30, 31].

Due to this vast body of research a large variety of different volume rendering
systems and prototypes exist both in academia as well as in industry. Yet researchers
and developers often reimplement the same basic fundamentals for each new
volume rendering application. It may seem that there are many different good
reasons for not reusing existing, proven code, but one can usually categorize the
decision into one of three cases:

• System: Often, the integration of new ideas and methods into large mono-
lithic rendering systems proves to be a bigger issue than re-implementing
the entire environment from scratch.

• Software Environment: The existing code may be implemented in the
wrong environment, such as for an old operating system or graphics API. For
instance, a DirectX implementation will not be suitable for a cross platform
project. Further, many research prototypes are tailor-made for one system
due to the lack of time and need for a more general implementation.

• Licensing: while largely irrelevant in the academic environment, license
issues often prevent developers in commercial environments from reusing
existing code. Even code that is released under Open Source conditions may
come with untenable requirements for some commercial entities, such as the
GPL’s stipulation that related yet non-derivative code be released under the
GNU license.

Research groups and companies often release their work and thus a number
of systems for volume rendering structured data exist as free or open source
programs. One of the earliest examples of such an open source volume rendering
system is Stanford’s VolPack software [32]. Unfortunately it has not been under
development for two decades. A more recent example is the Simian system
developed by Kniss et al [33]. Released under a very liberal open source license, it
features both a very polished user interface as well as multi-dimensional transfer
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function support. Unfortunately it falls short as far as data import is concerned and
development ceased years ago; therefore no novel render modes are implemented.
Other such discontinued frameworks and toolkits are the OGLE [34] system,
optimized for large data, and OpenQVis [35], optimized for fast GPU rendering.
A program tailored for 3D Microscopy, Voxx [36], has been released by Indiana
University; while it has very promising features, including support for 4D data, it
is only published in binary form. While Bruckner and Gröller’s ‘volumeshop’ [37]
implements unique GPU accelerated illustrative render options, its development
ceased in 2005 and no current version is available. Further, it only supported their
proprietary volume format and the current license disallows the use of the code in
commercial environments.

For medical applications the MITK toolkit [38] delivers many interesting
features, including support for large data sets and data manipulation routines, but
it offers only basic transfer function support and slow performance compared to
highly optimized out-of-core GPU volume rendering systems. Solely on the Apple
Mac OS X platform, OsiriX [39] offers unmatched DICOM support in an open
source application, but as the tool is tied closely to Apple’s Cocoa framework and
implemented in Apple-extended Objective-C, it is nigh-impossible to port to any
other platform.

Instead of using a specialized volume rendering application, existing visual-
ization toolkits can be utilized to render volumetric data. The most prominent
examples are the VTK [40] and ITK [41] systems, which allow for extremely
versatile and flexible rendering and modification of many types of data sets. The
major drawback is the lack of support for out-of-core processing, forcing appli-
cation developers to concoct external strategies to handle large data sets. Built
on top of VTK, ParaView [42] addresses the large dataset issue with a distributed
memory approach but—like the underlying toolkit—does not efficiently utilize the
capabilities of modern graphics cards, resulting in interactive performance only
at very low quality even for modestly sized data sets. Recently, the VisCG at the
Universität Münster developed the Voreen system [43], a prototyping environment
for volume visualization. The interface provided exposes the underlying data flow
network and many visualizations require knowledge as to how they are technically
realized, which we found was not suitable for a large segment of our user base.
Other non commercial visualization toolkits are the OpenDX system that is no
longer under active development, and finally the SCIRun [44] and VisIt [45, 13]
systems. As these systems suffered some of the problems of previously mentioned
solutions (e.g. outdated render modes, slow performance, or limited support for
large data sets) Tuvok is currently being integrated into these solutions. Besides
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these free & open source solutions, a number of commercial products exist such as
AVS2, Amira, Ensight, syngo, VGStudio Max, or AltaViewer. As these systems
are closed source, obtaining detailed information on their operation is difficult;
the possibility of integrating Tuvok into these systems is intriguing, but we do not
discuss them in detail for this work.

In order to address the aforementioned three issues and to overcome the limi-
tations of existing systems, we present Tuvok, a system built of cleanly separated
components that can be used together, such as in the ImageVis3D application, or
stand-alone. The entire system is implemented in C++ with OpenGL graphics
and is designed to be completely platform independent. When necessary, Tuvok’s
components can be compiled into a shared library and accessed from another
programming language. Tuvok is also released with a modest open source license
that allows unrestricted academic and commercial use of the code. Specifically,
Tuvok offers the following benefits:

1. Large Data Support Given sufficient storage space, the system can theoret-
ically handle data sets of up to 16 Exabytes in size.

2. Modular Design While the application ImageVis3D presents itself to the
end-user as a single application, it is composed of a collection of independent
Tuvok frameworks.

3. Self contained While ImageVis3D requires Nokia’s Qt library as an external
dependency, Tuvok itself does not rely on external libraries at all.

4. Cross platform support Tuvok as well as ImageVis3D support all major
platforms, including various versions of Microsoft Windows, Apple Mac OS
X, and many Linux variants.

5. Legacy hardware support Tuvok has been extensively tested to work even
with the very limited GPU capabilities of older or less capable systems.

6. Up To Date Rendering algorithms Besides its support for 2D and 3D
texture based slice based volume rendering—mostly for older graphics
hardware—Tuvok features GPU based ray casting to interactively render
images of the highest quality.

7. Provenance Support Tuvok and ImageVis3D provide provenance hooks,
with provenance recording and playback realized via VisTrails [46].
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8. Open Source Tuvok and ImageVis3D are released under the very liberal
MIT license, meaning that practically no usage restrictions exist—including
the use of ImageVis3D or its components in commercial applications.

The remainder of this chapter is organized as follows. In Section 2.2 we discuss
the design of Tuvok, focusing on the ways that the library handles large data. To
demonstrate the versatility of Tuvok and ImageVis3D, we describe extensions to the
system in Section 2.3, and projects that have incorporated Tuvok in Section 2.4. We
conclude with a summary of the presented system and future research directions.

2.2 Design

The ImageVis3D system is composed of three major components, the Tuvok
Volume rendering library, the Tuvok IO library, and the Qt based UI toolkit. Note
that these components are designed to work well together but can also be used
separately or replaced by other external libraries (see Section 2.4 for examples).
In fact, during the compilation process of Tuvok the subcomponents are compiled
as separate libraries that are simply linked together. During the design of these
components care has been taken to create flexible and simple interfaces between
the subcomponents. As an example of this decoupled design, the communication
from the UI to the rendering and IO systems happens through a single entity,
named the MasterController. This concept makes it easy to intercept all the
communication to and from the UI (see Section 2.3) and is also the heart of the
scripting interface built into ImageVis3D that allows programmatic control over
the application.

2.2.1 The volume rendering library

The Tuvok volume rendering library contains the core graphics algorithms to render
volumetric data. Currently, a slice based volume renderer as well as GPU based
ray casting renderer are available via OpenGL. For pure software based rendering
the system currently relies on the Mesa library.

2.2.2 Interactivity and quality

One of the primary design goals of Tuvok is that it should be able to visualize data
sets of incredible size on almost any commodity system. We have previously scaled
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the renderer to data sizes greater than 2 terabytes [4], including the 5 terabyte rabbit
eye from Figure 1.2.

This is achieved using a streaming, progressive rendering system guaranteeing
interactive frame rates with adaptive quality. The generation of full quality imagery
is also guaranteed on all configurations, with any data set, but may not happen
interactively.

To achieve this goal Tuvok utilizes a multiresolution level of detail (LoD) data
representation. It queries the volume parameters from the Tuvok IO Library—or
an external IO framework through a documented API if the IO library is not used—
and uses that information together with the current viewing parameters and system
performance history to compute a work order for the current render task. More
details are available in Section 2.2.3.

To achieve goals 4-6 in the list above, renderers contain a variety of extra code
paths for compatibility settings, as a means to address a number of issues discovered
in OpenGL drivers. Tuvok contains multiple renderers, based on ray casting, 3D
slicing, and 2D slicing, that span a range of quality versus portability across GPUs
and drivers. This has been important to support a breadth of collaborations, as less
technical users tend to have integrated graphics chips that lack support for even
3D textures. One feature driven by this requirement is the ability to select the bit
width of the framebuffer object (FBO) used for rendering, because we found that
some drivers would switch to a software path when rendering into a 32-bit FBO.

Table 1 gives timings for multiple data sets on different systems, demonstrating
the system’s compatibility and scalability. For these timings the progressive ren-
dering has been disabled: only the time to render the maximum quality image for
the given view was measured. With the progressive rendering turned on all data
sets render at the chosen refresh rates on all systems. Note that the systems used in
the test cover chipset integrated GPUs as well as also high end PC configurations.
Timings are presented for small data sets as well as reasonably sized CT scans
and simulations. Using even larger data sets does not significantly impact the
performance of the system, as the amount of data accessed is bounded by the
screen resolution.

2.2.3 Large scale data handling
While Tuvok can take advantage of recent advances in hardware capabilities, it
is still true that data are growing and have been growing faster than hardware
capabilities allow. Thus, while the size of data sets that we can interactively render
is increasing with each hardware revision, we still find that a larger percentage of
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data set Air Pro Vista
C60 Molecule
128x128x128 8bit = 2 MB
See Figure 2.2

110 / 184 80 / 124 12 / 14

VH Male CT
512x512x1884 8bit = 471 MB
See Figure 2.1a

380 / 500 526 / 744 48 / 76

Wholebody
512x512x3172 16bit = 1586 MB
See Figure 2.1b

680 / 700 587 / 984 126 / 301

RM Instability
2048x2048x1920 8bit = 7680
MB
See Figure 2.1c

5523 / 6112 3112 / 3520 196 / 321

Table 2.1: Tuvok timings in milliseconds for various data sets and configurations.
“Air”: MacBook Air, 2GB RAM, onboard GeForce 9400, “Pro”: MacBook Pro,
4GB RAM, GeForce 9600, “Vista”: PC running windows Vista, 24 GB RAM,
Quadro 5800. All tests were performed in isosurface mode (first value) and in 1D
transfer function mode (second value), using the ray casting renderer and sampling
twice per voxel into a 1024x1024 viewport. The camera was zoomed such that the
data set covered the entire viewport, and the datasets were divided into bricks of
size 2563.

Figure 2.2: Various render modes applied to the C60 dataset. In the top row 1D and
2D transfer functions, isosurface extraction, and ClearView are shown. The bottom
row shows the same views in anaglyph stereo mode. On the right is two by two
mode featuring a 3D view, a MIP view (top right) and two slice views (bottom).
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our data sets cannot be rendered interactively. It would be unreasonable to assume
this trend would reverse in the coming years. Therefore, it is critical that interactive
visualization systems incorporate progressive renderers.

Tuvok’s progressive renderer is based on overloaded concepts of frames and
subframes. In the context of Tuvok, a frame is a single, complete rendering of
the data at native screen and data resolution. A subframe is an intermediate state
between no rendering and a frame that includes the full spatial range of the data and
any annotations present in the visualization. The quality of successive subframes
monotonically increases. A sequence of these subframes are rendered before
the final frame is displayed, detailing different approximations of the complete
rendering much more quickly than a frame can be displayed. We guarantee that
there is always at least one subframe that can be displayed interactively (within
a hundred milliseconds). The system turns to such a subframe when the user is
actively interacting with the data.

To model the concepts of frames and subframes, Tuvok uses a multiresolution,
level of detail representation of data. For the most part, a subframe corresponds
to the data at a particular level of detail. At the coarsest level of detail, the
data are small enough that they can easily be read from disk under our real time
requirements. However, we found that older GPUs could not always render such
data quickly enough for our needs. Therefore Tuvok always makes available
up to three additional subframes. These are generated by lowering the screen
resolution of the rendering (and upscaling before display to the user), lowering the
sampling rate used by the renderer, or both. Lowering resolution and sample rate
significantly reduces the strain on the fragment processing stage of the graphics
pipeline, allowing Tuvok to respond quickly even on low end hardware. We do not
know any OpenGL 2.0-capable GPU that Tuvok does not perform acceptably on,
and (through extensions) Tuvok can render even on some cards that do not report
OpenGL 2.0 capabilities.

Preprocessing

Most data are not fed to visualization software with multiple levels of detail
included. To accommodate such data, Tuvok’s IO subsystem implements a prepro-
cess that generates a multiresolution hierarchy. The data at their native resolution
form the finest level of detail, and we subsample by two recursively until a level of
detail exists that is less than or equal to a predefined user-configured limit. We also
use this opportunity to perform other operations on the data, such as ensuring a
consistent endianness. In most cases preprocessed data can be loaded from disk



2.2. DESIGN 29

directly into GPU memory.
The primary issues we face when loading large data are 32-bit address spaces,

limitations on GPU 3D texture sizes, and managing the IO in an efficient manner.
The address space limits us to only handling two gigabytes of data at any one time.
Limitations on texture sizes prevent us from ‘simply’ loading the data into a single,
large 3D texture. Typical IO performance on desktop-class and predicted future
hardware informs our strategy for how we access and consume data.

To tackle these issues, the preprocess divides each level of detail into a set of
bricks, with each brick small enough to fit into the texture memory of any modern
GPU. The rendering core will render each level of detail in an out-of-core fashion:
a brick will be loaded, rendered, and discarded as a single atomic operation. This
allows the renderer to load data of virtually unlimited size with very little available
memory, as the required amount of memory is independent of the data set size. To
achieve the IO performance we require, the IO library uses large reads (by default,
16 megabytes) that make seek times virtually irrelevant.

A simple survey of modern disk drives finds reported seek times ranging from
3.75 up to 8.9 milliseconds. Sustained transfer rate capabilities can be as low
as 65 MB/s; see Table 2.2. While there are of course differences across drives
and manufacturers, multi-megabyte reads very quickly overtake seek times as the
predominant factor in disk transfers. At 65 MB/s, it takes almost a quarter of a
second to read 16 megabytes of data, yet only 8 milliseconds to seek to the position
of that block. Even as one gets into the higher end drives, the story is the same;
a Cheetah 15K.5 would take 0.12 seconds to read a 16 megabyte chunk of data,
and only 3.75 milliseconds to seek to the appropriate location on disk. In relative
terms, seek time makes up approximately 3% of the time required to read the data
block. Based on these simple calculations, it is clear that transfer rates will have to
improve drastically before seek times become a relevant parameter.

We have also benchmarked our I/O subsystem using solid state drives. Table 2.3
shows the time spent on I/O when loading a 648-brick data set via Tuvok. The SSD
boasts vastly better seek times, on the order of microseconds instead of the normal
milliseconds for mechanical drives, and a factor of two to three improvement in
bandwidth. Using large reads, the seek time matters little in this case, but as shown
in Table 2.3 Tuvok benefits from the improved transfer times offered by SSDs.

Paging strategy

Transfer time forms the majority of our pipeline execution time when using high
end GPUs. Therefore, by maintaining a cache for individual bricks, we can improve
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Drive name Seek time (ms) Sustained transfer rate (MB/s)
Cheetah 15K.5 SAS 3.75 73 to 125
WD Caviar RE2-GP 8.9 84
Barracuda 7200.8 8 65
WD 740GD 5.2 72

Table 2.2: Relevant disk performance characteristics for disks ranging from high-
end server drives (Cheetah 15K.5) to an aging model released 11 years ago (WD
740 GD)

3-disk SATA RAID5 Solid state drive
64.8704 27.6723

Table 2.3: I/O component (seconds) for rendering a 9 gigabyte timestep from a
simulation of a Richtmyer-Meshkov instability.

the overall rendering time by obviating the transfer time for oft-requested bricks.
A straightforward paging strategy for such a cache would be Least Recently

Used (LRU), however this strategy delivers poor performance in many situations.
Consider a dataset with 10 bricks, and a brick cache capable of storing 9 bricks. In
the first frame, all ten bricks must be paged. Further, loading the final brick of the
first frame will evict the first brick of that frame. Assuming any reasonable amount
of frame-to-frame coherence, the next frame will again need the same 10 bricks,
and they are likely to require a similar depth ordering. Thus, in the second frame,
the first brick we will need is the brick we just evicted at the end of the last frame;
further, the second brick we need will be evicted while loading the first brick of
the second frame, and so on throughout the entire frame.

We have implemented a custom paging strategy that takes into account our
progressive rendering system. In this strategy, we evict bricks within a frame using
the Most Recently Used (MRU) strategy; we evict bricks between frames using
the LRU strategy. The rationale for the former is that once we have used a brick
in a subframe, it will not be used in the rendering of that frame again until the
progressive renderer starts over, and we may service a large number of bricks in
the interim. However, if we do start the frame from its earliest subframe again,
particularly before finishing the frame, we are likely to need the oldest bricks that
are present in the cache. Between frames, we rely on frame-to-frame coherence. If
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a brick was not used in the previous frame, and is not used in the current frame,
it is likely to not be required in subsequent frames as well; a common example
is if the user has enabled a clip plane: any viewing transform will not affect the
bricks that are clipped away by the plane. Therefore the LRU strategy will tend to
evict bricks that are not visible under the current transfer function, isosurface, or
viewing parameters.

2.2.4 UI and networking library

To facilitate rapid development of other visualization applications, all those compo-
nents built on top of Qt that are not specific to the application level were separated,
allowing them to be shared and reused in future applications. These components
can be roughly categorized as the UI and networking components. The independent
networking components include the bug reporting, update checking, and data set
sharing subsystems, while the UI components include the base classes that define
the look and feel of ImageVis3D, such as dialogs, tool widgets, user interaction,
and persistence.

2.3 Extensions to Tuvok and ImageVis3D

In this section we present a couple of examples to demonstrate how simple it is
to add new features or extend existing functionality. We present examples from
research projects implementing a prototypic environment to experiment with new
methods (Section 2.3.1) as well as new features to ImageVis3D to use it for other
research.

Due to the modular design, the scripting interface, and the MasterController
concept, integration with external software is simple. As the UI and execution
layer communicate strictly through a single class, the MasterController,
any type of external communication channel can simply attach itself to this
class and track changes. Control of the library can also happen through the
MasterController via script commands that allow programmatic modifica-
tion of all of Tuvok’s features.

2.3.1 Extensions to the rendering subsystem

ImageVis3D has been extended to provide domain specific visualization capabili-
ties. In some domains, it is necessary to visualize multiple data sets simultaneously.
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Figure 2.3: 3D texture, SLIVR, and Tuvok volume renderers in VisIt (left); Tuvok
rendering a torso in SCIRun (right).

A student has modified ImageVis3D to render multiple data sets that live in over-
lapping space, and added domain-specific widgets for ease of use in a particular
scientific domain. One such example is a dialog to automatically create transfer
functions, based on external knowledge of characteristic data distributions within
data sets common to that field. A second example is repurposing the 2D transfer
function editor to utilize different metadata along each axis.

2.3.2 Extensions to Tuvok ’s controller

For provenance tracking, we have integrated VisTrails, a production provenance
framework with well-developed APIs for integration with external systems. The
integration of VisTrails provenance tracking features required a two way communi-
cation from and to Tuvok. Interactions made by the user need to be communicated
to VisTrails to track the provenance, but also VisTrails needs to be able to con-
trol Tuvok to perform undo/redo operations. Thus, this example is prototypic for
any type of recording or remote control of Tuvok, such as cluster extensions or
connections to novel input devices.

2.4 Use cases of Tuvok

In the following we present examples where Tuvok—or only some of it components—
have been integrated into rendering environments other than ImageVis3D. Fig-
ures 2.3 and 2.4 demonstrate the integrations presented here.
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2.4.1 SCIRun

SCIRun is a problem solving environment for modeling, simulation, and visualiza-
tion of scientific data. It is an example of what we refer to as a legacy application,
in that it was developed without the ideas implemented by Tuvok in mind. In
particular, this means that the system must work with in-core, ‘unbricked’ data sets
of a single resolution.

To support such an environment, Tuvok has a simplified API for existing
systems that do not include level of detail or bricking concepts. The information
flows one way from the controlling application to Tuvok, and includes a reference
counted smart pointer to the data, as well as metadata and rendering parameters.
For small changes in rendering parameters, data shared from previous frames
is retained and simply re-rendered. When changing or passing a new data set
to Tuvok, the old data set is removed and replaced by a new reference counted
smart pointer. This scheme allows us to avoid data copying between the host
application and rendering library. In these kinds of systems, Tuvok does not have
access to a multiresolution form of the data, and thus cannot guarantee interactive
performance.

2.4.2 VisIt

VisIt is a data visualization and analysis application that is well-suited to large
scale data processing on leadership computing platforms. We have integrated the
underlying rendering core as an option alongside VisIt’s existing volume renderers.
Since VisIt already supported domain-based data set decomposition, it can easily
take advantage of an additional Tuvok feature: bricking. This allows VisIt to
volume render data of arbitrary size on the GPU, whereas it was previously limited
to resampling the data or utilizing software rendering.

