
1 Large-Scale Data Visu-

alization

Data being acquired and refined by a group
at Johns Hopkins University (JHU) creates
a new analysis and visualization challenge
that many in the biomedical domain are ex-
periencing. They have developed a complex,
novel process based on 2-photon microscopy
which can image organs at unprecedented
levels of detail, and are using it to investi-
gate cardiac conditions and treatments, such
as cardiac ablation. Figure 1 shows a cou-
ple examples of the resolutions obtained from
their imaging process, along with some post-
processing we have done in an effort to draw
out some of the features. However, due to the
intricacy of the operation, it takes almost 3
weeks to go from a specimen to a complete,
imaged heart from which they can gain in-
sight. A full week of this process is dedicated
to processing and filtering the data to recon-
struct a single coherent volume from a mul-
titude of independent samples. Worse, the
data are so large that most existing visualiza-
tion software is incapable of visualizing these
data the process completes.

The group’s standing solution was—after
all the aforementioned effort to acquire these
high-resolution scans—to downsample the
data into a size which is amenable to cur-
rent visualization software. They turned to
us when they heard about our ImageVis3D
tool, whose out-of-core processing capabili-
ties decouple data size from available mem-
ory, allowing terabytes of data to be visu-
alized on a single workstation [2]. Unfortu-
nately our initial forays into volume visual-
ization with these data exhibit artifacts which
inhibit one’s ability to pull out features of in-
terest, as demonstrated by Figure 2.

The current volume reconstruction process

Figure 2: Heart data from the Winslow col-
laboration with a diagonal cut on one end.
Collaborators wish to visualize the striations
visible in the transverse plane across the coro-
nal or sagittal planes, however the noise over-
comes the signal as the cutting plane’s angle
of incidence increases.

is based on the algorithm of Gopinath et
al. [4], using local window information from
the scans so that the solution remains compu-
tationally tractable. Our collaborators note

Our application to a range of 70 µm
and the inherently large light scat-
tering effect of cardiac tissue being
imaged in our work created a more
significant attenuation than origi-
nally considered in the design of
[Gopinath et al.[4]].

To give context to this quote, portions of the
heart are shaved off and the remaining heart
volume is imaged. As a thick volume, en-
ergy is absorbed when it hits the tissue, but
it also penetrates the volume and is absorbed
and scattered at varying rates, based on the
type of cells which it intersects. As such, the
effect is one of a gradual as opposed to imme-
diate attenuation, and features much larger
than the desired slice thickness will accumu-
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Figure 1: Preliminary image processing effects on heart data from JHU.

late in a single slice. The reconstruction pro-
cess aims to minimize this effect, however as
noted above, this process leaves much to be
desired.

The group’s data issues are representative
of a growing trend in large-scale biomedi-
cal data acquisition: large-scale acquisition
requires computationally intense reconstruc-
tion processes which can take as much time
as the initial scanning process. For many, the
subsequent analysis processes take more time
than the data acquisition itself, and thus they
become the bottleneck in developing and test-
ing biomedical hypotheses.

Increasingly, visualization and analysis
software must be specifically architected to
handle the scale of the data acquired.

2 Volume Visualization

We propose the research and development of
biomedical and data analysis software which
can help to alleviate the data-intensive sci-
ence problems that groups like the one at
JHU are experiencing. As leaders in the field
of ray-guided volume visualization [5, 3], we
are well-poised to tackle this challenge.

Ray-guided volume visualization has the
potential to starkly reduce the amount of
data which must be processed [1, 5, 3] to cre-

ate a visualization. In 2012, Hadwiger, Pfis-
ter, et al. demonstrated that such preprocess-
ing steps can be fruitfully applied during ren-
dering, if appropriately guided by what the
user needs to see. Figure 3 illustrates this
concept: here, the 13 gigabyte Visible Hu-
man male has less than 500 megabytes of data
visible at any one time. By explicitly consid-
ering the viewport we are outputting to, data
can be reduced substantially, as shown in Fig-
ure 4.

We intend to include visualization much
earlier in the processing pipeline. By using
the visual analysis step to guide the recon-
struction, we can produce tools which are
able to provide a visual representation of the
data as scanning proceeds, due to the data
reduction implied by these ray-guided tech-
niques.

Our proposed modified system architecture
appears in Figure 5. The prominent feature
is the limiting of data processing to the sec-
tions of the data which are known to be vis-
ible. We note that the ‘Data store’ may be
any resource; classical approaches utilize local
or network-attached storage here. However,
we intend for this to be a network server, to
further decouple visualization from data ac-
cess, storage, and the reconstruction process.
This allows any reconstruction process to run
completely independent from the visualiza-
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Figure 3: Per-ray behavior while rendering a
large biomedical data set. Green represents
space which is skipped. In red regions, dense
sampling was required. Blue areas indicate
that a ray terminated very quickly. Most of
the rendering is blue or green, indicating that
very little work needed to be done.

Figure 4: Amount of data needed, per-
frame, to generate volume renderings of a
Richtmyer-Meshkov instability at different
output resolutions. Output-sensitive adap-
tive sampling can significantly effect the foot-
print of data needed for a visualization.

tion software itself, enabling truly distributed
visualization. While the reconstruction pro-
cess runs, the server should return any inter-
mediate results it can—likely specific to the
application in question—with an indication
that results are preliminary.
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Figure 5: Visualization-guided data access pipeline. Visualization first populates a set of
missing data, which is used to dictate subsets of the data to reconstruct. These subregions
are queued for the reconstruction process.
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