
1 Large-scale volume ren-

dering and manipula-

tion

This is hard to address individually; as the
issue cross-cuts all of the other issues we deal
with, all of our efforts consider the problems
that large data pose, and how we can solve
those in an effective, packaged system. In this
section and the ones that follow in the visu-
alization TRD chapter, we will expound on
the issues of combining multiple potentially-
large volumes, rendering transparent meshes
in concert with direct volume rendering tech-
niques, collaborative visualization tools and
their application, distributed rendering tech-
niques, and the exploitation of a novel par-
allel architecture. All of the solutions men-
tioned herein are in some way related to the
architecture powering ImageVis3D, which is
now formally published [5].

1.1 Volume Combinations

A common problem experienced in the med-
ical imaging community is combining data
from multiple imaging modalities. For ex-
ample, MRI data can provide relevant infor-
mation on the tissue in question, but denser
structures of interest, such as bone, might
provide useful context information and only
be available from CT imaging techniques.
Researchers want to combine these data sets
into a single volume for further visualization
and analysis.

In this cycle, we have added prelimi-
nary support for combining volumes in Im-
ageVis3D via user-configurable ways. This
allows users to combine multiple imaging
modalities, as in Figure 1, or apply novel
transformations on their data. One use case
this enables is applying a segmentation to a

data set. Figure 1 depicts this use case: a
data set of a human head is combined with a
segmentation to produce just the brain com-
ponent of the scan.

1.2 Meshing

A second combinatorial issue which arises in
medical research is inserting meshing data
into other visualizations, such as the volume
renderings produced by ImageVis3D. From
a technical standpoint, this becomes very
difficult when both visualizations are par-
tially transparent. We have produced a novel
method for solving this problem and deployed
it in the renderer powering ImageVis3D, Tu-
vok.

2 Collaboration

Even while parallel supercomputing resources
grow ever-larger, mobile compute devices si-
multaneously decrease in size and increase in
capabilities. With the recent explosion of
netbooks and tablet computing devices, as
well as the cell phones researchers already
carry daily, the mostly-untapped potential of
mobile visualization has become one of the
fastest growing opportunities for enabling vi-
sualization in the hands of those who can uti-
lize it best.

In collaboration with our colleagues at the
University of Saarbrücken, we have deployed
‘ImageVis3D Mobile’. This mobile visualiza-
tion application is designed to run on iOS de-
vices, including the Apple iPad and iPhone,
and perform functions similar to the ‘desktop’
version of ImageVis3D already deployed by
the SCI institute. Data can be pushed to mo-
bile devices in a manner guided by an imag-
ing specialist, without requiring that prac-
ticing physicians understand or realize the
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Figure 1: Volume combinations applied to a head data set. The original imaging modality
is combined with a generated segmentation to produce the imaging data of the brain alone.

complicated data acquisition and preparation
phases which might be necessary for the data.

As a free, publicly available tool, Im-
ageVis3D Mobile has already been utilized in
domains as far-reaching as nuclear engineer-
ing education [6]. However, our interests lie
in the medical application of this mobile tool.
In collaboration with Chris Butson of the De-
partment of Neurology, Medical College of
Wisconsin, we present recent research results
– for one of our driving biological problems
– with a deep brain stimulation visualization
application used in neurology[3].

2.1 Medical Visualization on
Mobile Computing Plat-
forms

In recent years, there has been significant
growth in the use of patient-specific models to
predict the effects of neuromodulation thera-
pies such as deep brain stimulation (DBS) [2].
However, translating these models from a re-
search environment to the everyday clinical
workflow has been a challenge, primarily due
to the complexity of the models and special-
ized software required to provide the visu-

alization. Here we describe the use of Im-
ageVis3D Mobile in an evaluation environ-
ment. It was employed to visualize models of
four Parkinson’s patients who received DBS
therapy. Selection of DBS settings is a sig-
nificant clinical challenge that often requires
repeated revisions to achieve optimal ther-
apeutic response, and it is often performed
without the advantage of a visual represen-
tation of the stimulation system in the pa-
tient. We used ImageVis3D Mobile to pro-
vide models to movement disorders clinicians
and asked them to use the software to deter-
mine 1) which of the four electrode contacts
they would select for therapy and 2) what
stimulation settings they would choose.

We used ImageVis3D Mobile to provide
models to movement disorders clinicians (Fig-
ure 2) and asked them to use the software
to determine 1) which of the four electrode
contacts they would select for therapy and 2)
what stimulation settings they would choose.
We compared the stimulation protocol cho-
sen from the software versus the stimulation
protocol that was chosen via clinical practice
(independently of the study). Lastly, we com-
pared the amount of time required to reach
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Figure 2: ImageVis3D Mobile displaying the results from multiple patients in a deep brain
stimulation study.

these settings using the software versus the
time required through standard practice. We
found that the stimulation settings chosen us-
ing ImageVis3D Mobile were similar to those
used in standard of care, but were selected in
considerably less time. On average, the stan-
dard of care required 4±1.4 hours for pro-
gramming simulation settings, whereas clini-
cians could perform the same task in 1.7±0.8
minutes using the ImageVis3D Mobile-based
system. ImageVis3D Mobile is an example of
how a visualization system, available directly
at the point of care on a device familiar to
the neurologist, can be used to improve crit-
ical clinical decision making [3].