Though data do not come directly from a data file in this and other integration
work, the abstraction provided by Tuvok’s IO layer allows the rendering core to
remain ignorant about the source of the data. The metadata that must be supplied
to Tuvok scales with the complexity of the application: in the unbricked, SCIRun
case, Tuvok can be told only the brick size (assuming the brick lies centered on
the origin); with decomposed data, Tuvok must be informed of the world space
location of the bricks; for progressive rendering applications, such as ImageVis3D,
the LoD that a brick belongs to must also be given. Should an application choose,
it can also supply additional metadata to allow advanced rendering optimizations.

An issue that arose specifically in the VisIt integration was state management
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Figure 2.4: The left image shows an E11 mouse embryo (2.4GB) while the right
image depicts a P0 newborn rat (7.6GB). Both specimens were stained using
Numira’s custom protocol and scanned using microCT. Images courtesy of Nu-
mira Biosciences. Copyright 2009 c© Numira Biosciences. All rights reserved.
AltaViewer Software available at http://www.numirabio.com/

in large, established software systems. The OpenGL API is a global state machine,
and VisIt has many sub-libraries that can and will change the global state in ways
we cannot predict. Tuvok therefore makes very few assumptions about OpenGL
state. During the ‘setup’ stage, Tuvok takes state information—camera and viewing
reference points, data, etc.—and stores it locally. A single method then uses all
that information to configure OpenGL state once before moving on to per-brick
rendering. For efficiency reasons, the system leaves the OpenGL state ‘as-is’
when finished rendering, much like other VisIt subsystems and libraries do. Until
OpenGL establishes an object model, we have found this to be the best method for
managing OpenGL state.

2.4.3 AltaViewer

Finally, we demonstrate the usability of Tuvok’s components in a commercial
environment. Numira Biosciences is a specialty contract research organization
that focuses on high-resolution imaging and analysis of small animal specimens,
provides researchers with quantifiable, visible evidence of disease progression,
as well as drug efficacy and drug side effects in their animal models. For the
next generation of their visualization suite ‘AltaViewer’ (see Figure 2.4) they have
chosen to replace their proprietary IO library in part by Tuvok’s IO components to
achieve significantly better performance.

http://www.numirabio.com/
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2.5 Conclusion and future work
In this paper we have presented the Tuvok framework as well as ImageVis3D,
an application built with Tuvok. We gave insight into large data support in a
production volume renderer. We also gave a couple of examples of research
projects and commercial use of components of Tuvok. We are currently working
on three major extensions to Tuvok. First, the support of time dependent data
sets, in particular we are working to extend the progressive rendering concept to
this data as well. Secondly, we are extending Tuvok to render multiple data sets
in overlapping 3D space; due to the out-of-core nature of the system an efficient
implementation of this feature is non-trivial. Finally, we also plan to add purely
software based as well as OpenCL based ray casters to allow for fast rendering of
ultra large data sets on headless clusters with and without GPUs.
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Chapter 3

Ray-guided volume rendering

Volume rendering continues to be a critical method for analyzing large-scale scalar
fields, in disciplines as diverse as biomedical engineering and computational fluid
dynamics. Commodity desktop hardware has struggled to keep pace with data
size increases, challenging modern visualization software to deliver responsive
interactions for O(N3) algorithms such as volume rendering. We target the data
type common in these domains: regularly-structured data.

In this work, we demonstrate that the major limitation of most volume rendering
approaches is their inability to switch the data sampling rate (and thus data size)
quickly. Using a volume renderer inspired by recent work, we demonstrate that
the actual amount of visualizable data for a scene is typically bound considerably
lower than the memory available on a commodity GPU. Our instrumented renderer
is used to investigate design decisions typically swept under the rug in volume
rendering literature. The renderer is freely available, with binaries for all major

Figure 3.1: The Visible Human male full color (∼12 GB) and a Richtmyer-Meshkov
instability (∼8 GB) render in 34 ms and 58 ms, respectively, using our ray-guided
volume rendering implementation. On right are views that highlight the areas that
take advantage of empty space leaping (green) and early ray termination (blue).

37
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platforms as well as full source code, to encourage reproduction and comparison
with future research.

3.1 Introduction

Modern volume rendering is heavily focused on the concepts of empty space
skipping and the fast detection of ray saturation. Both of these concepts have
extensive effects on the amount of compute work required. However, even more
relevant is their ability to reduce the working set of extremely large datasets down
to a small kernel, which can significantly reduce the amount of data that must be
loaded from a slow network or local disk resources. This has enabled interactive
volume rendering for very large data on commodity hardware [47, 48, 49].

There are a variety of trade-offs in the development of a modern volume
renderer. The choice of brick size, for example, can significantly impact the
effectiveness of empty space skipping. We note that the presentation of most
volume rendering systems lacks detailed insight into these parameters. Further,
these factors can interact in complex ways. As an example, empty space skipping
works considerably better with smaller bricks sizes, but disk throughput drops
sharply with small requests. Compression can further complicate the issue.

We seek to rectify this situation by performing a thorough study of the inter-
action of these parameters within the context of GPU-based ray driven volume
rendering. We have surveyed recent volume rendering literature and implemented
a renderer by piecing together the best ideas from a multitude of systems. These
ideas were extended with notions required for our environment—for example,
by removing the requirement that datasets fit in GPU memory. Along the way,
we instrumented every corner of the renderer and utilized this instrumentation to
exhaustively explore relevant options. The final result achieves better performance
than previous work and provides a guided tour through the maze of design choices
available in a modern volume renderer.

3.2 Related Work

Volume visualization on consumer graphics hardware has become widely utilized
as a means to cope with the growing sizes of data. GPUs have proven useful in both
ray-tracing and rasterization techniques [50, 51], rendering of diverse scenes [52],
as well as considerably more general tasks [53].
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Figure 3.2: The missing brick reporting / paging subsystem of our volume rendering
approach. Missing bricks are recorded into a hash table (1, 2), to be paged in (3, 4,
5) and rendered in subsequent frames (6).

Volume rendering accelerated by GPU hardware was established in the mid-
90’s [17, 18], initially based on hardware compositing of volume slices. The
ability to do raycasting came later [19]. Since the time of the initial GPU-based
volume renderers, researchers have been concerned with methods to work around
the limited memory available on GPUs. The prominent technique for volume
rendering large data on a GPU is to use a multiresolution representation [54, 55,
56]. This method hinges on the concepts of empty space leaping and early ray
termination [57], two techniques developed early on that demonstrate that sampling
can be significantly reduced in many instances of volume rendering.

There has been much work on accelerating ray-traced volume rendering in
recent years. Voreen implements a more general architecture, including GPU-
based raycasting [43]. Tuvok implements a flexible volume rendering system with
support for very large datasets [2, 8]. Knoll et al. utilize a bounding volume
hierarchy and optimized SSE to achieve very fast volume renderings [47]. Gobbetti
et al. and Boada et al. detail methods for traversing tree structures on the GPU for
the purpose of volume rendering [58, 59]. The Gigavoxels [49] system traverses
N3-trees on the GPU to choose an effective resolution. With the large gap between
processing power and data sizes, some communities have turned to distributed
memory systems for large-scale volume rendering [60, 61, 4, 62].

Our algorithm employs a lock-free data structure on the GPU for feedback
information. Highly-concurrent Lock-free structures are ideal for the manycore
GPU environment, however they have previously been challenged by the lack
of concurrency primitives available for the OpenGL platform. We make use of
a lock-free hash table very similar to that of Michael’s [63], implemented in a
manner similar to Lux and Fröhlich’s implementation for terrain rendering [64].

Hadwiger et al. presented a volume renderer similar to ours [48]. Their system
is aimed at volume rendering highly anisotropic data as it is streamed real-time
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from a high-resolution microscope. Our renderer improves upon theirs in a number
of ways:

• We perform brick lookup each brick, instead of every sample, maintaining
the simple and familiar ray-marching core that is well-documented in volume
rendering literature.

• We expound on how to use modern GPU features to implement our lock-free
feedback data structure. This enables the implementation to spend more time
computing on the GPU and less time pushing data around.

• We utilize an out-of-core, progressive rendering methodology, breaking the
GPU-memory-size barrier that limits data sizes from Hadwiger et al.’s work.
This also allows us to gracefully scale down to consumer-level graphics
cards.

While we believe these to be novel additions, we do not consider them to be
this work’s major contribution. Rather, we provide new depth to the discussions of
a variety of parameters that are relevant in the development of a ray-guided direct
volume renderer:

• The strategy to be used to load higher resolution data when a variety of
intermediate choices are possible;

• an understanding of the miasma of issues surrounding bricking and brick
sizes;

• empirical evidence demonstrating that the working set for direct volume
rendering is indeed bound more by the screen resolution than the dataset;

• a novel method for ray-guidance storage and propagation to the input sys-
tem’s logic;

• how to effectively handle real-time updates to the transfer function; and

• the effect of brick layout strategies on large volume access times.

In contrast to previous renderers, ray-guided volume renderers couple the
rendering process with the identification of which subvolumes (‘bricks’) must
be loaded. We describe the operation of ray-guided volume renderers, in Sec-
tion 3.3. In Section 7.4.5 we detail a plethora of benchmarks that demonstrate the
performance of the renderer.
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In many prior volume renderer evaluations, results are generally limited to the
raw performance of the renderer. However, we note that—for some reason—users
of our volume renderer rarely ask how many milliseconds it takes to render the
visual human. One thing users do ask is how large the data can get before the
renderer becomes unusable. For this reason, we have engineered our renderer so
that it does not require that the volume fit in core. Furthermore, users generally
value a responsive system over a performant system. They are curious if money
should be spent upgrading a video card or buying a solid state drive. Design
elements are carefully expounded and conclusions are drawn in Section 3.5.

Finally, Section 3.6 gives our final remarks, and note both limitations and
opportunities for future work.

3.3 Ray-Guided Grid Leaping
At the macro level, our algorithm is reminiscent of the recent work of Hadwiger et
al. [48], as well as Engel’s CERA-TVR [65] that is in turn based on the Gigavoxels
system [49].

With Hadwiger et al. we share the requirement of a set of simple multiresolution
Cartesian grids, along with an OpenGL-based table to report missing bricks. A
multiresolution hierarchy is built as a preprocess for input data that exist at only
one resolution (details are in Section 3.5). From the CERA-TVR system we inherit
the idea to only recompute and request grid cells at boundaries.

3.3.1 Overview
We endeavor to create a volume renderer that can render massive datasets extremely
fast on commodity GPU hardware. The major issues in such a renderer are:

1. Identifying regions that must be sampled densely.

2. Precisely locating the transition between these regions and regions that
exhibit considerable homogeneity.

3. Terminating a ray as soon as possible.

4. Efficiently communicating regions to be rendered in the future to the IO
layer.

Points (1) and (2) ensure we concentrate the computational effort on the areas
that require it. Point (3) is critical because it means we do not have to load the data
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beyond the point of early termination, significantly reducing costly disk traffic. If
point (4) is not sufficiently addressed, the renderer will load large amounts of data
that are not needed for rendering, at severe costs in performance.

To the first point, we employ an efficient metadata structure that allows us to
quickly identify these regions. Points (2) and (3) are handled through an educated
choice of brick size that is discussed more thoroughly in Section 3.5. A major
component to modern volume renderers is how they address point (4), now by
and large based on ray guidance. That is, the sampling characteristics of the ray
determine which data to load. Stated differently, the future data requirements are
computed in concert with standard ray traversal and accumulation.

The entire operation is detailed in Figure 3.2. For each ray we compute the
level of detail required to maintain a pixel error of less than one. With this level
and the position in the volume we compute a brick index. This brick index is used
to fetch information from a lookup table (Figure 3.2.1) to identify whether the
brick is a) empty, b) non-empty and present on the GPU, or c) non-empty and
absent. When it is empty, we skip the brick and repeat the process at the brick’s exit
point. When it is non-empty and present, we ray-cast that brick. When the brick is
non-empty and not resident in GPU memory, the system returns the finest coarser
level available and the missing entry is added to a GPU hash table (Figure 3.2.2).
This table is read back to the host memory at the end of the frame (Figure 3.2.3),
and used to page in bricks from disk or cache (Figure 3.2.4). A paged-in brick is
then uploaded to a GPU texture pool (Figure 3.2.5), and a subsequent frame will
use this portion of the brick pool for sampling (Figure 3.2.6).

The key component is that both ray-accumulation as well as identification of
the bricks that are needed should occur on the GPU. The latter is natural to compute
during standard ray-casting operations. Doing both operations on the GPU means
brick identification comes very cheap, as it parallelizes very effectively. More
importantly, performing this during ray-casting ensures that it is optimally accurate:
the program never loads data that will not be used.

The basic algorithm is given in Algorithm 1. Briefly, the appropriate sampling
rate is identified and we look for the data at that resolution (lines 6, 7). GetBrick
will always return some data, but the data may be at a lower resolution than
request; this is communicated through the samplingRate and the situation is
handled on line 8. If our data are too coarse, we note that we are missing a brick
(ReportMissingBrick) and where we are in the volume (rayResumePos)
when this first occurred (terminated).

Every iteration through the outer loop, we perform this identification of the
appropriate resolution. This satisfies our first goal as mentioned above: we identify
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Algorithm 1 Ray-guided volume rendering. Each ray identifies the set of bricks
that it needs for rendering independently, and reports this information for use in
subsequent rendering passes.

1: color = rayResumeColor
2: terminated = true . assume ray will finish
3: rayResumePos = FINISHED
4: repeat
5: LoD = ComputeLOD(Depth(ray))
6: brick, samplingRate = GetBrick(ray)
7: offsets = PoolOffsets(brick)
8: if samplingRate 6= RequiredSamplingForLOD(LoD) then
9: ReportMissingBrick(brick)

10: if terminated then . first missing brick?
11: terminated = false
12: rayResumePos = ray
13: end if
14: end if
15: Raycast(ray, samplingRate, offsets)
16: until ray ≥ exit ∨ Saturated(ray)
17: rayResumeColor = color
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the appropriate sampling resolution at every brick boundary. With small bricks, this
means we will do few integration steps before early ray termination is recognized.
Furthermore, we detect empty bricks at this stage as well. The standard raycasting
inner loop is hidden in the Raycast call.

3.3.2 Missing Data

As noted above, it is possible that data are undersampled while rendering. When
this occurs, we display a coarser version of the data initially, but progressively
refine those regions with finer resolution data until they are sampled at a rate of a
single voxel per pixel, or the maximum data resolution available. This information
is collected by the GPU as it renders, but must be communicated back to the CPU
to coordinate disk access and update the appropriate area of the volume pool.

One solution for this would be to use multiple render targets to store information
on which bricks are missing [49]. The limitation of this method is the limited
mapping operation from the ray to the target buffer: there are only so many available
render targets. Furthermore, this approach ignores the inherent spatial coherency
between rays. Two neighboring rays are highly likely to request the same set
of bricks, or at least have substantial overlap within the sets they require. With
the multiple render targets approach, both pixels will encode the same value, and
we will need to read back larger textures that consist of predominantly duplicate
values.

Instead of utilizing extra render targets, we take advantage of an OpenGL exten-
sion that was promoted to core in version 4.2, GL ARB shader image load store.
This extension allows the creation of an image buffer that is independent of the
current rendering buffer. Using the atomic load/store operations the extension pro-
vides, we implement a set based on a linearly-probed lock-free hash table stored in
an image load store buffer. Since we are hashing based on the brick, multiple
rays requesting the same brick hash to the same position. This allows us to keep
the table—and therefore how much information we read back per-frame—quite
small. We discuss sizing of the hash table in more detail in Section 3.5.3.

3.3.3 Brick Classification

Considering our target goals (1) through (3) given at the beginning of this section,
one could classify a brick into one of three categories:

• skipped due to empty space skipping,
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Figure 3.3: Volume rendering behavior for the Mandelbulb dataset. Green indicates
bricks that were skipped via empty space skipping. Red indicates bricks that were
sampled densely. Blue indicates bricks that were sampled but saturated quickly.

• early termination due to ray saturation, or

• sampled densely without saturating.

An important observation is that—in a very large number of cases—bricks
fall into either the ‘empty’ or ‘saturating’ categories, and only rarely in the ‘non-
saturating’ category. The factor that has the greatest effect on performance is
how quickly a renderer can classify data into one of the first two categories, and
therefore bypass a large set of the work.

To make this identification effective, ray-guided volume renderers maintain the
state of each brick, shared on both the GPU and host memories. During rendering,
one uses the table to identify if a brick is empty. If so, the renderer leaps over that
space instead. We store this as an array consisting of one 32-bit integer per brick
of the dataset.
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Figure 3.4: Time spent at various stages of our pipeline, aggregated over the
generation of a rotation sequence. Comparisons are made between data stored with
the ideal brick size for that dataset (‘Native’), and data stored at a large brick size
of 2563 with the ideally-sized bricks created at run-time (‘Rebricked’). ‘Whole
Body’, ‘Velocity’, and ‘Magnitude’ suffer from a lack of ray saturation.

Figure 3.3 visualizes this classification for a large dataset under a typical
view and transfer function. As shown there, the majority of the visualization
falls into either the ‘blue’ (saturated quickly) or ‘green’ (skipped) sets. This also
demonstrates how little data is required for a typical volume rendering. A similar
rendering is given in the rightmost image of Figure 3.1, in which only the rays in
the middle of the volume require extensive computation.

Of course, this classification depends largely on the transfer function and view-
ing parameters. In practice, however, transfer functions that produce informative
visualizations tend to exhibit such ternary classifications.

When the transfer function is changed, this metadata information must be
recomputed. For datasets with many bricks, this can induce a noticeable delay. Our
current test platform can process about 7.5 million bricks per second, but even a 1
second delay between interactions is too much. Therefore, we offload this update
to a background thread. Until the thread completes its work, the renderer considers
all unprocessed bricks to be ‘missing’, causing it to request bricks that might be
empty. Those bricks’ metadata are directly updated and they are only loaded if
they fail the empty check. The overall performance effects may be large, but the
system remains responsive during this period.
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3.4 Performance

In this section, we give an overview of the various stages of the renderer and
how they perform. Unless otherwise noted, all timings were performed on a dual
quad-core Xeon 2.2 GHz system using an NVIDIA GeForce GTX 680, with 24 GB
of system memory and 4 GB of GPU memory. We mostly report results from
commodity hard drives, explicitly noting some specific relevant uses of SSDs. In
many cases, results were obtained from multiple screen resolutions, but we report
results from an HD viewport (1920×1080) unless noted otherwise. Details of the
data utilized and renderer timings are given in Appendix 3.7.

3.4.1 Benchmarks

We have chosen a variety of benchmarks to evaluate the performance of our
renderer, and we elucidate the logic behind those choices here. First, the choice
of HD resolution is motivated by voxel-to-pixel error ratios. All modern high-
performance volume renderers try to maintain a 1-to-1 ratio between projected
voxels and pixels. Adaptive resolution selection is used to ensure this ratio. Without
this feature, results will be aliased, too much information will be compressed to
a single pixel, and performance will suffer. Adaptive resolution means that small
viewports will not stress renderers: a 512×512 viewport can get along fine with a
paltry few hundred megabytes of memory, irrespective of the input dataset size.

We utilize zoom-ins, as in the accompanying video and results such as those in
Figure 3.5 and some in Table 3.1, to accentuate these high resolution issues. When
the volume is far away, a very coarse resolution is utilized that maintains accurate
voxel-to-pixel error ratios. As the camera comes closer, higher resolutions of the
source data must be utilized. We terminate zoom-ins slightly after they fill the
screen; beyond this point, frustum culling’s effect dominates (see Figure 3.5). The
most challenging cases for a volume renderer are when data are close enough to
be seen at native resolution, but far enough away that no data can be culled by the
frustum.

Rotations are used to demonstrate that the renderer does not rely solely on early
ray termination. As described in Section 3.3.3 and depicted in Figure 3.3, most
rays either skip large parts of the volume, or terminate very quickly. With a transfer
function that produces a dense volume, bricks in the front will prevent bricks in
the rear from ever being paged in, effectively meaning the volume renderer need
only cope with the front half or even less of the volume. Barring pathological
volumes and transfer function choices, rotations ensure all of the data has a chance
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Figure 3.5: Working set sizes across three different scenarios for multiple datasets.
Smaller brick sizes approximate the working set better.

to contribute to a sequence.

Transfer functions. Changing a transfer function is also an important bench-
mark in any volume rendering system. Doing so invalidates our brick metadata
concerning which bricks are empty, causing some hash table entries in the next
frame to make little sense (i.e. request bricks that are visible under the old transfer
function but empty under the new one). Furthermore, the bricks in the GPU volume
pool may be inappropriate for the new transfer function.

Renderer performance as measured by response time during such an interaction
actually changes very little, and can even improve. However, quality suffers
rather drastically. This is evident in the time to convergence after a change in the
transfer function: in a typical case with the RMI data set (see Section 3.7), time to
convergence increased over 6x after changing the transfer function (from ∼380ms
to ∼2300ms).
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3.4.2 Results

To evaluate our renderer in different scenarios, we used a standard rotation scenario
with a variety of datasets, measuring the length of each pipeline stage. Figure 3.4
has these results. As IO is the prime bottleneck in many cases, we implemented
a ‘rebricking’ scheme to mitigate the amount of IO performed. Using large reads
and caching, this significantly lowers the time spent doing IO. We used ‘LZ4’
compression when recording this performance data, which trades CPU time for IO
time.

The majority of the time is spent ray-casting, pulling data from disk, and
uploading the bricks to the pool. Our novel hash table approach keeps the table
small, and so reading it is very cheap: even for large data, this component does not
factor in to the overall performance. The other GPU data to manage is metadata
information for our volume pool (i.e. which bricks are resident), but at a single
machine word per brick it costs very little to push it down to the GPU, even for
very large data.

Interestingly, the time spent managing GPU data is an increasing function
of volume size until it peaks around the size of the RMI (2048× 2048× 1920).
This reinforces our assertion that there is only so much data visible in a given
frame—dependent only on the view frustum, and not the dataset size—and so at
some point we saturate the set of visible data. Figure 3.5 and Section 3.5.1 include
more discussion about working set sizes.

3.5 Design Tradeoffs

In this section, we try to explore aspects that have not been thoroughly addressed
by previous literature. Details on trade-offs and the reasoning behind our final
implementation choices are given.

3.5.1 Subdivision

How a system subdivides the volume into manageable pieces can have a large
effect on the performance of the renderer. The primary considerations are in regard
to early ray termination and empty space skipping: small bricks are much more
likely to be composed of a small range or even uniform values, which will make
it in turn more likely that the brick can be skipped under a large set of transfer
functions. Further, small bricks means one will detect ray saturation much more
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quickly, as this is checked only when exiting a brick.

Internal Overhead The primary drawback is reduced disk throughput due to
utilizing many small requests. A further drawback is the data size overhead: each
brick needs two voxels of ghost data in each dimension, for sampling and gradient
computation purposes. This is negligible for large bricks, but grows sharply as the
brick size approaches one, as shown in Figure 3.6. Figure 3.8 demonstrates that
this is not strictly a theoretical result: a small brick size greatly increases not just
size overhead, but also the time to reorganize the data on disk. From these Figures
we can derive that for large datasets a brick size of less than 163 is impractical.

External Overhead We have performed a number of experiments to identify
the working set size for multiple different brick sizes. Starting with the smallest
practical size of 163, we increase the brick size up to 5123.

As can be seen in Figure 3.5 the working set is bound not by just the data size,
but the screen resolution as well. It can also be seen that the brick size heavily
influences the working set size: larger bricks allow for less efficient utilization of
empty regions. From the images we can derive that a brick size of less than 1283 is
desirable to reduce the working set to roughly the memory size of a GPU.

We note that the working set size is not a strict function of the brick size,
however. Figure 3.5 and Table 3.1 also show that the choice of brick size is not
clear-cut. The Visible Human male performs best with 163 bricks, for example,
whereas the ideal brick size for the ‘Magnitude’ data is 643. For the ‘Whole Body’
dataset, using brick sizes of 163 actually resulted in larger working sets than 323.
This occurs when the transfer function produces large regions of semi-transparency
but never reaches saturation. Indeed, when datasets contain large swaths of semi-
transparent regions, the conventional wisdom is reversed: large brick sizes are
generally preferred, since they significantly improve disk throughput.

If we begin to consider secondary metrics, such as the response time of the
system, the choice of brick size becomes even more complex. Since bricks are the
atomic building blocks in a volume renderer, one cannot load less than a single
brick from disk. Therefore a larger brick size imposes a larger response time on the
system. These concerns would generally push a designer to choose smaller bricks.

However, disk performance falls very sharply with small requests [5]. It is
nice for a system to respond within a few tens of milliseconds, but such concerns
should not dictate the design to the point that end-to-end performance suffers
drastically. Furthermore, small brick sizes are accompanied with significant over-
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Figure 3.6: Brick size overhead. As bricks get smaller, the overhead for the
additional ghost data grows significantly. At a larger brick size of 1283, the
overhead with 2 ghost voxels per dimension amounts to a few percent, whereas
with 323 bricks this increases the dataset size by almost 50%.

head, as discussed in Figure 3.6, and do not compress as effectively as their larger
counterparts.

Systems such as Reichl et al.’s hybrid surface rendering, CERA-TVR, and
Gigavoxels utilize a static brick size of 323 [50, 65, 49]. This brick size exhibits
few extremes of the performance issues mentioned above. However, it is certainly
not the ideal choice for all circumstances.

3.5.2 Disk IO

Brick Layout

Figure 3.7 demonstrates how this changes with the brick size. Both disk IO times
as well as decompression times are displayed there. As shown in the figure, reading
data from disk becomes quite severe with small brick sizes. However, as brick
sizes grow to 643 and beyond, decompression time becomes more important and
overall time plummets. This effect is even more pronounced using a hard disk in
place of the SSD used here. Intelligent layout strategies purport to minimize seek
times; our results corroborate this, with the important caveat that seek times are
not relevant with larger brick sizes.
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Figure 3.7: Time spent with IO-related tasks using an SSD for the RMI dataset’s
zoom-in scenario, sampled with 100 frames and a 1024×768 viewport. Layout
strategies only see utility at small brick sizes.

Dynamic Rebricking

The renderer desires small bricks, as discussed in Section 3.5.1, as small bricks
will help with early ray termination and empty space leaping. However Figures 3.7
and 3.6 demonstrate that large brick sizes are preferable for disk performance and
overhead reasons. To provide the best of both worlds, we implemented a ‘dynamic’
bricking scheme, whereby bricks are stored on disk in a rather large size (e.g. 2563)
but presented to the renderer as if they exist at some small resolution (323). The
small bricks are dynamically generated from the large ones on request.

Since requesting a large brick for every small brick would only increase the
disk traffic, we keep an additional brick cache in memory to source these copies
from. Our cache uses a standard LRU strategy. This is advantageous when the
working set of the data fits into the host memory, however when the working set
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Figure 3.8: Time to build bricked representation for a medium-sized dataset, as
a function of brick size. Renderers desire small bricks to perform efficiently, but
generating such bricks takes significant preprocessing resources.

exceeds the host memory we will evict entries before finishing a rendering. We
stuck with this strategy since the working set often does fit into host memory, as
established by Figure 3.5. If the renderer is to be used in an environment in which
working sets are routinely larger than memory, an MRU strategy would be more
appropriate.

Hierarchy Generation Reorganizing data into a set of bricks is mostly ignored
in volume rendering literature, but becomes a significant bottleneck in real-world
usage. Figure 3.8 shows the time our preprocess needs to generate this hierarchy,
which increases sharply for small brick sizes. This time also increases with respect
to dataset size. At the extreme scale, such data reorganization is completely
infeasible: merely reading every datum might take months. We believe such
reorganization will be feasible up to a few tens of terabytes. In practice, the authors
and collaborators thereof tolerate this for up to 5 terabytes at present.

Rebricking the data at run time alleviates this problem. The data can be
generated at very large brick sizes, enabling fast conversion and effective disk
throughput, and then dynamically rebricked to very small sizes. Both disk and
renderer deal with their ideal cases, then. The ‘Rebricking’ case of Figure 3.4
shows performance in this mode.
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Algorithm 2 Greedy algo-
rithm: request all bricks at all
resolutions.

ReportMissingBrick(b)
repeat

LoD++
b = LookupBrick(ray,

LoD)
if Missing(b) then

ReportMissingBrick(b)
end if

until ¬Missing(b)

Algorithm 3 Global algorithm: only request
bricks required to satisfy the final rendering
request.

ReportMissingBrick(b)
repeat

LoD++
b = LookupBrick(ray, LoD)

until ¬Missing(b)

Figure 3.9: The effect of multiple brick replacement strategies. Renderings are
select intermediate frames from the corresponding strategy. ‘Greedy’ strategies
converge quicker and produce more densely-packed intermediate progress.
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3.5.3 CPU/GPU Interface

Point (4) in our overview is the efficient communication of the ray guidance infor-
mation from the location it is generated—the GPU—to the location it is utilized—
the IO layer of a volume renderer. This section details how that communication
happens.

We utilize a GPU-based hash table to store this data, though we note that we
really only require a set. That is, our keys (brick IDs) are our values, and we only
care about their presence in the table, which we will read back and process as a list
later. A list would work as well, but a hashing scheme allows concurrent inserts to
proceed with less contention. During rendering, a ray may write into this table to
indicate that it needs a non-resident brick to continue (see Figure 3.2, (c)). This
small table will be read back from the GPU at the end of a frame and utilized to fill
the volume pool with new data.

As locks do not exist in current GLSL versions (and potentially never will),
lock-free structures are the only hazard-prone data structures that can be correctly
implemented. Crassin et al.[49] workaround this by using multiple render targets:
each pixel has its own unique set of memory to write into, and so there are no write
hazards. Our scheme requires significantly less memory, but we must deal with
these write hazards.

Hash Table Parameters

We map from the 4D index of the requested brick (spatial index + LoD) to a unique
1D index in the hash table. The mapping we utilize is simply converting the 4D
index into its equivalent 1D form, as if it were stored in a 1D array. We increment
the index by 1 so that we may use 0 to indicate that there is no entry at a location.

In a normal concurrent hash table, a lock is acquired for a table or bucket before
an access. In lock-free data structures the primitives used to implement locks are
instead used directly on the data values in question. Inserts into our table proceed
mostly as described in previous work [63]. In the face of concurrent writes, this
operation fails, and we attempt to probe a few times (presently: 10) before giving
up.

The critical piece to note is: it is not an error if a missing brick is not recorded.
As long as some missing bricks are recorded, the next frame will make progress.
Each ray is either: finished, able to make progress, or unable to make progress due
to a lack of bricks that it requires. Since our hash table only contains entries for
bricks that were requested by a ray, then an invariant of our system is that: volume
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rendering is done, or there exists at least one ray that can make progress.

Strategies for Loading Coarser Bricks

When the resolution required is missing during ray-casting, a ray’s brick requests
can be what we call ‘greedy’ or ‘global’. In the ‘greedy’ case, the ray requests
intermediate levels of detail along the way, flooding the hash table with requests
that this ray wants. In the ‘global’ case, each ray only requests what it absolutely
needs, leaving space for other rays to request what they need. These cases are
visually depicted and expounded in Figure 3.9.

The intuitive interpretation is that the ‘greedy’ approach will produce a more
responsive, iteratively-refined image, whereas the ‘global’ approach will generate
the final correct image quickest. However, the authors were surprised to find
that the ‘greedy’ approach both produces more pleasing progress information and
converges in the fewest number of frames. This is because it allows a ray to sample
at its final resolution quickly, which can cause earlier ray termination.

3.6 Conclusions, Limitations, & Future Work

In this work, we have introduced an efficient, out-of-core, ray guided GPU volume
renderer that scales to extremely large data. The system pulls inspiration from a
patchwork of recent renderers, combining the advantages of many and reimple-
menting some ideas in light of modern GPU features. We have also contributed an
evaluation and discussion of the tradeoffs inherent in the development of a modern
ray-guided volume renderer.

Based on the data here, we conclude that a ray-guided volume renderer should
work with bricks that are, on disk, 643 or larger. This minimizes time spent
doing IO (Figure 3.7), and makes data layout irrelevant, obviating the need for a
complicated component of the code. Since the required memory shrinks with the
brick size, generating 323 or even 163 bricks on-the-fly is desirable, though exactly
which size is unfortunately too data-specific to answer generally. While ‘bzlib’
gives ideal compression ratios, it is very slow to decompress, and therefore most
implementations will want to utilize ‘LZ4’ compression. A cache is a boon when
data will not fit in GPU memory but will fit in the host’s memory.

We have made a best-effort attempt to design both favorable and unfavorable
conditions with which to test a volume renderer, but it is possible some considera-
tions have been omitted. In particular, this renderer and many others rely heavily
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on the assumption that rays will saturate quickly. Subjectively, we have found this
to be overwhelmingly valid for all our work in volume rendering, but this is not a
rule and has not been thoroughly evaluated.

A second issue is the rendering modes evaluated. While our system supports
2D transfer functions as well, all performance results presented here utilized the
1D transfer function mode. Advanced rendering effects as well, such as those
similar to ambient occlusion [66], are omitted. Such effects should have a variable
impact, positively correlating to the proportion of rendering vs. IO times presented
in Figure 3.4. Screen-space methods may provide acceptable quality without
(comparatively) impacting performance.

Finally, reformatting the data into a bricked hierarchy continues to be the bane
of high-performance volume rendering. This result is not expounded often enough
in the literature. We hope this paper helps to reiterate to the community that the
FLOPs may be free, but data movement will kill performance.

Most importantly, we have contributed an evaluation and discussion of the
issues inherent in the development of a ray guided volume renderer. As has been
demonstrated, many of these choices are not as clear as previous reports may have
inadvertently implied. The results presented in this work depict the tradeoffs, to aid
system designers in creating volume renderers that suit their particular environment.

We hope to extend this work to more diverse visualization scenarios. Ray-
guidance-based isosurface generation is a natural candidate for these ideas. Fur-
thermore, a common use case is combining an isosurface with volume rendering,
which has the potential to significantly change such aspects as the working set
size. The general idea that rendering should drive the visualization pipeline—as
opposed to passively consuming the output of earlier operations—is one that is
applicable in a much wider sense than that presented here.

3.7 Data and Performance Details

We tested our renderer with a plethora of datasets, both real and artificially created.
For space reasons, we discuss only a subset that proved to be a reasonable sampling
of our available data. Renderer performance is depicted for a variety of datasets in
Table 3.1. We discuss these in order of increasing size here.

Two small datasets are the Bonsai tree (“Bonsai”) and “Aneurysm” datasets
(Figure 3.10, top, left & middle). While small by today’s standards, effective empty
space leaping and early ray termination still double the performance (Table 3.1,
note how performance doubles with smaller brick sizes).
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Figure 3.10: Selected frames from interactions used to record data for Table 3.1 or
Figure 3.4

The “WholeBody” dataset (Figure 3.10, top, right) is a contrast-enhanced CT
scan of a human body. As sometimes happens in the biomedical domain, these
data have limited slice resolution but a plethora of slices. Coarser resolutions must
be careful to downsample anisotropically, else the in-plane resolution washes out
too quickly.

“Velocity” (center, left) comes from the simulation of an exploding star; we
chose this dataset because our ideal transfer function for it is quite transparent,
preventing the renderer from taking advantage of early ray termination. Highly
transparent transfer functions that still produce informative results are a rarity but
still occur. For these data, the additional overhead of small bricks can have a
fairly drastic effect on performance. This dataset is one of the rare datasets for
that lighting actually makes the visualization more difficult to interpret, and so we
always render this dataset with lighting off.

The “magnitude” dataset (center, middle) comes from a combustion simulation
and represents another intermediate step towards larger data. The lower half of
this dataset actually has a very faint trace of data, which causes the renderer to
sample densely. The expense of computing lighting information for fragments that
ultimately contribute very little has a notable effect on performance.

The Richtmyer-Meshkov Instability (“RMI”, Figure 3.1 right and Figure 3.10,
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Table 3.1: Per-frame rendering time at 6 different brick sizes, for a variety of
datasets depicted in Figures 3.10 and 3.1. Optimal brick sizes are dataset depen-
dent.

Rendering Time (ms)
Dataset 163 323 643 1283 2563

Bonsai 16 20 26 31 28
Head Aneurysm 27 34 40 55 85
Whole Body 140 94 82 77 67
Velocity 376 208 146 118 110
Magnitude 132 93 80 82 85
RMI 60 64 61 67 67
Visible Human 34 37 47 67 123
Mandelbulb1k 21 21 21 22 25
Mandelbulb4k 27 30 37 47 47
Mandelbulb8k 33 37 45 60 78

center, right) and the Visible Human (Figure 3.1 left) are popular datasets in the
volume rendering literature; details can be found in previous work.

We created a series of “Mandelbulbs” at various resolutions (1k3, 4k3, 8k3).
These are an extension of the mandelbrot fractal into 3 dimensions. This has many
of the same properties of the data used in Crassin et al. [49], in which Perlin noise
was added to a large bone scan to increase the sampling requirements. We create
the high-resolution features a priori, so no GPU features were used to accelerate
this process. At equivalent resolutions to that work, we see double to an order of
magnitude improved performance, but for this work we report results at 1080p HD
resolution. A descriptive view of the Mandelbulb is given in Figure 3.3 and there
are close-ups visible in Figure 3.10 (bottom row; center, right).

3.8 Source Code
The renderer used in this work is freely available, as part of the ImageVis3D [2]
package. We encourage others to reproduce and build upon our results.
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Table 3.2: Dataset properties for test datasets.

Dataset Resolution Size
Bonsai 256 × 256 × 256 8 bpp 16 MB
Head Aneurysm 512 × 512 × 512 16 bpp 256 MB
Whole Body 512 × 512 ×3172 16 bpp 1.5 GB
Velocity 1000 ×1000 ×1000 16 bpp 1.9 GB
Magnitude 2025 ×1600 × 400 16 bpp 2.4 GB
RMI 2048 ×2048 ×1920 8 bpp 7.5 GB
Visible Human 1728 ×1008 ×1878 32 bpp 12.2 GB
Mandelbulb1k 1024 ×1024 ×1024 8 bpp 1 GB
Mandelbulb4k 4096 ×4096 ×4096 8 bpp 64 GB
Mandelbulb8k 8192 ×8192 ×8192 8 bpp 512 GB



Chapter 4

Multi-scale-parallel volume
rendering

Data sets of immense size are regularly generated on large scale computing re-
sources. Even among more traditional methods for acquisition of volume data,
such as MRI and CT scanners, data that is too large to be effectively visualized on
standard workstations is now commonplace.

One solution to this problem is to employ a ‘visualization cluster,’ a small-
to medium- scale cluster dedicated to performing visualization and analysis of
massive data sets generated on larger scale supercomputers. These clusters are
designed to fit a different need than traditional supercomputers, and therefore
their design mandates different hardware choices, such as increased memory, and
more recently, graphics processing units (GPUs). While there has been much
previous work on distributed memory visualization as well as GPU visualization,
there is a relative dearth of algorithms that effectively use GPUs at a large scale
in a distributed memory environment. In this work, we study a common visual-
ization technique in a GPU-accelerated, distributed memory setting, and present
performance charactersitcs when scaling to extremely large data sets.

4.1 Introduction

Visualization and analysis algorithms, volume rendering in particular, require ex-
tensive compute power relative to data set size. One possible solution is to use the
large scale supercomputer that generated the data. However it can be difficuilt to

61
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reserve and obtain the compute resources required for viewing large data sets. An
alternative approach, one explored in this work, is to use a smaller scale cluster
equipped with GPUs. Such a cluster can provide the needed computational power
at a fraction of the cost—provided the GPUs can be effectively utilized. As a
result, a semi-recent trend has emerged to procure GPU-accelerated visualization
clusters dedicated to postprocessing the data generated by high-end supercomput-
ers; examples include ORNL’s Lens, Argonne’s Eureka, TACC’s Longhorn, SCI’s
Tesla-based cluster, and LLNL’s Gauss.

Despite this trend, there have been relatively few efforts studying distributed
memory, GPU-accelerated visualization algorithms that can effectively utiliaze
the resources available on these clusters. In this work, we report parallel volume
rendering performance characteristics on large data sets for a typ[ical machine of
this type.

Our system is divided into three stages:

1. An intelligent pre-partitioning that is designed to make combining results
from different nodes easy.

2. A GPU volume renderer to perform per-frame volume rendering at interactive
rates.

3. MPI-based compositing using a sort-last compositing framework.

Müller et al. presented a system similar to our own that was limited to smaller
data sets [67]. We have extended the ideas in that system to allow for larger
data sets, by removing the restriction that a data set must fit in the combined
texture memory of the GPU cluster and adding the ability to mix in CPU-based
renderers, enabling us to analyze the parallel performance on extremely large data
sets. The primary contribution of this component of our work is an increased
understanding of the performance characteristics of a distributed memory GPU-
accelerated volume rendering algorithm at a scale (256 GPUs) much larger than
previously published. Further, the results presented here (data sets up to 81923

voxels) represent some of the largest parallel volume renderings attempted thus far.
Our system and benchmarks allow us to explore issues such as:

• the balance between rendering and compositing: a well-studied issue with
CPU-based rendering, but currently with unclear performance tradeoffs for
rendering on GPU clusters;

• the overhead of transferring data to and from a GPU;
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Figure 4.1: Output of our volume rendering system with a data set representing a
burning helium flame.