2.2 Distributed Rendering

As part of our efforts to expand the ability
to generate high-quality visualizations at the
location in which they are most useful, we
are also investigating distributed and hybrid
rendering systems. With the initial launch
of ImageVis3D Mobile, one of the problems
that quickly became apparent is the lack of
enough compute power to display extremely
large data at native resolutions: such opera-
tions would take minutes, hours, or even days
on the compute power available to mobile de-
vices, clearly too slow to be usable.

We have implemented remote rendering for
ImageVis3D Mobile, in which a more pow-
erful compute system renders at the request
of the mobile device, and sends images over
the network to the device. As we have suc-
cessfully scaled our volume rendering system
out to virtually unlimited resolutions – as de-
tailed in Section 4 – this allows us to render
extremely high resolution data on a mobile
device.

The unfortunate consequence is that the
system becomes unusable with unreliable net-
work connections. In the next cycle, we
will explore a hybrid rendering system, which
combines the rendering capabilities of mobile
devices with the higher-powered resources of
workstation- and cluster-based systems.

2.3 Web-based Rendering

One recent development relevant to the field
of ad hoc visualization has been the standard-
ization and proliferation of WebGL-enabled
browsers. These allow rendering of complex
three-dimensional geometry and volumes in
a standard web browser. We have already
received requests for volume renderers which
can be embedded in a web browser.

Though this was not foreseen and thus not
proposed initially, the CIBC is responsive to
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Figure 3: Volume rendering system running
in a browser.

the needs of the medical community. We are
exploring browser-based rendering based on
these technologies. Figure 3 shows an ex-
ample of a volume rendering system running
within a web browser.

Due to technical limitations, current sys-
tems have limited volume rendering applica-
bility due to size restrictions on the rendered
volumes. However we hope that the next
round of standardization will solve these is-
sues, and in the meantime we are exploring
alternative methods for working around these
limitations.

3 Visualization on Un-

structured/Curvilinear

Grids

We have not made strides in this area during
this cycle.

4 Parallel Architectures

The size of data is growing rapidly, driven
largely by the acquisition of new scanning
and simulation technologies which can deliver
larger data more rapidly. This presents diffi-
culties for many visualization systems, which
should remain interactive to avoid decelerat-
ing the process of medical and scientific in-
sight.

Hardware systems are continuously im-
proving to help us keep pace with these larger
data sizes, but the application of new hard-
ware systems to existing problems is not al-
ways straightforward. In particular, modern
hardware solutions are delivering increased
performance via parallelism instead of clock
speeds, presenting the challenging problem
of exploiting that parallelism to application-
level software [1].

CIBC personnel are always searching for
novel ways to exploit current hardware to
perform existing tasks more quickly, as well
as to increase the size of problems the medi-
cal community can tackle. One of the some-
what recent additions to modern architec-
tures is the so-called “GPU cluster”, a dis-
tributed memory system in which each node
has one or more graphics processing units
(GPUs) attached. The SCI Institute, as an
NVIDIA CUDA center of excellence, has one
such GPU cluster. Other such systems ex-
ist throughout the U.S., such as the Texas
Advanced Computing Center’s ‘Longhorn’, a
teragrid resource used for a wide variety of
computationally challenging problems. Soft-
ware which can take advantage of these GPUs
can accelerate rendering or even general pur-
pose computations by orders of magnitude.

We have conducted field-leading research
evaluating the effectiveness of multi-GPU
cluster resources (clusters in which each node
contains multiple GPUs) on a popular med-
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Figure 4: Overall rendering time when ren-
dering to a 1024x768 viewport on a modern
GPU cluster. Scalability is shown for up to
256 GPUs on data sets up to 81923 voxels.

ical visualization technique, volume render-
ing [4]. Effective use of these clusters requires
applying multi-scale parallelization strate-
gies, on the GPU for fine scale parallelism
and across nodes for macro-scale parallelism.
Figure 4 shows the primary result of this
work: scalability out to large numbers of
GPUs. Current systems allow for interac-
tive performance for data sizes of 20483 vox-
els and smaller. We have also ascribed num-
bers to the known issue of non-power-of-two
texture use on GPUs. The community previ-
ously expected lower performance from such
textures, but it turns out that average per-
formance is equivalent and the performance
variance is what differs in this case. Results
such as these help to inform us as we design
systems which can scale out to the largest
of data sets, as well as perform adequately
on the future commodity workstations most
personnel in the medical research community
will possess.

5 Provenance Enabled

Tools

After an initial integration between VisTrails
and ImageVis3D, as well as external work
integrating Tuvok (ImageVis3D’s rendering
core) in other contexts, it became apparent
to us that both provenance and self-contained
use would be better served by a command-
style interface to the library. We are presently
engaged in a small restructuring effort to sup-
port both of these use cases more naturally.
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