• the importance of process-level load balancing; and

• the viability of GPU clusters for rendering very large data.

This chapter is organized as follows. In Section 4.2, we overview previous work
in parallel compositing and GPU volume rendering. In Section 4.3, we outline our
system in detail. Section 4.4 discusses our benchmarks and presents their results.
Finally, in Section 4.5 we draw conclusions based on our findings.

4.2 Previous work

Volume rendering in a serial context has been studied for many years. The per-
formance of the basic algorithm [68] was improved significantly by incorporating
empty space leaping and early ray termination [57]. Max provided one of the
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earliest formal presentations of the complete volume rendering equation in [69].
Despite significant algorithmic advances from research such as [57], the largest
increase in performance for desktop volume renderers has come from taking ad-
vantage of the 3D texture capabilities [18, 17, 70] and programmable shaders [19]
available on modern graphics hardware.

Extensive research has been done on parallel rendering and parallel volume
rendering. Much of this work has focused on achieving acceptable compositing
times on large systems. Molnar et al. conveyed the theoretical underpinnings of
rendering performance [71]. Earlier systems for parallel volume rendering relied
on direct send [72, 73], which divides the volume up into at least as many chunks
as there are processors, sending ray segments (fragments) to a responsible tile
node for compositing via the Porter and Duff over operator [74]. These algorithms
are simple to implement and integrate into existing systems, but have sporadic
compositing behavior and the potential to exchange a large a number of fragments,
straining the network layers when scaling to large numbers of processors. Tree-
based compositing algorithms feature more regular communication patterns, but
impose an additional latency that may not be required, depending on the particular
frame and data decomposition. Binary swap and derivative algorithms are a
special case of tree-based algorithms that feature equitable distribution of the
compositing workload [75], Despite advancements in compositing algorithms,
network traffic remains unevenly distributed in time, and thus high-performance
networking remains a necessity for subsecond rendering times on large numbers of
processors.

In the area of distributed memory parallel volume rendering of very large data
sets, the algorithm described by Ma et al. in [73] has been taken to extreme scale
in several followuip publications. In [60], data set sizes of up to 30003 are studied
using hundreds of cores. In this regime, the time spent ray casting far exceeds the
composite time. In [76, 77] the data set sizes range up to 44803, while core counts
of tens of thousands are studied. In [78] the benefits of hybrid parallelism are
explored at concurrency ranges going above two hundred thousand cores. For both
of these studies, when going to extreme concurrency compositing time becomes
large and dominates ray-casting time. This suggests that a sweet spot may exist
with GPU-accelerated distributed memory volume rendering. By using hardware
acceleration, the long ray casting times encountered in [60] can be overcome.
Simultaneously, the emerging trend of composite-bound rendering observed in [77]
and [78] will be mitigated by the ability to use many fewer nodes to command the
same compute power.

Numerous systems have been developed to enable parallel rendering in existing
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software. Among the most well-known is Chromium [79], a rendering system that
can transparently parallelize OpenGL-based applications. The Equalizer framework
boasts multiple compositing strategies, including an improved direct send [80].
The IceT library provides parallel rendering with a variety of sort-last compositing
strategies [81].

There has been less previous work studying volume rendering on multiple
GPUs. Strengert et al. developed a system that used wavelet compression and
adaptively decompressed the data on small GPU clusters [82]. Marchesin et al.
compared a volume that ran on two different two-GPU configurations: two GPUs
on one system, and one GPU on two networked systems [83]. The use of just one
or two systems, coupled with an in-core renderer, artificially constrained the data
set size. Müller et al. developed a distributed memory volume renderer that ran on
GPUs [67]; their system differs from ours in a few key ways. First, we use an out-
of-core renderer and therefore can exceed the available texture memory of the GPU
by also utilizing CPU memoryor disk. To further reduce memory costs, we compute
gradients dynamically in the GLSL shader [19] obviating the need to upload a
separate gradient texture. This also has the benefit of avoiding a pre-processing
step that is normally software-based in existing general-purpose visualization
applications (including the one we chose to implement our system within) and
can be time consuming for large data sets. Further differentiating our system
and in line with recent trends in visualization cluster architectures, we enable the
use of multiple GPUs per node. Müller et al. used a direct send compositing
strategy [72, 73] whereas we use a tree-based compositing method [81]. Finally,
and most importantly, we report performance results for substantially more GPUs
and much larger data sets, detailing the scalability of GPU-based visualization
clusters. We therefore believe our work is the first to evaluate the usability of
distributed memory GPU clusters for this scale of data.

4.3 Architecture

We implemented our remote rendering system inside of VisIt [45, 13] which is
capable of rendering data in parallel on remote machines. The system is comprised
of a lightweight ‘viewer’ client application, connected over TCP to a server that
employs GPU cluster nodes. All rendering is performed on the cluster, composited
via MPI, and images (optionally compressed via zlib) are sent back to the viewer
for display. Example output from our system is in Figure 4.1.

Although VisIt provided a good starting point for our work, we needed to make
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significant changes in order to implement our system. In this section, we highlight
the main features of our system, taking special care to note where we have deviated
from existing VisIt functionality.

4.3.1 Additions to VisIt

Multi-GPU access

At the outset, VisIt’s parallel server supported only a single GPU per node. We
have revamped the manner in which VisIt accesses GPUs to allow the system to
take advantage of multi-GPU nodes. When utilizing GPU-based rendering, each
GPU is matched to a CPU core that feeds data to that GPU. Additionally, when the
number of CPU cores exceeds the number of available GPUs, we allow for the use
of software-based renderers on the extra CPUs. This code has been contributed to
the VisIt project.

Partitioning

VisIt contained a number of load decomposition stratgies prior to our work. How-
ever, we found these stratgies to be insufficient for a variety of reasons:

1. Brick-based Equalizing the distribution of work in VisIt was entirely based
on bricks, or pieces of the larger data set. Our balancing algorithms use the
time taken to render the previous frame to determine the weighted distribution
of loads.

2. Master-slave Dynamic balance algorithms in VisIt are based on a master
node that tells slaves to process a brick, waits for the slaves’ completion, and
then sends them a new brick to process. We implemented a flat hierarchy, as
seems to be more common in recent literature [84, 67].

3. Compositing Most importantly, for our object-based decomposition to work
correctly, we needed a defined ordering to perform correct compositing. The
load balancing and compositing subsystems in VisIt were independent prior
to our work.

Our system relies on a kd-tree for distributing and balancing the data. The
spatial partitioning is done once initially and can be adaptively refined by the
rendering times from previous frames. The initial tree only considers the number
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Figure 4.2: Decomposition and corresponding kd-tree for an 8x8x3 grid of bricks
divided among 4 processors. Adjacent bricks are kept together for efficient render-
ing and compositing. A composite order is derived dynamically from the camera
location in relation to the splitting planes. Note that the number of leaves in the
tree is equal to the number of processes in the parallel rendering job.

of bricks in the available data set and attempts to distributed them evenly among
processes, to the extent that is possible. When using static load balancing, this
decomposition is invariant for the life of the parallel job. Figure 4.2 depicts a
possible configuration determined by the partitioner, and shows the corresponding
kd-tree.

When the dynamic load balancer is enabled, we use the last rendering time on
each process to determine the next configuration. In our initial implementation,
the metric we utilized was the total pipeline execution time to complete a frame.
This included the time to read data from the disk, as well as the compositing time,
among other inputs. However, we found that I/O would dwarf the actual rendering
time. Further, compositing time is not dependent on the distribution of bricks. This
therefore proved to be a poor metric. Switching the balancer to use the total render
time for all bricks on that process gave significantly better results.

In order to compare different implementations, we implemented multiple load
balancing algorithms, notably those described in Marchesin et al. and Müller et
al.’s work [84, 67]. In both cases, leaf nodes represent processes, and each process
has some number of bricks assigned to it. In the Marchesin-based approach, we
start at the parents of the leaf nodes and work our way up the tree, searching for
imbalance among siblings. If two siblings are found to be imbalanced, a single
layer of bricks is moved along the splitting plane. This process continues up the
root of the tree, at which time the virtual results are committed and the new tree
dictates the resulting data distribution. In the Müller-based approach, we begin
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Component Lens Longhorn
Number of nodes 32 256
GPUs per node 2 2
Cores per node 16 8
Graphics Card NVIDIA 8800 GTX NVIDIA FX 5800

Per-node memory 64 Gb 48 Gb
Processors 2.3 GHz Opterons 2.53 GHz Nehalems

Interconnect DDR Infiniband Mellanox QDR Infiniband

Table 4.1: Configuration of the GPU clusters utilized.

with the root node and use a pre-order traversal to find imbalance among siblings.
Once imbalance is found, the process stops for the current frame. Instead of blindly
shifting a layer of bricks between the siblings, the method derives the average
rendering cost associated with a layer of bricks along the split plane, and shifts this
layer if the new configuration is projected to improve rendering time.

In addition to achieving a relatively even balance among the data, the kd-tree is
used in the final stages to derive a valid sort-last compositing order.

4.4 Evaluation
We implemented and tested our system on Lens, a GPU-accelerated visualization
cluster housed at ORNL. However, we were only able to access 16 GPUs on
that machine. In order to access a larger number of GPUs, we transitioned to
Longhorn, a larger cluster housed at the Texas Advanced Computing Cluster
(TACC). Specifications for each cluster are listed in Table 4.1. Due to machine
availability and configuration, we were not able to fully utilize either machine.

4.4.1 Rendering times
The two dominant factors in distributed memory visualization performance are
the time taken to render the data and the time taken to composite the resulting
sub-images. These have the largest impact on usability because they comprise
the majority of the latency a user experiences: the time between when the user
interacts with the data and when the result of that interaction are displayed.

Our data originated from a simulation performed by the Center for Simulation
of Accidental Fires and Exploisions (C-SAFE), desinged to study the instabilities
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Figure 4.3: Overal rendering time when rendering to a 1024x768 viewport on
Longhorn. This incorporates both rendering and compositing, and therefore shows
the delay a user would experience if they used the system on a local network. Data
points are the average across many frames, and error bars indicate the rendering
timesor the slwoest and quickest frames, respectively. For these results we used a
domain consisteing of 133 bricks (varying brick size) with the exceptions that all
runs in the 128 GPU cases used 83 bricks, and the run for the 81923 data set was
done using 323 bricks.
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Figure 4.4: Rendering time as a function of brick size. Error bars indicate the
minimum and maximum times recorded, across all nodes, for that particular brick
size; high diswparity indicates the rendering time per-brick was highly variable,
and load imbalance was therefore likely. All tests were done with a 40963 data set
statically laod balanced across 128 GPUs on 64 nodes, using a scripted camera
that requested the same viewpoints each run. Note that the choice of brick size
matters little in the average case, but bricks using non-power-of-two sizes give
widely varying performance. Though raw data shows it is only hundreths of a
second faster than 2563.

in a burning helum flame. In order to study performance at varying resolutions,
we resampled this data to 10243, 20483, 40963, and 81923, at a variety of bricks
sizes. We then performed tests, varying data resolution, image resolution, choice
of brick size, and number of GPUs, up to 256. Unless noted otherwise, we divided
the data into a grid of 8x8x8 bricks for parallel processing (larger data sets used
larger bricks), and rendered into a 1024x768 viewport.

Figure 4.3 shows the scalability on the Longhorn cluster. The principal input
that affects rendering time is the data set size, as one might expect. These runs
were all done using 2 GPUs per node, except the “128 GPUs, 1 GPU/node” case
that was run on 128 nodes each accessing a single GPU. With very large data, there
is a modest increase in performance for this experimental setup.

As can be seen in Figure 4.4, the brick size generally has little impact on
performance. A parallel volume renderer’s performance is, however, dictated by the
slowest component, and therefore the average rendering time is less important than
the maximum rendering time. Taking that into account, it is clear that brick sizes
that are not a power of two are poor choices. Dropping down to 1283, we can see
that per-brick overhead begins to become noticeable, impacting overall rendering
times. We found larger bricks sizes of 5123 give the absolute best performance,
with 2563 a good choice as well, as the differences are minor enough that they may
almost be considered sampling error. Of course, such recommendations may be
specific to the GPUs used in Longhorn

We were initially surprised to find that the image resolution, while relevant, was
not a significant factor in the overall rendering time. When developing single GPU
applications that run on a user’s desktop, our experience was the opposite: that
image size does play a significant role in performance. We at first thought this was
due to skipping bricks that were ‘empty’ under our transfer function—our domain
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is perfectly cubic, yet as is displayed in Figure 4.1 very little of the domain is
actually visible—but even after changing to a transfer function with no “0” values
in the opacity map, rendering times changed very little. We concluded that the data
sizes are so large compared to the number of pixels rendered that the image size is
dwarfed by comparison.

In our initial implementaion on Lens, we noticed that we began to strain the
memory allocators while rendering a 30003 data set, as we approached low mem-
ory conditions. Our volume renderer automatically accounts for low memory
conditions and attempts to free unused bricks before failing outright. However, an
operating system will thrash excessively before finally deciding to fail an allocation,
and therefore during the time leading up to a failed allocation, performance will
drop considerably. Worse, we are working in a large existing code base, and at-
tempting to manage allocations outside our own subsystems would prove unwieldy.
As such, we found the original scheme to be unstable; the rendering system would
create memory pressure, causing other subsystems to fail an allocation in areas
where it may be difficult or impossible to ask our volume renderer to free up
memory.

To solve this problem, we render the data in a true out-of-core fashion: bricks
are given to the renderer, rendered into a framebuffer object, and immediately
thrown away. One might expect that out-of-core algorithms would have more
per-block overhead and therefore be slower than an in-core algorithm. As shown
in Figure 4.5, the out-of-core approach actually outperforms the analogous in-core
approach even when there is sufficient memory to hold the data set at once. The
reasoning turned out to be that bricks were searched for in a logarithmic data
structure; the conservative approach taken by the out-of-core algorithm meant that
the container maxed out at a single element, accounting for a minor performance
improvement.

Readback and compositing

In earlier results, particularly with GPU-based rendering architectures, the commu-
nity was generally concerned with the time required to read the resulting image
data from the GPU and into the host’s memory [83]. Our study did not provide
corroboration of this concern, which we interpret as a positive data point with
respect to evolving graphics subsystems. Our system did demonstrate that this time
increased as the resolution grew, but as can be seen in Table 4.2, even at 1024x768
this step took only thousandths of a second.

The time required for image composition is significantly reduced when taking
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Figure 4.5: Per frame rendering times for the in-core and out-of-core approaches
to rendering a 10243 data set (that fits comfortably in memory) across 16 GPUs.
Additional processing in the out-of-core case does not negatively impact perfor-
mance.

Dataset size Rendering (s) Readback (s) Compositing (s) Total (s)
10243 0.06141 0.00328 0.06141 0.12610
20483 0.35107 0.00377 0.07673 0.43157
40963 2.50984 0.00377 0.29533 2.80894
81923 19.60648 0.00373 0.51799 20.12820

Table 4.2: Breakdown of different pipeline stages for various data set sizes on
256 GPUs rendering into a 1024×768 viewport. All times are in seconds. The
10243, 20483, and 40963 case used 133 bricks (varying brick size); the 81923 case
used 323 bricks, making each brick 2563 voxels. Compositing time rises only
artificially; if a node finishes rendering before other nodes, the time it must wait
was included under ‘Compositing’ due to an artifact of our sampling code. Thus,
the data imply that larger data sets see more load imbalance.
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Figure 4.6: The maximum rendering time across all nodes under various load
balancing algorithms. The numbers after the ‘Marchesin’ algorithms indicate
thresholds: rendering disparity under these thresholds is ignored.

advantage of the GPUs available in the visualization vluster. Since a GPU can
render much faster than a software-based renderer, one can achieve acceptable
rendering performance using far fewer nodes. Compositing, as it scales with the
number of nodes involved in the compositing process, improves significantly by
utilizing many fewer nodes.

4.4.2 Load balancing

We also sought to examine the utility of load balancing algorithms for our system.
We have implemented the algorithms as presented in two recent parallel volume
rendering papers, and compared rendering times to each other and to a statically
balanced case. Figure 4.6 illustrates the comparisons, where the times shown are
the maximum across all processes.
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We did a variety of experiments with multiple load balancer implementations,
using 8 or 16 GPUs. Our initiali flythrough dequence proved to be inappropriate for
the application of a load balancer, as there was not enough imbalance in the system
to observe a significant benefit. We then attempted to a ‘zoom out’ flythrough,
but rendering times decreasing on all nodes was not a case the the balancers we
implemented could effectively deal with: we found many cases where the balancers
would shift data to a node that was previously idle or at least doing very little work,
and a frame or two later the workload on such nodes would spike. This occurred
because these nodes had both 1) received new data as part of the balance and,
2) retained old data as part of the initial decomposition or previous balancing
processes. The sudden additional workload of previously invisible bricks caused
these nodes to overcompensate, sending data to other “idle” nodes—nodes that
would experience the sample problem in subsequent frames.

In previous work, authors have praised the effect load balancing has when
zooming in to a data set. This naturally creates imbalance, as some nodes end
up with data that are not rendered under the current camera configuration, and
therefore the node has no work to do.

With the implementations we recreated as faithfully as possible, we did find
that zooming in to the data set was a task that was well-suited for load balancing.
Still, we encountered issues even with this case. For the algorithm given in [84] we
observed that the data would move back and forth between nodes quite frequently,
having a negative impact on overall rendering time. We therefore introduced a
‘threshold’ parmaeter to the existing algorithm, in an attempt to limit this ‘ping-
pong’ behavior. As we move up the tree, imbalance between the left and right
subtrees is subject to this threshold; if it does not exceed the threshold, the im-
balance is ignored. This is a very useful parameter for ensuring that we do not
move data too eagerly. Generally, setting this threshold too high will yield behavior
equivalent to the static case; setting it to low leads to a considerable amount of
unnecessary data shifting, and we found that this in many cases overcompensated
for minor, expected variations (such as those one might expect from differing brick
sizes; see Figure 4.4). For example, see Figure 4.6, in which low thresholds display
an obvious ‘ping-pong’ effect as nodes overcompensate for increased rendering
load.

Müller et al. describe a different balancing system [67]. This system calculates
the average cost of rendering a brick, and therefore has a clearer idea of what the
effect of moving a given set of bricks will have on overall system performance.
Further, they introduce additional parameters that add some hysteresis to the system,
and this helped reduce the ‘ping-pong’ effect of nodes sending data to a neighbor
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Figure 4.7: Per-process rendering times for the ‘Müller’ line given in Figure 4.6

just to receive it in the next frame when the neighbor becomes overloaded.
We found that this algorithm did do intelligent balancing for reasonable settings

of these parameters, and the additional parametes could be successfully used to
reduce excess data reorganization. Still we found two issues with the approach: for
one, the assumnption that ‘all bricks are equal’ did not pan out for our work. Even
assuming uniform bricks for a data set (true for our case, but likely not in a general
system), one can see in Figure 4.4 that the time to render a brick sees variation on
the orde rof a second. Secondly, despite experimenting with parameter settings, we
found it difficult to get the algorithm to choose the ‘best’ set of nodes for balancing.
In many cases, we found a particular node was an outlier, consistently taking the
most time to render per frame. Yet it was common for this algorithm to balance
different nodes. While rendering times would generally improve, the system’s
performance is determined by the slowest node, and therefore making the fast
nodes faster does not help overall performance.

This was apparent in the tests described in Figure 4.6: the algorithm balanced
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between some of the nodes, but the slowest node was never balanced, and there-
fore the user-visible performance fror this run was equivalenty to the static case.
Figure 4.7 shows a more detailed analysis of the execution of the Müller algorithm
that generated the data in Figure 4.6. The per-node rendering times in Figure 4.7
show that process 7 is usually the last process to finish and is often considerably
slower than the next-to-last. As evident from the lack of sudden discontinuities
in process 7’s rendering times, however, no bricks from process 7 move to other
nodes. Rendering times decrease across other nodes, but the maximum rendering
time does not change.

We theorize that additions to the algorithm to learn weights for each individual
brick would yield friutful results. Furthermore, the algorithm explicitly attempts to
avoid visiting the entire tree, as an attempt to bound the maximum time needed to
determine a new balancing. In our work, we did not observe cases where iterating
through nodes in the tree had a measurable impact on performance, and feel that
by doing so the algorithm could obtain the global knowledge it needs to balance
data effectively. Both of these extensions are left for future work.

In Section 4.1 we noted a variety of quesitons that the design of our system
allows us to answer.

• Rendering vs. compositing. As shown in Table 4.2, subsecond rendering
times are achieved using a very small number of nodes, relative to previous
work. This relieves a significant source of work for compositing algorithms.

• Overhead of GPU transfer. Table 4.2 shows readback time to be on the order
of thousandths of a second for common image sizes. Measuring texture
upload rates is difficult due to the asynchronous nature of OpenGL and
current drivers, but we did not find evidence to suggest this was a bottleneck.

• Importance of load balancing. A dynamic load balancer can have a worth-
while impact on perfprmance. However, it can also lower the performance
of the system. Load balancers generally come with some number of tunable
parameters, and useful settings for these parametrs are difficult to determine
a priori, and likely impossible for an end-user to effectively set. We observed
that dynamic load balancing for volume rendering struggled in cases often
encountered in real-world environments and, for this reason, believe there is
still a gap before deploying these techniques in production systems. There is
a great opportunity for future work in this area.

• Viability. As displayed in Figure 4.3 and Table 4.2, rendering extremely
large data sets—up to 81923 voxels—is possible on relatively few nodes.
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Further, data sets up to 20483 can be rendered at an interactive two frames
per second.

4.5 Conclusions

With this study, we demonstrated that GPU accelerated rendering provides com-
pelling performance for large scale data sets. Figure 4.3 demonstrates our system
rendering data sets that are among some of the largest reported thus far, using far
fewer nodes than previous work. This work shows that a multi-GPU node is a great
fojundational ‘building block’ to compose larger systems cpaable of rendering
very large data. As the price-performance ratio of a GPU is better (provided it can
effectively parallelize the workload) than CPU-based solutions, this work makes
the case for spending more visualization supercomputing capital on hardware
accleration, and acquiring smaller yet more performant clusters.

Reports on the time taken for various pipeline stages demonstrate that PCI-E
bus speeds are fast enough that readback performance is not as great of a concern as
it was a few years ago. However, it remains to be seen if contention will become an
issue if individual nodes are made ‘fatter’, utilizing additional GPUs. The 1 GPU
per node given in Figure 4.3 suggest that multiple GPUs do contend for resources,
but at this scale the differences are not yet significant enough for warrant moving
away form the more cost-effective ‘fat’ node architecture. Given the relatively
few nodes needed for good performance on large data, and external work scaling
compositing worklaod out to tens of thousands of cores, it seems likely that the
relatively ‘thin’ 2-GPU-per-system archietcture can be made to scale to even larger
systems.

We would like to study our system with higher image resolutions, such as those
available on a display wall, and larger numbers of GPUs. At some point, we expect
compositing to become a significant factor in the amount of time needed to volume
render large data, but we have not approached the cross-over point in this work,
due to the use of ‘desktop’ image resolutions and low numbers of cores.

Our system allows substituting a Mesa-based software renderer when a GPU is
not available. This provided a convenient means of implementation for an existing
large software system, in particular because it allows pipeline execution to proceed
unmodified through the rendering and compositing stages. However, tests very
quickly showed that using software renderers when a GPU was available was
not worthwhile, and usually ended up hurting performance more than helping.
Therefore, for this work we traded access to more cores for the guarantee that we
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will obtain GPUs for each core we do get.
An alternate system architecture would be to decouple the rendering process

from the other work involved in visualization and analysis, such as data I/O,
processing, and other pipeline execution steps. In this architecture, all nodes would
read and process data, but processed, visualizable data would be forwarded to a
subset of nodes for rendering and compositing. The advantage gained is the ability
to tailor the available parallelism to the visualization tasks of data processing and
rendering, which, as we have found, can benefit from vastly different parallel
decompositions. The disadvantages are the overhead of data redistribution, and
the wasted resources that arise from allowing non-GPU processes to sit idle while
rendering.

Our compositing algorithm assumes that the images from individual processors
can be ordered in a back-to-front fashion to generate the correct image. For this
paper, we met this requirement by using regular grids that are easy to load balance
in this manner. It should be trivial to extend this work to other grids, such as AMR
or curvilinear ones. Extensions to handle unstructured grids would be difficult,
however, but represent an interesting future direction.

Load balancing is an extremely difficult problem, and we have just scratched
the surface here. The principal difficulty in load balancing is identifying good
parameters to control how often and to what extent the balancing occurs. We would
like to see ideas and algorithms that move in the direction of user-friendliness:
determining the most relevant parameters and deriving appropriate values for them
automatically.



Chapter 5

Large-scale data access

While additional cores and newer architectures, such as those provided by GPU
clusters, steadily increase available compute power, memory and disk access has
not kept pace, and most believe this trend will continue. It is therefore of critical
importance that we design systems and algorithms that make effective use of off-
processor storage. This work details our experiences using parallel file systems,
details performance using current systems and software, and suggests a new API
that has greater potential for increased scalability.

5.1 Introduction

Large scale parallelism is widely used not only to simulate complex phenomenon,
but also to process the resultant data for understanding and insight. Parallel visual-
ization and analysis applications exist to aid in this process, but I/O performance
analysis generally takes a back seat to other metrics, such as renderer performance,
with the justification that one only reads the data once and then spends much more
time interacting with it. However, as we scale visualization tools up, we find that
the time taken for the initial reading of the data is prohibitive, and becomes a
significant barrier to the scientist’s task: to understand their data and gain new
insight in their science.

In developing any application, there are a number of practical concerns that
must be considered to obtain acceptable performance. In the space of I/O, and
especially distributed filesystems, many visualization and analysis developers
pay little heed to these concerns. In this work we hope to elucidate some ‘best
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practices’ for writing applications that will utilize parallel filesystems, as well as
steer a convergence between application and filesystem developers.

5.1.1 Previous Work
Since the performance of most large scale visualization systems is clearly bound
by I/O performance a significant body of literature exists to analyze and improve
this component of parallel software. We provide a brief overview of a subset of
that literature here.

The predominant file systems in use in modern supercomputers are the Network
File System (NFS) filesystem and Lustre. NFS was originally developed by Sun
and is now in its fourth revision. However, despite the third revision’s release
almost twenty years ago[85, 86], it is still in wide deployment. The “Linux Cluster”
filesystem, Lustre[87], is a newer filesystem that distributes the I/O workload
across multiple nodes, and thus has been demonstrated to scale considerably better.
Both systems have characteristics that should inform how we develop software
to run on such systems. We focus this work on these two filesystems due to their
prevalence in high performance computing environments.

Collective I/O (CIO) [88, 89, 90] was introduced as a very versatile concept
where the I/O bandwidth is increased by coalescing a number of I/O requests to
be sent to the storage system as a single large request. Memik et al. [91] extended
CIO as Multi-Collective I/O (MCIO) by optimizing I/O accesses to multiple arrays
simultaneously. They show that optimal MCIO patterns require the solution to an
NP-complete problem but are able to demonstrate up to 85% speedups over CIO
using a heuristic approach.

A similar concept was recently presented by Kendall et al. [92]. They showed
that, with a carefully chosen greedy algorithm, end-to-end access times of under a
minute are possible in the visualization of terascale data. Their system accessed
multi-file netCDF [93] data using the Parallel netCDF library [94] that is in turn
built on top of MPI-2 [95].

Lofstead et al. [96, 97, 98] report that on current supercomputers, independent
I/O tends to outperform collective I/O. They present the ADaptable IO System
(ADIOS) and — in combination with MPI-IO and collective MPI-IO — report
speedups of about an order of magnitude compared to a serial HDF5 access. To
improve access to data stored in HDF5 Howison et al. [99] present optimizations
for the Lustre File System.

Specifically targeting scientific visualization of large-scale earthquake simula-
tions on parallel systems, Ma et al. [100] demonstrated that overlapping I/O with
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rendering can significantly reduce inter frame delay. This concept was extended
into a general parallel visualization pipeline for large earthquake simulations by
Yu et al. [101].

Yu et al. [102] conducted an extensive characterization, tuning, and optimiza-
tion of parallel I/O on Jaguar, a Cray XT based supercomputer at Oak Ridge
National Laboratory that uses Lustre [87] for its IO subsystem.

Yu et al. [103] demonstrated general I/O solutions for the visualization of
time-varying volume data in a parallel and distributed computing environment.

Peterka et al. [77] also present optimization strategies for the problem of volume
rendering large time dependent datasets, focused specifically on the IBM Blue
Gene/P system system. Their summary result is that even with optimized storage
and access systems I/O still severely limits the overall performance and more
research is required in this area.

Recently, Lang et al. [104] performed a comprehensive study of I/O on Intrepid,
the IBM Blue Gene/P system at the Argonne Leadership Computing Facility.
In their work they also give a broad overview of existing parallel file system
evaluations and HPC system scaling studies.

Ching et al. contribute a a more modern take on file and range locking in dis-
tributed filesystems [105]. Using their distributed lock manager, they demonstrate
scalability up to 32 servers, something the POSIX locking model cannot provide.

5.1.2 Contribution

Our primary goal with this work is to inform developers writing visualization
and analysis applications on the characteristics of I/O systems at a multitude of
scales. We desire to show methods by which parallel applications can be written
to maximize performance for developers’ constituency, without working directly
with their user base or clusters that the application will run on. As a community,
we will never have the resources required to address the specific machines that
every supercomputing-based science group needs to utilize. Therefore we must
design applications that perform well on such machines without investing weeks
(or months) of a visualization or I/O expert’s time to achieve that performance.

Most I/O studies focus on a particular machine and even a specific application
on that machine. This approach would not, however, serve our purpose of iden-
tifying I/O best practices that are widely applicable. We contribute end-to-end
scalability results of a typical analysis problem on volume data, for numerous
clusters and a variety of I/O backends.
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Finally, based on our work developing parallel visualization and analysis
applications like the one in this work, we propose an extension to the ubiquitous
POSIX API that has the potential to greatly improve the performance of parallel
I/O systems.

The remainder of this paper is organized as follows. First, we review some disk
and I/O characteristics that are common to both serial and parallel environments.
In Section 5.3 we describe filesystems in common use in modern cluster comput-
ing environments. Then we expound the design of a program that has I/O as a
major component, and describe implementations using numerous backend APIs, in
Section 5.4. In Section 5.5 we use the knowledge gained in Sections 5.3 and 5.4 to
enumerate an API that would allow improved scalability on current and future par-
allel filesystems. Finally, we conclude by highlighting the limitations, drawbacks,
and opportunities for mistaken conclusions that arise due to our methods.

5.2 Data Access Time

The overall time to perform any I/O operation is well studied. Generally we
consider this to follow the simple equation:

Ttotal = Taccess +Ttrans

that is, the total time to perform an I/O operation is equal to the time to seek to the
desired track along with the time for the start of the needed sector to spin under the
disk head, plus the time for the platter to spin until all the required sectors have
passed under the head.

We will utilize a hypothetical modern disk with an average access time of
8 msec, and a sustained transfer rate of 100 MB/s. The access time time is
a conservative median for current consumer level disk drives. The 100 MB/s
sustained transfer rates are not yet possible with current consumer level disks, but
the number is close enough and serves our purpose well.

5.2.1 Considerations for access time optimizations

The total time to transfer data of M MB can be described by the equation:

Ttotal =
Taccess

1000
+

M
Rtrans



5.2. DATA ACCESS TIME 83

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  2000  4000  6000  8000  10000  12000  14000  16000

T
im

e 
(m

se
c)

Transfer Size (KB)

Total
Seek time

Transfer time

Figure 5.1: Total I/O time as a function of transfer size. Transfer rate quickly
overtakes access time.
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where Rtrans denotes the transfer rate in MB per second. We divide Taccess by 1000
to express it in seconds as it is normally given as milliseconds. Consequently, the
access time represents a percentage P of the overall time that can be expressed as:

P = 100 · Taccess

Ttotal ·1000

=
Taccess

Taccess
100 +10 · M

Rtrans

If we now insert the parameters of the above described hypothetical disk and assume
that we are partitioning our data in 10 MB blocks we arrive at the consclusion
that—when we need to do a random seek operation for every single block of
data—the seek time accounts for only 7% of the overall time to access the data.

Now, to assess the gain of a specific layout scheme we consider the following
equation. It measures the performance gain G in percent for a given scheme if that
scheme reduces random access by a factor of F .

G = 100 ·F ·

( Taccess
1000 + M

Rtrans
M

Rtrans

−1

)

= 100 ·F ·

(
Taccess
1000

)
(

M
Rtrans

)
=

F
M
· Taccess ·Rtrans

10

Again, assuming the hypothetical drive parameters from above and we get

G =
F
M
·80

For a scheme that reduces random access by a factor of 3, only a 2.6% improve-
ment in runtime would be achieved for 10 MB blocks, while with the same scheme
the performance would be almost tripled with 900 byte blocks.

From these numbers we conclude that in most environments, in particular those
with structured data—where larger data blocks can be utilized more easily—a
data layout optimization would only improve a very small fraction of the overall
time and is most likely not worth the implementation and maintenance effort. For
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environments that must break the data into tiny chunks a clever layout strategy
to improve data access times can in the best case (in which the majority of disk
operations involve seeks) double the data access performance.

It is worth noting that with the advent of solid state drives, in particular for
consumer workstations, this minimal block size required to utilize unwrought data
layout strategies while still obtaining good performance is bound to shrink even
more, as those drives have a significantly smaller ‘seek’ time with only moderately
higher transfer rates.

Finally, it should once again be stressed that the percentages given above
account for maximum theoretically possible optimization potentials if all seek
operations could be completely avoided and no other additional overhead would
come from the layout. In reality the speedup that can be gained from access
time optimization will stay below that value. In particular it is worth noting that
accessing data via optimized layout schemes does not come for free. Kendall
et al. [92] demonstrated for distributed memory systems that a random ordering
scheme outperforms most space filling curve approaches.

The takeway:

• If the data is broken into pieces larger than 10 MB, then it is not worth
worrying about the data layout for even consumer level disks.

• For kilobyte sized chunks a clever layout strategy can significantly cut the
data access time on a standard HDD.

5.3 Parallel Filesystems
All distributed filesystems have unique characteristics that should inform the way
we access and process data. In this section we will highlight some of the common
pitfalls that may be found with applications designed to run in an NFS or Lustre
environment.

5.3.1 Opening Files
Opening a file is one example of an operation that performs uniquely in a distributed
environment. In NFS systems, this is implemented via the client sending an
ACCESS or GETATTR remote procedure call. The operation asks the server if the
client is allowed to access the file, or requests metadata for the file. The server
responds with a small message containing the resulting permissions. The situation
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in Lustre is similar: queries go to a global ‘metadata server’ (MDS) that grants or
denies access. In both systems, the file is not opened. Doing so would consume
resources on the server, particularly due to read-ahead caching, and the request to
actually read or write the file may be significantly delayed in time—or might never
come at all!

This has important implications for programs running on such filesystems. Any
distributed filesystem is going to scale extremely poorly with a program that opens
many files at one time. Since the open call must correctly report errors, the request
and response must be entirely synchronous. There is no openv system call in
POSIX, analogous to readv. Therefore every open file request must send a (very
small) message to a server, and wait for a (very small) message to return. The
network capacity for messages at these sizes is extremely poor. It is important to
note that Lustre does not scale any better than NFS in this use case, as it has the
singular bottleneck of one MDS per filesystem. Many sites split up their Lustre
offerings into multiple filesystems as a way to mitigate this problem, but these
must then be mounted under different locations in the filesystem hierarchy.

To prevent inducing poor performance in this manner, avoid opening more
than one or two files per process; at large scale, even that will be a bottleneck.
Furthermore, if at all possible, avoid synchronization points immediately before
opening files: if one absolutely needs an MPI_Reduce, for example, try opening
the file immediately before the reduce instead of immediately after. This should
prevent a ‘thundering herd’ (to steal a term from the threading world) of processes
that pound on the metadata server at the same time. It is interesting to note that the
ADIOS middleware library already attempts to mitigate this effect [98].

The takeway:

• At large scale, eschew large numbers of files.

• Stagger synchronization points with open calls.

5.3.2 Closing Files

Distributed filesystems almost unilaterally implement what is referred to as ‘close-
to-open cache consistency’. To increase performance, writes are cached locally on
the client filesystems. During regular intervals or in response to certain events, the
client cache is flushed to the server.

This presents difficulties in implementing writes. The problem is in reporting
errors when a write should fail; since the system only writes to a local cache, the
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write never reaches its final destination and thus additional errors could still occur
after the user process has proceeded beyond the write. It is possible for the write
to be sent to the server machine, enter into the server’s cache, and eventually be
denied due to a transient error (e.g. exceeding quota). Yet the client system cannot
report this error to the running process, because the process has long since moved
on from the failing write call.

Distributed filesystems thus require a client cache to write-through all changes
when the client application closes the file. Client operating systems must get a
confirmation from the server that all data has been flushed before it returns from
the client processes’ close call; this is the last possible operation for the file, and
thus the distributed systems’ final opportunity to report errors that may indicate
data loss.

It is therefore highly desirable to delay close operations that occur after writes.
If a process is writing multiple output files, try to make it maintain two open files
instead of one, and close the file from the previous iteration while writing in the
current iteration.

Sadly many applications, even those designed to run on supercomputers, do
not check the return value of the close system call. There is no reason to believe
that what was written is consistent, given such applications.

The takeaway:

• Always check close for errors!

• Try to delay closes that appear after writes.

5.3.3 Locking

By ‘locking’ here we are referring to advisory file locking, a la the flock system
call; mandatory file locking has its own set of issues in even a serial environment,
and the utility of such locking in an HPC environment is nebulous. In our expe-
rience, few if any large scale visualization and analysis applications utilize file
locking. However, it is worth noting that locking typically adds an I/O synchro-
nization point, much like close would. For this reason it is not recommended
that an application lock and unlock files unless there is an interaction with known
external software that dictates it. If at all possible, a better solution would be to
close the files on the writing process, and send a message to reading processes
notifying them that the writer has completed—before they attempt opening the
files at all.
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Locking can in theory provide the best mechanism for inter-process communi-
cation in a distributed environment (i.e. to coordinate with in situ visualization and
analysis processes), however it is not in wide use, perhaps due to the issues men-
tioned here. As noted earlier [105], this is still an area of research in HPC systems
and so we recommend the aforementioned explicit synchronization methods for
now.

5.4 Parallel Data Access

To identify the ideal method for accessing data in numerous environments, we
wrote test programs using a variety of APIs and API options, then evaluated their
performance. Yet many scientific visualization and analysis packages, in addition
to large scale simulation software, utilizes some I/O middleware for data access.
These middleware packages offer complexity reduction, and typically provide a
method for ascribing higher level metadata with data, such as the dimensionality
and mesh information. After identifying the ideal low-level methodologies, we
sought to quantify the differences between middleware libraries, and in particular
their scalability on distinct clusters.

To quantify this, we developed the same analysis program using a variety of
backend APIs. The program is simple: it is a threshold-based volume segmentation
tool. The software reads in a large volume and outputs a binary mask volume that
indicates the voxels that fall between the threshold values. The program is parallel,
and out-of-core: the input volume is intelligently bricked, and each process is
responsible for a set of bricks. Processes load up a brick and generate the output
volume brick one at a time. We chose out-of-core as opposed to in-core because
it models how future (even current) visualization and analysis software must be
written, given the current trend of increasing processing-power-to-memory ratios.

5.4.1 Results

We ran our application on multiple distinct supercomputers. One cluster is specif-
ically designed for visualization; another excelled at analysis; the third is a very
large scale general purpose supercomputer designed for ‘leadership computing’.
Installation dates were diverse: one cluster was commissioned in 2008, another
went into production early in 2010, and a third was originally installed in 2005,
receiving its most recent upgrade in 2009. All of these clusters are using Lustre
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Figure 5.2: Strong scaling of our example segmentation program running on cluster
#1, with a variety of I/O backends. ‘NetCDF4’ is NetCDF with an HDF5 backend.
‘Raw’ is our hand-generated simple I/O layer, and ‘Advised’ a minor modification
on it. Error bars indicate maximum and minimum running times per process in the
job.

for their backend filesystem. On all systems, we used the ‘native’ compilers and,
where available, system-installed modules for the libraries we required.

For backend I/O we tested multiple configurations: NetCDF, HDF5/NetCDF,
and a custom solution.

The hierarchical data format (HDF) is a data model that has seen significant
uptake in the parallel computing world. It provides mechanisms for organizing
complex data in an extensible manner. We did not look directly at HDF5, but
instead considered it in concert with NetCDF.

The Network Common Data Form is a library that provides array-oriented data
access. Like HDF5, NetCDF files endeavor to be partly self-describing. With
recent releases of the NetCDF library, there are a multitude of options for backend
I/O. The first is so-called ‘classic’ NetCDF files. These files have a limit of 2Gb
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per variable, and thus were not considered for this study. The ‘64bit offset’ format
is an extension of the ‘classic’ format to allow use of 64bit indices, and thereby
to address files of, for all practical purposes, unlimited size. The final format is
the so-called ‘NetCDF4’ format – somewhat confusing because the ‘64bit offset’
format debuted in 3.6.0, right before the 4.0 release, yet is a distinct backend that
uses HDF5 as its backend. To disambiguate, we refer to the ‘64bit offset’ format
as “NetCDF-64” and the HDF5-backed format as “‘NetCDF4” in this work.

We also developed a custom I/O layer based on our experiences on a variety
of machines, including workstations. The approach is very simple: each process
memory-maps a chunk of the large input data file, as well as the relevant portion
of the output mask file. Data are processed out of the memory-map as is, without
intermediate buffers. The source for this version is thus simpler than any other
version of the program, containing no memory management code for data buffers.
As such, this version required the least memory by a wide margin: the API dictated
an approach that was naturally out-of-core.

The results on the first cluster can be seen in Figure 5.2. ‘NetCDF4’ is NetCDF
backed with an HDF5 file. ‘Raw segmentation’ uses our custom I/O layer based on
mmap. ‘Advised’ is the ‘Raw’ line, with the addition of just a single line of code,
placed before we process a block of data:

posix_fadvise(fd,
index * sizeof(float),
buffer_size,
POSIX_FADV_WILLNEED

);

That is, we are informing the operating system that we will need block X +1 in the
near future, just before we begin processing block X . We had found that including
this optimization increases our performance 3 to 4x on desktop systems. Results
on the supercomputer do show an initial increase in performance, but the effect
was unfortunately subdued at higher concurrency. We do not include results for
the NetCDF-64 run in this figure, as it did not fit in the same scale as the pictured
backends.

Results for this machine were somewhat difficult to report, because they varied
so widely. We ran the scaling study for one particular format straight through,
with no delays between runs, multiple times. In each instance the NetCDF4 result
included a spike in the running time. For our raw segmentation, we would see
results offset by 20 seconds or so, and the width of the error bars would change
arbitrarily. The readahead version of the program experienced less variability, but
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Figure 5.3: Strong scaling using the NetCDF ‘64bit offset’ file format on multiple
clusters. Higher levels of concurrency led to decreased overall performance when
using this format. Of note is the high variability from cluster #1, characteristic of
that machine’s I/O subsystem.

we were unable to conclude whether this was a property of the program or simply
luck. The data presented in figures represents the set of runs that performed best
overall, for that I/O backend.

The NetCDF-64 results could not be plotted with the other results, due to the
large difference in scale. Results using this format on multiple clusters is provided
in Figure 5.3. Performance actually decreased with this backend. For this reason,
we highly recommend forcing the HDF backend (using the NC NETCDF4 flag)
when writing applications that make use of the NetCDF API.

Results from running on the second cluster are given in Figure 5.4. The
HDF-backed NetCDF version could not be run on this cluster due to a software
incompatibility.

Results from the third cluster are given in Figure 5.5. This machine is one of
the largest scale supercomputers we have access to, and so we performed runs at
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Figure 5.4: Raw segmentation strong scaling with and without explicit caching,
on the second cluster. Explicit single-block readahead makes little difference,
especially at higher concurrency levels.
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Figure 5.5: HDF-backed NetCDF and raw advised I/O method scaling on the third
cluster. Performance is largely the same at first, hinting that explicit readahead
is likely too limited to be effective. At higher levels of concurrency, our writes
get very small, and the HDF backend is able to deal with the case much more
effectively.
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larger levels of concurrency, although we did not utilize the entire cluster. We only
performed the ‘advised’ version of our raw algorithm for this cluster, as the simpler
version gave essentially the same performance, and compute time was harder to
obtain for this machine.

5.5 A Parallel File API
In the work presented for this paper, as well as our previous experience writing
visualization and analysis programs targeting supercomputers, we have noticed that
the available I/O models presented by the standard POSIX API is insufficient from
both the producer and consumer vantage points. Implementers are not given enough
information about access patterns that applications are utilizing, which prevents
filesystems from optimizing for common tasks. Library and application developers,
on the other hand, have no mechanism for communicating such information. The
result is sub-par performance, with both parties feeling like there is little that can
be done.

For this reason, we present an API that:

• models the way visualization and analysis application programmers think
about their data,

• simplifies data access, and

• enables implementers to design effective filesystems.

A summary of the methods that the API provides is given in Table 5.1. Our
primary goal with such an API is to encourage application developers to structure
their code in such a way that it models a similar API, as it provides more information
to lower levels. At the same time, we hope middleware libraries and even kernel
code begin to offer APIs that allow application developers to provide this kind of
information. In the end, there should be much more data about the patterns and
intent of data access that the application provides to the levels that can make use of
it.

open range and close range ; open and close calls that work with
byte ranges. One of the issues that plagues I/O concurrency at large scales is
the inability to indicate that portion of the data a process intends to access: each
process only needs some subset of the overall data, but cannot communicate this a
priori to middleware or the runtime system. To perform effectively in the majority
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System call Description
open range open with an explicit range of accessible bytes.
close range clean up resources associated with a buffer

readanyv accept a set of blocks and returns when any one full block is available
finished asynchronous flush; return immediately, but mark buffers as unused.

Table 5.1: Summary of proposed new APIs.

of cases, caching, large stripe sizes, and readahead must be employed by the I/O
system. However these techniques create false sharing when byte ranges overlap.

A popular method to combat this problem is to create a single file per process.
Since only one process accesses the file, it is clear to the I/O subsystem that
concurrent access is impossible. While this is effective at the small scale, at the
highest levels of concurrency the method becomes untenable due to overwhelming
amounts of metadata: listing all files in a directory would require making a hundred
thousand requests to a server. Even if this were technically feasible, it presents
significant data management difficulties; it would be much easier on users if we
could contain results into a singular file.

Many analysis applications would be able to calculate the byte offset they
will need on a given process given just the total number of processes and the
dimensions of the dataset (or number of points in a point mesh). Visualization
software may need to produce a spatial hierarchy of the data, but again this can be
done with relatively little metadata. By providing this information to the underlying
I/O subsystem up front, application developers can cleanly solve one of the more
difficult problems in defining distributed file systems: distributed lock management.

It should be an error to specify a byte range beyond the file length when opening
a file for read-only access. When used for write access, this would be a viable
method for extending the file’s length. All offsets from a file opened in this manner
are relative to the start of the byte range. Attempting to read beyond the end of the
byte range results in end-of-file.

If the API is made to work with existing file descriptors, the standard close
call is the only API needed. If this API returns a more opaque type, an API-specific
close method will be required.

readanyv ; a read that accepts a number of blocks and returns one of them.
Many applications can identify what data it will need using a small amount of
metadata. For the segmentation application used in this work, for example, we
could compute that easily based only on the total amount of data and the number of
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processes in the analysis job. A volume renderer could read just the world extents
of each block and use that for a spatial subdivision. In short, it is common for
an application to be able to make progress given some small subset of its input,
as long as each subset is ‘complete’ in some sense. This interface allows an API
implementer to do intelligent read-ahead; as demonstrated in our test program, this
can provide compelling performance advantages.

The API should return pointers; it should not accept previously allocated buffers.
The gives the implementer freedom to manage allocations, enabling flexibility in
choices of underlying APIs. For example, memory-mapped files require page-
aligned memory that is not provided by malloc or new, and is more difficult to
use at fixed addresses, as opposed to letting the kernel choose the mapping.

finished ; an asynchronous flush operation. This indicates that the given
file (or byte range within the file, given open range) will no longer be used. The
method returns prior to performing any I/O operations. It is an error to read from
or write to the given file after performing this operation. It is an error to open the
given file within the same process without an intermediate close operation. An
implementation may detect these errors. It is unspecified whether any other process
sees any modifications to the open file before a future close operation completes.

The intent is to allow a system to better manage its cache and write throughput.
Should the system experience memory pressure, these cache blocks are the best
candidates to consider for flushing. If the network or host resources are currently
busy, the system might delay making the write request until a better time. This
would also allow an implementation to avoid a ‘thundering herd’ of disk write
requests: mitigated in a system such as Lustre, but a difficult problem in an
NFS-like environment.

It is important to note that, while this system interface was explicitly developed
to deal with the problems of distributed systems, most calls could provide benefits
for applications targeted to typical workstations. The issues are largely the same,
though the stakes are higher in a distributed system. Furthermore, such a system
would not obviate the need for current infrastructure; not all file access can be
made to conform to this model, but the intent is that large scale applications would
be able to effectively utilize these APIs for their primary I/O needs.

5.6 Conclusions

We have presented performance characteristics of modern disks. Utilizing that
information, we evaluated a variety of APIs for file access with large scale data by
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implementing the same program using multiple backends. Where APIs had options
that may effect performance, we experimented with those options to identify the
set that gave the best parallel performance on our chosen problem. We evaluated
this program on multiple clusters, attempting to identify generalized practices
that application developers should follow to obtain superior performance in the
common case: where they have no control over where their users will run the
released code.

Variability in I/O performance, such as that depicted in Figure 5.3, was consid-
erably higher than we expected it to be. In some cases we observed a job taking
twice as long to execute than it did at another point in time. This presents a difficult
challenge for interactive visualization and analysis applications that should provide
the illusion of interactive response yet are highly susceptible to such latency. The
results encourage the use of progressive or multiresolution renderers that can be
used to provide real-time responses in the plausible event that the supercomputer
cannot respond quickly enough.

While the best performance was generally obtained by using operating system
APIs directly, we do not advocate developers use these directly at this time. Higher
level libraries such as NetCDF, HDF5, and ADIOS provide mechanisms for self-
describing metadata and data attributes, and can achieve similar performance with
the proper configuration, not to mention providing portability across a wider set of
systems. Instead of having every application developer familiarize themselves with
these to-the-metal APIs, our community should instead work towards the goal of
incorporating these ideas into higher level libraries. However, some API changes,
preferably to accomodate a model more like the one presented in Section 5.5, could
go a long way towards getting users to write code that can be scaled much more
easily.

For application developers, we present the following maxims for obtaining the
best I/O performance possible:

• Stagger operations that read or write file metadata.

• Read or write in large chunks: 10 megabytes or more.

– This frees the developer from the requirement of identifying and imple-
menting intelligent data layout schemes.

• Use memory-mapped files whenever possible.

• If you can do more, unrelated work before close-ing some file resource,
do so.
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• Always check and report errors during close.

5.6.1 Limitations

Any study is subject to the limitations of that which can be tested, as well as the
time available to perform tests ad nauseum. This study is no different, and suffers
from at least the following barriers and limitations on its conclusions.

The most serious is our chosen test application. We have chosen to implement
a program that essentially maintains two small buffers at any one time: a brick of
the input file and an output brick. In a real-world application, it would desirable to
load as much data as would fit in the current memory. Furthermore, many current
applications are not intelligent enough to implement either method: they employ
strictly in-core algorithms. Due to the memory struggle between application heap
allocations and the operating system’s filesystem caching, in-core applications
clearly perform worse when the heap memory required grows close to the available
memory on a node. Finally, our application performs very little work on each
input voxel; this was done to emphasize I/O time, but is uncharacteristic of any
useful analysis program. Therefore it is likely that the application presented here
performs better than real-world visualization and analysis applications.

A second issue, particularly with respect to the proposed API, is the lack of
thorough evaluation. No applications have been written to such an API. We have
implemented the API in user-space, but no middleware or applications have as-yet
been adapted to utilize the model it presents. Despite these shortcomings, we feel
the approach is well-informed based on our experiences here and in prior literature.

5.7 Future Work

The ADIOS library is unique in that it is not a file format alone, but rather a
middleware suite that interfaces to a variety of backend methods for reading and
writing data. These methods include HDF5, NetCDF4 and ADIOS-only backends
such as raw POSIX I/O and MPI-IO. Unfortunately the current release at the time
of publication (ADIOS 1.2.1) does not yet support out-of-core data access. For
large scale visualization and analysis applications that commonly run on just a
subset of the nodes utilized to produce simulation data in the first place, we judged
this to be an essential feature. We contacted the development team and they agreed
to look into out-of-core APIs for a future release; we therefore hope to include
ADIOS results in a future study.
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We would like to extend the methodologies used in this work to a larger set
of parallel algorithms. In particular, algorithms that must do considerably more
per-voxel computation, and those that require information from neighboring voxels.
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Chapter 6

Freeprocessing

In situ visualization has become a popular method for avoiding the slowest com-
ponent of many visualization pipelines: reading data from disk. Most previous in
situ work has focused on achieving visualization scalability on par with simula-
tion codes, or on the data movement concerns that become prevalent at extreme
scales. In this work, we consider in situ analysis with respect to ease of use and
programmability. We describe an abstraction that opens up new applications for in
situ visualization, and demonstrate that this abstraction and an expanded set of use
cases can be realized without a performance cost.

6.1 Introduction and related work
The growing size of simulation data and the problems this poses for subsequent
analysis pipelines has driven simulation authors to integrate visualization and
analysis tasks into the simulation itself [106]. The primary advantage of this
approach is to perform operations on data while they are still in memory, rather
than forcing them through disk, thereby eliminating the most expensive component
of the majority of visualization and analysis pipelines.

Scientists and engineers have developed many different approaches to in situ.
DART uses RDMA to stage data from supercomputer to potentially separate
analysis-focused resources [107], and a system performs computations on the data
as they are in transit from one resource to another [108]. The dominant approach
is to use the same supercomputer that is running the simulation for visualization,
though potentially on just a subset of cores, in the manner of Damaris/Viz [109].
Damaris/Viz can provide a wealth of visualization and analysis opportunities due

101



102 CHAPTER 6. FREEPROCESSING

to its ability to act as a front end to both VisIt’s [13] libsim [110] as well as
ParaView’s Catalyst [111, 112]. Biddiscombe et al. proposed an HDF5-based
driver that forwards the data from HDF5 calls to ParaView [113]; we give an
example of our system implementing similar functionality in § 6.3.2. Abbasi
et al. introduce DataStager, a system for streaming data to staging nodes and
demonstrate a performance benefit by asynchronously streaming multiple buffers
at one time [114]. In situ libraries can also be used to improve the performance of
simulation code [115].

Most work focuses on extreme-scale performance with less regard for the
effort required in integrating simulation and visualization software, whereas we
focus on the latter concern. Notably, however, Abbasi et al. extend their previous
work with a JIT compiler that allows users to customize data coming through
ADIOS [116] using snippets of code written in a subset of C [117]. Zheng et al.
modify OpenMP runtimes, an approach that shares our mentality of working within
the constraints of existing infrastructure [118]. Others have tightly integrated
simulation with visualization to allow steering, but these generally come at high
integration costs [119, 120].

Existing solutions leave a potentially large segment of the user community
behind. Most previous work has integrated or presupposed integration with par-
ticular libraries for performing I/O operations, and no such library has achieved
universal adoption. Yu et al. note the tight collaboration required for a fruitful
integration [121]. Reasons for not adopting I/O middleware are varied: the diffi-
culty in integrating the library with local tools, perceived lack of benefit, lack of
support for existing infrastructure with home-grown formats, or issues conforming
to required interfaces, such as synchronous ‘open’ calls.

Moreover, the focus of modern I/O middleware specifically on simulations at
the extreme scale leaves a long tail of potential in situ uses behind. The set of
simulation authors focused on creating exascale-capable simulations is a small
subset of all simulation authors. A large set does not even dream of petascale; and
even larger are those who would barely know how to exploit a terascale-capable
solver for their science. The distribution gets larger and more diverse as one moves
out to lower scalability levels.

At the opposite end of ‘extreme scalability’ uses for in situ, one may find
a number of heretofore ignored applications. There is no reason to limit the in
situ idea to parallel code running on a supercomputer, for example. Analysis
routines embedded into the fabric of network transfer operations would be a boon
to distributed research groups (and the success of tools such as Globus [122] speaks
to the multitudes of domains faced with this problem). Those writing simulations
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in MATLAB R© might also benefit from precanned visualization tasks that occur
concurrently with their simulation, yet the closed source nature of the product
makes the prospect of integrating I/O middleware improbable at best.

The currently-dominant middleware approach to in situ requires significant
effort. It is reasonable for simulation authors to spend a week integrating and
retooling their code to achieve thousand-way concurrent in situ visualization, but
this level of investment is unreasonable to users who simply wants to compute a
data range on their files as they move across the country. The cliff between ‘nothing’
and a ‘100%’ solution for in situ visualization with existing middleware solutions
is too high to appease such diverse use cases. Worse, the model is unworkable in
some situations; it is doubtful that the OpenSSH maintainers would accept patches
incorporating ParaView’s Catalyst into sftp, for example.

Freeprocessing is an abstraction of previous work. Using it, one can imple-
ment classical in situ visualization and analysis, computation or data reduction
via staging nodes, unique instrumentation such as gathering power consumption
information dynamically [123], or a number of novel ‘processing while moving
data’ ideas. This processing can be synchronous or asynchronous depending on
the needs and desires of the user. Developers of a freeprocessor can connect it
to existing visualization tools such as VisIt’s libsim or ParaView’s Catalyst,
implement their own analysis routines, and even push data into another language
such as Python, all without data copying—or with data copying, should those
semantics be preferable. The general nature of Freeprocessing not only allows
one to implement the diverse domains of previous work, but also allows novel use
cases. Specifically, we contribute:

• a new method for inserting data processing code into I/O operations;

• the generalization of in situ ideas to heretofore unexplored domains, such as
visualization during network transfer;

• greatly increased programmability for in situ ideas, making them applicable
with considerably less effort;

• a sample implementation that demonstrates all of these ideas in real-world
cases.

The rest of this paper is organized as follows. First, we explain the technical
underpinnings of how the program works. In § 6.3 we demonstrate Freeprocessing
in some classical environments and show that there is almost no overhead. We
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Figure 6.1: Freeprocessing works like a vampire tap on the data coming out of a
simulation. Without changes to a program’s source code, we can intercept the data
as it goes to the IO library and inject visualization and analysis tasks.

demonstrate some novel uses before we conclude and note limitations as well as
future work in § 6.5.

6.2 Instrumentation

Previous in situ solutions have relied on the simulation author explicitly invoking
the visualization tool, or the simulation using a custom library for I/O that is then
repurposed for analysis. In this work we demonstrate that there is little need for
either; every simulation produces output already, an in situ tool just needs to tap
into that output.

Our symbiont uses binary instrumentation to realize that tap. We take unmodi-
fied simulation binaries and imbue them with the ability to perform visualization
and analysis tasks. In doing so, we remove a potentially complicated component
of in situ: modifying the program to work with the visualization or analysis tool.
Notably, this approach enables simulation software to produce in situ visualizations
even when the source code of the simulation is unavailable. Furthermore, as the
symbiont interposes these functions during load time, a user need only change the
invocation of the program to enable or disable these features.

The method we use is to redefine some of the standard I/O functions, in a
similar manner to the way the GLuRay or Chromium systems operate [12, 79].
These methods rely on features available in runtime dynamic linkers to replace any
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function implemented within a library at load time. The overridden entry points
form what we call the ‘symbiont’, the core of Freeprocessing. The symbiont’s
purpose is to conditionally forward data to a freeprocessor—a loadable module that
implements the desired in situ computation—in addition to fulfilling the function’s
original duties. Separating the instrumentation itself and the freeprocessor allows
users to develop processing elements without knowledge of binary instrumentation.

The set of intercepted functions is different depending on the I/O interface that
the simulation uses, as shown in Figure 6.1. For the C language, these functions
are those of the POSIX IO layer, such as open(2) and write(2). In Fortran
these calls are implementation-specific, and C++ implements I/O differently, but
on POSIX-compliant systems all such implementations are ultimately layered on
top of the POSIX I/O interface. We also introduce interposition for higher-level
functions, such as those that comprise MPI File I/O, and a subset of calls from the
HDF5 family. Using this interposition, what the simulation believes is a standard
‘write’ operation actually calls in to our symbiont.

6.2.1 Data semantics

Function interposition for higher-level functions from libraries such as HDF5
and NetCDF provide an important benefit: data semantics. As these formats are
self-describing, there is enough information in just the stream of function calls to
identify data properties—in contrast to raw POSIX I/O functions that provide little
more than an abstract buffer. The symbiont forwards any available data semantics
from the interposed library functions to the freeprocessor.

However, in contrast to previous work, Freeprocessing will also willingly
forward data without knowledge of any underlying semantics. A freeprocessor
can also ignore metadata simply by not implementing the methods that interpret
those messages. This distinction is important, as it both enables Freeprocessing
to function in a larger set of scenarios, as well as increases the flexibility of the
system. Presumably a freeprocessor would then obtain this information from some
external source. We view allowing semantic-less data transfer similar to using
‘dangerous’ constructs in a programming language, such as casts in C. While these
constructs are generally frowned upon, with restrained application they can be a
powerful and thereby useful tool.
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6.2.2 Data semantics

Meta-information concerning data semantics are required, and are only available
through Freeprocessing in limited cases. While we consider such concerns beyond
the scope of this work, they need to be provided for the demonstration of the
technique. The general nature of Freeprocessing allows any number of solutions:
the problem is no different than understanding arbitrary binary data read from a
file. One of the solutions we have found works well is a simple text file in the
style of Damaris/Viz or ADIOS [109, 116]. An example of one such configuration
is given in Listing 6.1. However, it is important to note that this configuration is
external to Freeprocessing itself. The symbiont does not contain this parsing and
metadata acquisition code; the ‘user code’—freeprocessors—implements this only
if they desire.

Listing 6.1: JSON configuration file used for a Silo conversion freeprocessor.
Variants that do not require the repeated "i"s are possible, but lack the desirable
property of strict adherence to the JSON specification.
{ ” dims ” : [ {” x ” : 4} , {” y ” : 2} , {” z ” : 3} ] ,
” c o o r d s ” : [
{ ” x ” : [ {” i ” : 0 . 0 } , {” i ” : 1 . 0 } , {” i ” : 2 . 0 } ,

{” i ” : 3 . 0 } ] } ,
{ ” y ” : [ {” i ” : 0 . 0 } , {” i ” : 4 . 5 } ] } ,
{ ” z ” : [ {” i ” : 0 . 0 } , {” i ” : 5 . 0 } ,

{” i ” : 1 0 . 0 } ] } ] ,
” t y p e ” : ” u i n t 8 ” }
Freeprocessing itself does not endorse any specific method for obtaining data

semantics, in the same way that the C file I/O routines do not endorse a specific
encoding for metadata on binary streams.

6.2.3 Defining freeprocessors

The module interface for a freeprocessor is simple. The system exposes a stream
processing model. Data are input to the processor, utilized (or ignored), and there-
after unavailable. This interface is in principle the same model as GLSL, OpenCL,
and CUDA expose, though we do not currently impose the same restrictions. A
freeprocessor is free to implement a cache and process data in a more traditional
manner, for example.

Listing 6.2 shows the freeprocessor interface. The symbiont calls Init when
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a file is first accessed; some of our freeprocessors initialize internal resources
here. The filename parameter allows the processor to provide different behavior
should the simulation output multiple file formats. The buffer and n parameters
are the data and its size in bytes. If the required information is available, the
symbiont will call Metadata immediately before a write, communicating the
characteristics for the impending data. Likewise, finish cleans up any per-file
resources. Finally, the create function implements a ‘virtual constructor’ to
create the processor. All functions sans create are optional; if a freeprocessor has
no need for metadata, for example, it simply does not implement the corresponding
function.

Listing 6.2: Base class for a freeprocessor.
c l a s s F r e e p r o c e s s o r {

v i r t u a l vo id I n i t ( c o n s t s t d : : s t r i n g &);
v i r t u a l ˜ F r e e p r o c e s s o r ( ) ;

enum DType { FP FLOAT , FP INT8 , . . . } ;
v i r t u a l vo id Metada ta ( c o n s t s i z e t [ 3 ] ,

enum DType ) ;
v i r t u a l vo id Stream ( c o n s t vo id ∗ b u f f e r ,

s i z e t n ) ;
} ;
e x t er n ”C” F r e e p r o c e s s o r ∗ c r e a t e ( ) ;

Configuration

The symbiont reads a configuration file that describes which freeprocessor to
execute. Any library that satisfies the interface given in Table 6.2 is a valid
freeprocessor. It is important to note that the operations share the semantics of the
simulation code. For example, if a parallel simulation performs only collective
writes for a given file, then it is appropriate to perform collective operations in the
freeprocessor’s Stream call.

It is common for a simulation to produce a large set of output files. Furthermore,
MPI runtimes frequently open a number of files to configure their environment,
and all these files are ‘seen’ by the symbiont. It is therefore necessary to provide
a number of filtering options. Some of these are built in, such as ignoring files
that are opened for read-only access. Others the user specifies in the configuration
file for the symbiont. The specification uses a match expression for the filenames,
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so the user can further limit where instrumentation will occur. These match
expressions provide a more convenient mechanism to uniquely connect processing
elements to streams, but the assignment could also be done by the freeprocessor
implementation.

Python

Developers may also implement freeprocessors in Python. We provide a simple
freeprocessor that embeds the Python interpreter and exports data and needed
metadata. Most notably, it creates the ‘stream’ variable: a NumPy array for the
data currently being written. Exposing the array to Python does not require a copy;
the simulation data shares the memory with the Python runtime. Should the Python
script attempt any write operation on the data, a copy is transparently made inside
the Python runtime that is then managed via Python’s garbage collector. We allow
only one of the simulation or the Python tool to run at any given time.

The Python script is otherwise indistinguishable from standard Python code; the
symbiont imposes no restrictions beyond the unique source of data. Communication
via, e.g., MPI4Py is even possible, provided the simulation utilizes synchronous
writes. In § 6.3.2 we demonstrate this method by connecting Freeprocessing with
the yt visualization tool [124].

6.3 Classical in situ

Freeprocessing can implement a number of in situ ideas, including the traditional
use case of in situ: visualization and analysis during a simulation run. In this
section, we detail how the corresponding freeprocessors for a few simulation codes
operate, and demonstrate that the overhead of the method is negligible.

6.3.1 PsiPhi

PsiPhi is a Fortan95/2003-based CFD-solver that focuses on Large Eddy Simulation
(LES) of flows that include combustion and other types of chemical reactions. The
simulation discretizes the governing equations of mass, momentum, and species
concentration on a cartesian grid via the finite volume method. Second-order
schemes discretize the domain, and an explicit third-order low storage Runge-Kutta
scheme advances the solution. The immersed boundary (IB) technique handles
diverse geometries in a computationally efficient manner. Besides the solution
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Figure 6.2: Sample in situ visualizations of the Cambridge stratified flame produced
by the PsiPhi code.
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of the mentioned transport equations in an Eulerian formulation, the code is able
to solve the equations of motion for Lagrangian particles. A combination of
Lagrangian particles and immersed boundaries describes moving objects. The code
is modular, easy to extend and maintain, and highly portable to different machines.
PsiPhi parallelizes via the distributed-memory paradigm, using MPI.

PsiPhi simulates highly-resolved simulations of reactive flows, e.g., premixed,
non-premixed and stratified combustion, coal and biomass combustion, liquid spray
combustion, and nanoparticle synthesis [125, 126, 127]. The software has scaled
to thousands of cores on Top500 machines such as SuperMUC and JUQUEEN.
Recent tests with the program have shown that the output of the computational
results becomes a performance bottleneck when moving up to an even higher
number of cores.

There are three types of intermediate outputs in the PsiPhi simulation. The
first are actually custom-developed in situ visualizations: slice outputs and volume
renderings. The simulation writes out these visualizations in custom ASCII-based
formats every n time steps, with typical values of n in between 100 and 1000 [128];
Figure 6.2 shows example visualizations. The second type of output is a simulation-
specific binary format used for restart files that is organized in a ‘one file per
process’ manner. Synchronous Fortran ‘unformatted’ WRITE operations create
these outputs. The third kind of output is an ASCII-based metadata file that
describes the layout of the binary restart files.

The PsiPhi authors are interested in extracting arbitrary 2D slices as well as
3D visualizations with more flexibility than their custom-developed routines allow.
Therefore, we developed a custom freeprocessor for the PsiPhi simulation. PsiPhi
periodically dumps its state to disk in the form of restart files, at approximately the
same cadence as ‘normal’ output files. We utilized the aforementioned restart files
as the basis for our freeprocessor, in addition to parsing the ASCII-based metadata
to interpret these restart files.

The simulation authors were enthusiastic about the freeprocessor. All the
outputs the simulation previously created were redundant with the restart files. Fur-
thermore, PsiPhi users hardcoded postprocessing parameters such as slice numbers
into the simulation source, necessitating a recompile to modify the parameters. In
light of the visualization options presented by the freeprocessor, the PsiPhi authors
elected to remove all custom-developed in situ outputs and create only the restart
files.

We therefore reimplemented their outputs in a freeprocessor and measured the
performance of the system under both the old and new configurations. As shown
in Figure 6.3, not only was the overhead miniscule, but the simulation actually ran
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Figure 6.3: Scalability of the PsiPhi simulation. ‘existing’ and ‘Freeprocessing’
produce the same outputs via different mechanisms, while ‘raw’ produces only
restart files. Freeprocessing’s overhead is negligible; new output methodologies
can even increase performance.

faster with the freeprocessor. The performance difference arose from the difference
in how PsiPhi and the freeprocessor organize their writes. In the freeprocessor,
we calculate the appropriate file offsets on each rank and output to a shared file
directly; the original PsiPhi approach was to gather the data on the root processor
and then do all writing from there.

6.3.2 Enzo

Enzo is a simulation code designed for rich, multi-physics hydrodynamic astro-
physical calculations [129]. It is of special interest in the visualization community
due to its use of adaptively-refined (i.e., AMR) grids. Enzo runs in parallel via
MPI and CUDA on some of the world’s Top 500 supercomputers, with OpenMP
hybrid parallelism under investigation. For I/O, Enzo relies on the HDF5 library.

As Enzo is HDF5-based and HDF5 provides all the data semantics required,
the selection of which fields are of interest is the only required work. For HDF5
outputs, the symbiont configuration file specifies the ‘Datasets’ (in the HDF5 sense)
of interest as opposed to a filename; the symbiont assumes that all HDF5 files
opened for write access are a simulation output.

When Enzo was first investigated, HDF5 support was not available in our
symbiont. Generic HDF5 support in the symbiont required only a day of effort.
Configuring it to work with Enzo takes seconds. Users must edit a text file
to indicate which field[s] they wish to see. To work with Enzo’s yt tool, we
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Figure 6.4: ‘Density’ field generated in situ by the Python visualization tool ‘yt’
applied to an Enzo hydrodynamics simulation. A freeprocessor exposed the data
into Python and a standard yt script created the visualization.
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Figure 6.5: Sample frame from an animation produced from a student’s simulation
using our tool. The ease of use allowed the student to quickly get the tool running,
allowing fast and simple visual debugging.

utilize the aforementioned freeprocessor that exposes data into Python and runs
a script (§ 6.2.3); the script we utilized is a standard yt script, except that it
pulls its data from the special ‘freeprocessing’ import, instead of a file.
Figure 6.4 demonstrates this. The 100-line freeprocessor is applicable for any in
situ application; the 20-line Python script is specific to yt.

6.3.3 N-Body simulation coursework

We taught a course in High-Performance Computing during the preparation of this
manuscript. Among the work given in the course was an MPI+OpenMP hybrid-
parallel N-Body simulation. We provided our symbiont to the students along with
a simple ParaView script that would produce a visualization given one of their
timestep outputs. A sample visualization is shown in Figure 6.5.

The flexibility of the system was a boon in this environment. Visualizing the
data in-memory would be difficult. The data were distributed, and the writes were
in ASCII; parsing the data from the given stream was daunting for undergradu-
ates. Therefore they elected to delay launching ParaView until after a timestep
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completed. The system must write and then read particle information from disk,
but visualization was still concurrent with simulation and faster than serializing the
two tasks. Most importantly, the simplicity allowed application of the technique in
tens of minutes.

6.4 Alternative use cases

The ability to hook into any data movement operation of a process enables
Freeprocessing to create novel applications of in situ ideas. In this section, we
highlight a couple uses that make Freeprocessing unique among in situ tools.

6.4.1 Transfer-based visualization

A heretofore lost opportunity has been in applying visualization methods to data
during transport from site to site. This use case shares the primary motivation
behind prior in situ visualization work: that we should do operations on data
while they are already in memory, instead of writing the data to disk and then
reading them back. While most if not all HPC experts agree that—at the largest
scale—moving data will no longer be viable, a large userbase still exists for which
simulation on a powerful remote supercomputer and analysis on local resources is
the norm.

To downplay this drawback, we propose preprocessing during this transit time.
As an example of Freeprocessing for this novel case, we use it to instrument the
transfer of a dataset using the popular secure copy (scp) tool. The system works
by intercepting data as it goes out to or comes in from a socket. The source of the
secure shell program itself needs no modification; the system could work with any
network service, such as an FTP client or a web browser.

One use case is the computation of an isosurface; Figure 6.6 shows an example.
A freeprocessor computed this isosurface of a Richtmyer-Meshkov instability
during network transfer. This example demonstrates one of the issues with our
system: we needed to modify a marching cubes implementation to work in a
slice-by-slice manner, as opposed to assuming all data were in-core. Additionally,
our marching cubes implementation required at least two slices to operate, which
necessitated a cache in the freeprocessor to make up for the small writes utilized
by scp. This buffering and our unoptimized marching cubes implementation
slows down a gigabit-link transfer by 4x. Although this still proved faster than
transferring the dataset and computing the isosurface in series, it highlights the pain
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Figure 6.6: Richtmyer-Meshkov instability isosurface computed by a freeprocessor.
Whereas the freeprocessor could be applied to any process that moves data, this
particular isosurface was computed during network transfer via scp.

associated with the need to rewrite code in a stream processing fashion. On the
other hand, with the rise of data parallel architectures and the decreasing memory
per core ratio, one might argue that a transition to a stream processing model is
inevitable.

6.4.2 MATLAB

Users often request methods to read outputs of binary-only commercial software
in tools like VisIt.1. We implemented a freeprocessor that accepts raw data, reads
a metadata description from a configuration file for semantics, and exports these
data into a Silo file that VisIt can easily import. Applying this freeprocessor incurs
an additional overhead of 3–10% on a simple Julia set calculation in MATLAB,
due to the additional data that it writes.

The alternative of an ‘export to Silo’ MATLAB extension has notable draw-
backs. First, one must compile using the ‘mex’ compiler frontend, and every major
MATLAB update will require a recompilation or even rewrite. Second, divorcing
the code from MATLAB and its interface may require significant effort. In con-

1c.f. “Using MATLAB to write Silo files to bring data into VisIt”, visit-users mailing list,
February 2014.
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trast, our freeprocessor is indendendent of the MATLAB version it instruments,
with neither source changes nor a recompilation required. Furthermore, the same
freeprocessor is applicable in other manners, such as creating Silo files during a
network transfer.

6.5 Conclusions
In this paper we have introduced Freeprocessing: an in situ visualization and
analysis tool based on binary instrumentation. The method imbues an existing
simulation with in situ powers, with little or—in some cases—no effort on the
part of the simulation author. The method’s generality enables novel applications,
such as visualization during network transfer or instrumenting software for which
source is unavailable.

The system is, however, not without its drawbacks. The symbiont is stable,
but customizing the system via new freeprocessors can require per-simulation
effort. Furthermore, the unidirectional communication model precludes simulation
steering applications. The ability of Freeprocessing to insert small, ad hoc bits
of code in myriad new places uncovers perhaps its greatest limitation: increased
programmability requires increased programming.

The work presented here lowers the barrier of entry for a simulation to indulge
in in situ processing. Previous work on in situ has largely focused on achieving
highly scalable results, with less regard to the amount of integration effort required.
The most significant contribution of this work may be that fruitful capabilities can
arise from a modicum of effort.



Chapter 7

Metadata inference for in situ
visualization

Coupling visualization and analysis software with simulation code is a resource-
intensive task. As the usage of simulation-based science grows, we asked ourselves:
what would it take to enable in situ visualization for every simulation in existence?
This paper presents an alternative view focusing on the approachability of in
situ visualization. Utilizing a number of techniques from the program analysis
community and taking advantage of commonalities in scientific software, we find
that we can vastly reduce the time investment required to achieve visualization-
enabled simulations.

7.1 Introduction

In situ visualization has proven to be useful for simulation-based sciences. The
majority of in situ visualization literature is focused on the performance story: the
growing size of outputs from simulations makes the commonplace post-processing
regime less attractive [109, 111, 110]. While these efforts push us in the right
direction, the impetus is flawed. The post-processing approach is not inferior
because it scales poorly—though it does indeed scale poorly—it is intrinsically
inferior. The ability to visualize and understand a simulation’s data as it is generated
is inherently useful. The in situ approach has not been ignored until recent years
because it was not useful. A more likely explanation is that the difficulty was
prohibitive.

117
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Let us redefine ‘in situ visualization’ as ‘interactive simulation’. Interactive sim-
ulation is simulation that can be controlled: sped up or slowed down, reinitialized
with new parameters, visualized, selectively refined, or even have its underlying
physics live-edited. This model of simulation is clearly superior to our present
batch-oriented model. The cycle time from hypothesis to verification would be
greatly reduced.

Hall et al. note [130] the importance of “program-analysis strategies to improve
software construction, maintenance, and evolution.” We introduce a methodology
for “0 day” coupling of simulation and visualization code. We remove the need to
link in any external code to the simulation. The simulation software often does not
even need to be recompiled. The bulk of our contribution is in the form of program
understanding: we demonstrate how to infer those data that are interesting as well
as the parameterization of those data that enables visualization. This obviates the
need for the simulation author to conform to or even learn external APIs.

7.2 Trivial example

Consider the task of modifying an existing simulation program to interactively
visualize its in-progress results. The developer must identify the primary loop that
advances the state of the simulation. That loop modifies some memory of interest
that the developer typically has some external knowledge about. The external
knowledge generally revolves around data type and format: ‘a point cloud of
64-bit floating point values’, for example. This in turn helps the developer search
for memory matching that organization. Once the location where the simulation
advances its state is discovered, metadata is uncovered via a similar process, and a
call to the in situ visualization library is inserted.

The code fragment in Listing 7.1 is exemplary of this task. The developer
adding in situ visualization to a 2D simulation would be pleased to find these loops:
the code is accessing and updating a 2-dimensional structure, ‘data’. Next tasks
would be to identify the type and source of the memory in ‘data’. Should it align
with the developer’s ideas of the simulation’s data model, visualization will be
inserted after the loops and testing would be done.

The work presented here automates this exploratory search-and-insert-visualization
process.
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f o r ( s i z e t j =0 ; j < dims [ 1 ] ; ++ j ) {
c o n s t s i z e t row = j ∗dims [ 0 ] ;
f o r ( s i z e t i =0 ; i < dims [ 0 ] ; ++ i ) {

d a t a [ row+ i ] = ( S ( x−1,y−1) + S ( x−0,y−1) + S ( x +1 , y−1) +
S ( x−1,y−0) + S ( x−0,y−0) + S ( x +1 , y−0) +
S ( x−1,y +1) + S ( x−0,y +1) + S ( x +1 , y + 1 ) ) / 9 . 0

}
}
Listing 7.1: A code fragment representative of simulation software. A large array
is smoothed using a set of nested loops. S is presumed to be a macro that samples
data while properly accounting for edge cases.

7.3 Program model and simulation analysis

In this section we develop an abstract model of an executing simulation program.
We will then use this general model to describe a collection of properties that code
such as that in Listing 7.1 follows. This set of properties codifies the aforemen-
tioned developer process.
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BaseType := Booleans∪ Integers∪FP∪Strings
Type := BaseType∪Array∪Pointer

Memory := Heap∪Static∪Local∪Arguments∪Text
IPtr ∈ Text

T := Memory 7→ Type
BT := Memory 7→ BaseType

Fqn := [begin ∈ Text,end ∈ Text] | begin < end
Where := Text 7→ Fqn

Wr := (m ∈ Text) 7→ (n ∈ (Memory\Text)) | m 6= n
class CFGNode address edges
CFG := {n | n =CFGNode}

BB := Text 7→CFG
K := Text 7→CFGNode

Hdr := CFGNode 7→ Boolean
Depth := CFGNode 7→ Integer

Listing 7.2: Definitions for an abstract machine and analysis based on control flow
properties.

We use the formalisms given in Listing 7.2. We consider an abstract machine
described by an instruction pointer and the current state of memory. The instruction
pointer advances automatically, and memory operations consist of reads and writes
that map an address to a mutable memory location. Note that our definition denies
self-modifying code. Memory is assumed to be typed, with a small set of available
types. The T and BT mappings define mappings from memory locations to type
information.

The running process is assumed to consist of a series of functions (Fqns), that
are defined as the functions’ upper and lower addresses. We make use of an inverse
mapping Where that allows us to identify a function from the current instruction
pointer. We build local control flow graphs (CFGs) that describe the potential
execution paths. These graphs are represented as a set of nodes that contain an
entry address as well as a set of edges. We build these CFGs based on the function
address range. We define a mapping K that allows us to identify a node in the
control flow graph from an instruction address. We define two final mappings
from a node in the control flow graph: 1) a predicate identifying loop headers
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(Hdr), and 2) a mapping for the calculated loop depth (Depth). In Listing 7.1, the
basic blocks containing j < dims[1] and i < dims[0] would be the loop
headers. Loop depth is the nesting level of the provided basic block. In Listing 7.1,
the assignment to row has a depth of 1, whereas assignment to the element in
data has a loop depth of 2.

Using this model of program execution, we consider the problem of auto-
matically identifying memory regions that house data that a user would want to
visualize. We model these as a set of constraints on type classes. An instance of
the type class allows one to visualize data within a simulation.

We currently support searching for N-dimensional (“ND”) data arrays. This
type is parameterized by a base address, a length (in bytes), the number of
dimensions ndims, an array of dimensions dims, and finally the type of the data.

class ND base length ndims dims type
∧ ∃m ∈ Heap : base→ m (7.1)
∧ BT (base) = type (7.2)
∧ T (dims) ∈ Array∪Pointer (7.3)
∧ BT (dims) ∈ Integers (7.4)
∧ T (ndims) ∈ Integers (7.5)
∧ ndims > 0 (7.6)
∧ Wr(IPtr) ∈ [base,base+ length] (7.7)
∧ ∃b ∈ BB(Where(IPtr)) :
∧ IPtr /∈ b
∧ Hdr(b)
∧ Depth(K(IPtr))> Depth(b) (7.8)

We use the→ notation to mean “points to”; the first constraint simply states
that the data of interest live on the heap. As simulation data is large, it rarely fits on
the stack or even in statically initialized memory. The second constraint conveys
that the base type matches a parameter of our model, such as FP (floating point).
The third and fourth constraints dictate that the dimensions are stored in a linear
list of integers, and the fifth and sixth say that that the length of that dimension list
is a positive integer.

The 7th and 8th constraints are complex and intertwined. First, the application
must write into the relevant memory block. Secondly, the basic block where the
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data are written must be deeper than another basic block that contains a loop header.
That is to say that the data write occurs within a loop.

The formulation gives rise to a pattern matching problem. The classes
of interest are the patterns, and the space to match within is the running pro-
cess’ Memory. In Listing 7.1, the parameter bindings are: data for base, the
size of the allocation (not shown, but assumed to be dims[0] × dims[1] ×
sizeof(float)) for length, dims for dims, and 2 for ndims.

We do not claim our set of properties is perfect, though they have proven
remarkably effective for our uses thus far. There are a number of promising
approaches for discovering new invariants automatically [131, 132, 133], as well
as low-hanging fruit (e.g. ‘the memory is written to a file’). In the future, we wish
to allow simulation authors to specify these constraints at runtime. The penalty
for a lax specification would be too many visualization windows popping up; the
penalty for too strict a specification would be too few windows popping up. The
author would see either error almost immediately.

7.4 Implementation

We seek to realize the aforementioned ‘search’ for a given simulation process.
At first glance static analysis is the best tool for this task, however it runs into
difficulties proving some of the properties. The pernicious problem is aliasing in
C-based languages. A statement as trivial as ‘x = &y;’ creates two names for the
same memory; thereafter, proving that a write to ‘*x’ changes or does not change
‘y’ can be anywhere from unambiguous to undecidable.

A lesser reason to shy away from static analysis is the computational expense,
of which the largest for us is building control flow graphs. Especially for languages
that enjoy methods for exponential code expansion (e.g. C++ templates), building
CFGs for the entire program would be prohibitively expensive. A more targeted
mechanism is desirable.

For this and other reasons we utilize static analysis techniques judiciously
sourced by dynamic analysis. To receive a notification when a particular mem-
ory location is written, we use page protection to detect writes to it. Address
0xdeadbeef is address 0xdeadbeef, regardless of the variable name used to
access it, and thus there is no need to solve the aliasing problem. Control flow
graph construction and analysis are still expensive, but we isolate their construction
to the functions of interest. By targetting unstripped binaries that include debug
information, we can obtain robust type information. Of particular note and perhaps
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surprise to many in the scientific visualization community, binary analysis need not
be lossy as compared to source-based analysis [134]. An advantage of targeting
x86-64 machine code is that it is language-agnostic: our framework works for C++
and Fortran as easily as it works for C, at a fraction of the implementation costs.

Not all of the 8 aforementioned properties are worthy of exposition; variable
type information, for example, is straightforwardly sourced from the binary’s
debug information. In the next subsections, we focus on three of the larger issues:
efficiently tracking memory, control flow graph analysis, and teasing out the
dimensions of an array from the instruction stream of the code accessing it.

7.4.1 Memory tracking

Any heap-allocated memory might potentially be of interest to us. We utilize a
ptrace(2)-based supervisor on the target program, and model each allocation
using the finite state machine in Figure 7.11. Memory regions begin in the ‘null’
state and change state based on events observed in the simulation process. This
event tracking induces overhead, but in the absence of events simulation execution
proceeds at native speeds.

Allocations cause us to begin tracking a memory region. We implement this
event notification using a breakpoint on malloc calls. By examining the stack and
return value, we create a map of the heap-allocated memory in the process. Over-
head for this operation is predominantly context switching between the simulation
process and our supervisor.

The allow and deny states solve the access detection problem. As mentioned
earlier, solving the aliasing problem would be prohibitively expensive. Inserting
checks at every instruction that modifies memory is another alternative, but Antoniu
and Hatcher previously demonstrated this to be too expensive for our needs [135].
Instead, we rewrite allocations of interest, enabling write protection on the returned
memory. This causes the simulation to trap when altering the data of interest,
notifying our supervisor. To avoid the performance issue of a notification on every
access, we catch only the first per function.

Handling a signal on every dynamic memory access would be prohibitively
expensive. Therefore we detect the first access within a function and then allow
unfettered memory access until that function returns. During return, we re-enable
protection and execute the defined visualization steps on the memory. This assumes

1ptrace was consciously chosen for portability. Previous work relied on LD PRELOAD [6],
and that created issues porting to some supercomputers.
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null malloc

mreturn allow

dealloc

denyheader

Figure 7.1: Finite state machine governing memory regions of interest. Regions
transition between the states based on events observed in the observed simulation
process. Basic information is obtained in the malloc and mreturn states. The
allow state initializes parameters for visualization and enables unfettered access
to the memory. header states build up the dimensions of the data. The deny state
reenables access detection.
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the simulation accesses memory within nested loops instead of accessing the mem-
ory via a functional indirection. In practice this has not been a problem: simulations
authors are incentivized to access memory in this manner for performance reasons
with or without our supervisor.

7.4.2 Control flow

The memory tracking described above enables our supervisor to track most of
the events it needs. To pinpoint the remaining events we use analysis based on
the local control flow. When a region is accessed, we build the local control flow
graph for the currently-executing function. Our supervisor computes common
compiler analysis information and uses the results to define per-node depth as well
as perform loop header identification, as shown in Figure 7.2.

Our loop header identification relies on the common definitions of reachability
and dominance [136]. Our current algorithm is known to be fallible in the presence
of harmful gotos, but we have found it is reliable in practice. We deem a basic
block to be a loop header when the basic block:

1. has exactly 2 in-edges,

2. has exactly 2 out-edges,

3. is reachable from one or both out-edges,

4. is dominated by exactly one in-edge, and

5. the dominating in-edge does not directly-dominate the other in-edge

In the future, we hope to simplify our flow graphs into loop trees [136]. This
will resolve some of the possible ambiguities and modestly improve memory
consumption.

We currently use Dyninst’s ParseAPI [137] to compute the initial graph, and
then perform the analysis with custom code. Other tools in this domain are
DynamoRIO [138], Pin [139], and Valgrind [140]. All of these tools are capable
of sophisticated binary transformations. However, our needs are modest and
Dyninst presently represents the majority of our overhead. In the future we hope to
replace this with custom graph construction code that can more effectively limit
computation to the region of interest.
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Figure 7.2: Simplified control flow graph for a small function that smooths a 3D
array (the 3D analog of Listing 7.1). Analysis identifies loop headers and the
nesting level (‘Depth’) of each basic block. On access, the loop tree is traversed to
determine the dimensionality of the array.
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7.4.3 Symbolic execution

As described in the class ND of Section 7.3, we assume a relation between loop
headers and the basic blocks that are contained within those loops and accessing
memory. The loop variable must be involved: if it were not, the access would be
loop-invariant and hoisted out of the loop, either explicitly by the programmer or
implicitly by the compiler. We assume a stronger relation, however: that the loop
conditions imply the dimensionality of the memory regions accessed therein.

Loop conditionals do not definitively describe the format of the data. We
have however found them to be remarkably accurate, and the loop nesting to be
practically infallible. Still, we allow the user to override these discovered bounds,
at which point our tool degrades to only identifying where visualization should be
performed. More work is needed in this area.

Our general approach is to differentiate the loop bound from the induction
variable in the loop conditional. Listing 7.3 gives the basic block for a real-world
loop conditional (what might be implemented for i < dims[0]):

MOV %rdx , [% r i p +0 x20507 ]
MOV %rax , [%rpb−0x60 ]
CMP %rdx , %r a x
JB −0x275

Listing 7.3: Instructions within a sample loop header. The induction variable and
the loop bound appear as arguments to the CMP instruction.

We would like to know which of %rdx and %rax in Listing 7.3 is the loop
bound. Unfortunately a myopic view of the CMP instruction is insufficient for
operand classification: the source of the values is in the two MOV instructions. We
use Algorithm 4 to track the source of operands by interpreting each instruction in
the basic block. A heuristic that the induction variable is a local variable is used to
differentiate the loop bound from the induction variable.

It is not strictly true that induction variables must be local variables. However,
we have only seen this assumption violated in artifically-constructed test programs.
Data dependency information and def/use sets [136] should make this more robust
in the future.

Each iteration of this process gives a single loop bound. By following the state
machine in Figure 7.1 and setting breakpoints up the chain of the loop tree, we
derive the full set of bounds. At the function boundary, we enter the ‘deny’ state
and re-enable memory protection for that region.
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Algorithm 4 Tracking virtual register sets to identify the source of data. The
algorithm begins at a loop header basic block and symbolically executes each
instruction. The resultant data structure can be used to query the source of an
instruction operand’s value.

1: register[*] := UNKNOWN
2: instruction := bbaddr . first instruction in loop header
3: repeat . foreach instruction in the basic block
4: if instruction.Opcode = MOV then
5: mov := (MovInstruction)instruction
6: if mov.source ∈ register then
7: register[mov.target] := register[mov.source]
8: else if mov.source ∈Memory then
9: register[mov.target] := mov.source +

10: memdiff[mov.source]
11: end if
12: end if
13: if instruction.Opcode = ADD then . track ∆addr
14: add := (AddInstruction)instruction
15: if add.dest ∈ register ∧ register[add.dest] 6= UNKNOWN then
16: register[add.dest] += add.source
17: end if
18: if add.dest ∈Memory then
19: memdiff[add.dest] += add.source
20: end if
21: end if
22: . ... SUB, MUL, etc. cases omitted for brevity
23: instruction := next(instruction)
24: until instruction.Opcode = CMP
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Figure 7.3: Volume rendering of the temperature field from a PsiPhi simula-
tion [141]. Array shape information and data were pulled from the running simula-
tion and given to an ad hoc volume renderer. Instrumentation and rendering time is
on the order of milliseconds whereas a timestep can take seconds. User interaction
was limited to transfer function design.

7.4.4 Visualization

Our contribution is in the approach to program understanding, though rendering is
required to demonstrate these aspects. We have implemented a simple GLSL-based
volume renderer and a python-based yt [124] backend thus far. Figure 7.3 shows
the former with data sourced from a combustion simulation. In the future, we hope
to incorporate backends using established visualization tools such as ImageVis3D,
VisIt, and/or ParaView [2, 13, 42].
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7.4.5 Performance

Performance is a cause for concern, as our instrumentation’s theoretical upper
bound is on par with valgrind-level instrumentation [140]. Fortunately, in
practice we have found the slowdown to be approximately 4x for real-world
programs. There is much work still to be done in this regard: the largest limitation
is that we currently visualize every timestep’s results.

Figure 7.4 looks at multiple aspects of performance across this set of programs.
The red ‘Uninstrumented’ bar represents an upper bound on performance. ‘Trace’
inserts breakpoints at ‘malloc’, ‘free’, and their return addresses, measuring
what it costs to start and stop the execution of the simulation program. Simulations
that utilize more regions of dynamic memory will see higher overheads due to this
aspect. However, the graph does not capture the phased nature of these processes:
generally, our instrumentation is heavy for allocation-heavy startup routines and
lightweight thereafter.

Figure 7.4’s ‘Relax’ and ‘allocs’ are artificial programs constructed to illustrate
overheads. The main component of ‘Relax’ is Listing 7.1. ‘allocs’ does nothing but
allocate memory, the worst case for our instrumentation. We note that real-world
programs experience considerably lower overheads, with the popular Linpack
seeing a modest 15% slowdown.

Linpack is the matrix-vector multiplication benchmark of floating point per-
formance that is used to rank supercomputers in the popular ‘Top500’ list. Relax
is a program that identifies the steady state for the case of a plane connected to a
constant heat source. The program’s ratio between function calls and accessing the
data to be visualized is at parity, stressing the memory access and analysis aspects
of our supervisor. PsiPhi is a real-world computational fluid dynamics solver that
focuses on Large Eddy Simulation (LES) of flows that include combustion and
other types of chemical reactions [141]. allocs is a test program that simply allocs
and frees memory without ever acessing it.

‘Allocations’ is a more expensive variant of the ‘Trace’ benchmark. In addition
to allocation interception, this version reads relevant information from the client
process so that it may generate a report of the [de]allocations made by the process.
The traces this algorithm creates might be useful in producing and analyzing heap
usage over time, in the same manner as Valgrind’s ‘Massif’ [142]. We note that this
adds little additional overhead to the instrumentation, demonstrating that reading
memory from the process is cheap.

In practical terms, the performance scales with 1) the number of allocations the
program performs, and 2) the number of allocations that are tracked and provide
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Figure 7.4: Performance of our evaluation programs under different instrumen-
tation scenarios. Note logarithmic scale. ‘Uninstrumented’ is the runtime of the
simulation without our interference. ‘Trace’ interrupts for allocations; ‘Allocations’
reports allocations as well, which requires reading more data from the instru-
mented program. ‘Full’ does allocation tracking, access detection, analysis, and
visualization of the data.
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source locations for analysis. Reducing the number of allocations requires changing
the programs of interest, which is counter to our goal of a transparent solution.
However, avoiding the tracking infrastructure for memory that the user is not
interested in is a plausible practical mechanism by which the user can influence
the performance of the instrumented system.

7.5 Conclusions
We have elucidated a method and demonstrated a prototype that eliminates the
surface area between simulation code and visualization tool. By recovering the
loop structure of a target binary and carefully instrumenting memory accesses, one
can automatically insert visualization at appropriate places in a running simulation.

7.5.1 Future work
The most glaring present omission is the lack of support for data types beyond
regular N-dimensional grids. An obvious next target is related data types such as
adaptive mesh refinement data. Curvilinear grids may prove simple as well, and
meshes or point clouds would certainly be of interest. An area of uncertainty is in
data decomposition in distributed memory simulations.

We do not seek to replicate the full functionality of tools like VisIt or ParaView.
We must therefore couple with one of these tools; doing so would immediately
increase the utility of our prototype implementation.

We make a number of assumptions that are practically but not strictly true.
Each requires more investigation, and aspects such as the specification used in our
search require more user control than we presently have made available.

While some of these issues involve significant engineering efforts, the work
presented here demonstrates that there is no need to modify simulation code to
inject in situ visualization. We hope this encourages others to pursue 0-modification
approaches to in situ visualization.



Chapter 8

Conclusions and future work

In this dissertation, we have:

• demonstrated a forward-looking architecture for volume visualization,

• supported the approach of ray-guided rendering with extensive benchmarks,

• established the multi-scale parallelism architecture that future visualization—
and HPC—work is following,

• identified a number of best practices for the remaining largest challenge in
performance-oriented visualization: IO, and

• outlined methods to profoundly simplify the practice of in situ visualization.

Here we offer some concluding remarks and projections based on the work devel-
oped here.

We began by outlining the volume rendering architecture, “Tuvok”. The archi-
tecture strikes a balance between performance, practicality, and portability that few
have done. Volume rendering modules in Voreen [43] have since followed a simi-
lar architecture. However, academic work tends to focus on particular hardware
features whereas commercial work is often tied to particular platforms. Tuvok
practically utilizes available, modern features of GPUs while addressing and falling
back to less straightforward methods. More importantly, it has seen significant ef-
fort working around the nonintersecting shortcomings of modern OpenGL drivers,
a critical component of its applicability. As such, Tuvok is the volume renderer
that is most cited outside its field.
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Chapter 3 described ray-guided rendering and provided a detailed performance
analysis using a variety of real-world datasets. Comparisons with previous work,
including even our own (Chapter 2), demonstrate that this is the best known
method for large-scale volume visualization. The method is capable of providing
subsecond response times with multi-terabyte datasets on workstation hardware, as
in Figure 1.2, orders of magnitude faster than other volume rendering techniques.
The majority of the performance increase comes from obviating the need to load
large chunks of the data from disk, based on a fine-scale identification of early ray
termination.

With the ray-guided rendering solution now known, the major impediment to
high-performance volume rendering has become the data reorganization preprocess.
Simply reading a terabyte from a commodity disk presently requires 2.9 hours,
and the bricking needed in volume rendering consists of a great many scattered
reads and writes. At the heart of this process is data movement: a well-known
inscalable operation. Our dynamic rebricking technique introduced in Chapter 3
ameliorates this problem, but there is no true solution on visible on the horizon.
More work is needed in this area.

We have established the scalability of desktop volume rendering solutions to
be far beyond what was believed by the community. A single node solution is,
however, unfit for extreme scale data sizes. While many of the same techniques
developed on the desktop can help, Chapter 4 demonstrates that one must utilize
multi-scale parallelism, both within and across nodes. This work also established in
the community the superiority of the ‘fat’ node architecture, where large numbers
of cores cooperate on a single node as opposed to a plethora of smaller nodes. The
parallelization schemes at each scale must be considered distinctly.

Chapter 4 examined dynamic load balancing for volume rendering in detail.
Unfortunately these tests were inconclusive. In many situations dynamic load
balancing resulted in similar or even worse performance. Load balancers also
include a number of tunable parameters that even experts have trouble setting.
More work is needed in this area, both to ensure load balancing is beneficial and to
establish auto-tuned parameters.

IO remains and will remain the major problem in large-scale visualization.
Figure ?? shows that the rendering and compositing problems are dominated
by IO at scale. While this image was from a specific strong scaling study, the
story changes little if we replace the X axis by year: rendering and compositing
times have plummeted as hardware capabilities have increased and the fruits of
research efforts have been realized. Disk access has unfortunately not seen the
same improvements.
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We described a number of ‘best practices’ for IO-heavy visualization code in
Chapter 5. One is to use large reads or writes to maximize throughput. If and only
if this is impossible should one turn to space-filling curve methods to minimize
access times. Despite conventional wisdom, the many files created by the ‘1 file
per process’ regime scales poorly. Most IO calls involve implicit synchronization,
and staggering these operations can have a large impact on performance. Along the
same line, delaying file closures until necessary can provide filesystems—especially
distributed filesystems—the time needed to do effective buffering.

In situ visualization is playing an increasing role in simulation-based sciences.
The widening disparity between memory and disk speed necessitates the approach
at the largest scales. Furthermore, the increasingly multidisciplinary analyses per-
formed on simulation runs encourages analysts at many different sites to participate,
but the data are too large to be transferred between sites. Using knowledge of the
sampling rate required by the analysis method may be the best way of performing
otherwise computationally-infeasible analyses. All of these factors suggest a cen-
tralization of large-scale computing resources, in contrast to the decentralization
that industry has experienced. It is not difficult to imagine a future where analysis
is simulation: that all analysis is performed by (re)running simulations, as opposed
to (re)processing simulation outputs.

In situ visualization is currently complex and difficult. Bespoke in situ visual-
ization solutions abound, but there are presently only a couple visualization and
analysis tools with in situ APIs that cater to a wide variety of data models. Stability
is a problem with these large all-encompassing tools. This is in addition to the
many difficult issues inherent to in situ visualization, such as balancing simulation
time and visualization time.

Despite the growing importance of in situ, existing visualization tools couple
with simulation software only with extreme difficulty. This heavy investment in
tool coupling discourages ad hoc and exploratory solutions. Authors currently
acquiesce this effort only under extreme pressure, which today means that data
sizes and related IO performance exceed a high threshold. As the IO performance
disparity widens, this threshold lowers. Eventually, the HPC community will need
to consider in situ visualization for all simulation software.

Adding a new capability (even if it is the same capability) across such a large
base of installed software is a daunting task. Much of the difficulty comes from
the visualization software: large APIs to learn, relatively instable software, and
complex methodologies for conveying metadata. These sharp edges can be filed
down through (currently rather large) investments in learning the visualization
tools of the day. However, other concerns are simulation-specific as opposed to
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visualization-tool-specific. These include identifying where to insert calls into the
visualization tool, and striking the correct balance between simulation time and
visualization/analysis time.

Our work addresses these complexity issues head on. Chapters 6 and 7 outline
methods that one can use to immediately solve the issues of injecting—at will—
visualization and analysis capabilities into an entire corpus of simulation software.
Chapter 7 takes the first steps at eliminating the complex metadata communication
primitives. However, we must also ameloriate the untenable model of simulation
authors becoming visualization experts. The approaches of both chapters put more
onus on the efforts of visualization scientists, sweeping many visualization details
under the rug from the simulation author’s perspective. An important theme among
these approaches is shifting responsibilities away from the simulation engineer and
towards the visualization engineer.
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