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VR Background

Thanks: Florian Hoffman



  



  

What's Important for Performance

● Identifying densely-sampled regions
● Transition to coarse sampling quickly
● Communicate data needed to IO



  

Ray-Guided Rendering



  

Brick Size



  

Brick Size: IO
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Space-Filling Curves



  

Dynamic Bricking



  

Where Does the Time Go?



  

Dynamic Sampling
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Memory Needed



  

Vis Pipeline



  

Growth of Data



  

Growth of Data (2)
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Analysis of Ray-Guided Volume Rendering

Thomas Fogal, Alexander Schiewe, Jens Krüger

the motivation for this work was partially from these 
datasets.  it seemed like we didn't need to do all that 
much work to capture these images, and yet they 
actually require a lot of computation.  we scoured the 
literature: where does a modern volume renderer 
spend its time? and came up empty. so we started 
looking ourselves.



  

 

  

VR Background

Thanks: Florian Hoffman



  

 

  

So we measured ourselves.



  

 

  

What's Important for Performance

● Identifying densely-sampled regions
● Transition to coarse sampling quickly
● Communicate data needed to IO



  

 

  

Ray-Guided Rendering

ray-guided rendering is the idea that rendering and 
identifying which data are needed should be 
co-computed



  

 

  

Brick Size

How does brick size effect renderings?  In this image 
we visualize the behavior of a ray.  A ray 
accumulates green if it skips the brick due to empty 
space leaping.  Blue means we terminated the ray on 
exit from the brick, due to saturation.  Red areas 
were sampled densely.  One can see that a lot of the 
data falls into the 'blue' and 'green' categories: that 
is, very little work needs to be done for the majority 
of rays.  Only the red areas require lots of 
computation.
Clearly, we should desire small bricks, to more 
closely approximate these distinct regions.



  

 

  

Brick Size: IO
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Unfortunately, small bricks give really awful IO 
performance.  As the transfer sizes shrink, we end up 
paying a lot for each brick.  Furthermore, since we 
need to include ghost data in each brick (thereby 
copying some data), we can extend the size of the 
data set pretty dramatically with small brick sizes 
(50% at 32^3).

Compression is useful in reducing the size of data, 
but does not actually improve IO time.  With 
compressors like zlib or bzlib, compression can 
actually have a significant effect on performance.

(might want to add transfer vs. seek time image from 
EGPGV paper)



  

 

  

Space-Filling Curves

Since IO was a big problem, we applied the 
conventional wisdom from the community: use a 
space-filling curve to minimize the 'distance' between 
two bricks; reading one should automatically put 
another in cache.  If we have good spatiotemporal 
locality for bricks, this should be a win.
Unfortunately this didn't prove to be much of a win 
over standard 'scanline' ordering.



  

 

  

Dynamic Bricking

Since the problem was transfer time, not seek time, 
we sought a solution that minimized transfer time, 
but still gave us small bricks so the renderer would 
perform well.  What we decided on was generating 
the bricks at runtime.  We still do a precomputation 
up-front; this gave us a base for the data and limits 
the amount of work done.  But we take those large 
bricks and chop them up into tiny bricks on demand.  
This means we still do large reads from disk, but our 
renderer sees the tiny bricks that it wants for e.g. 
early ray termination.



  

 

  

Where Does the Time Go?

This figure shows where we spend our time.  As one 
might guess, the majority of the time is spent in IO 
and rendering.  Note that the whole body, magnitude, 
and velocity data sets actually spend a lot of time 
rendering: this happens with lots of large, 
thin/transparent structures, which must be sampled 
densely but do not cause rays to saturate.



  

 

  

Dynamic Sampling
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sampling is heavily output-driven: fewer rays means 
we can sample the data coarsely.  this means we 
can load much less data.
side note: this means we should (as reviewers) 
require high-resolution output frames
graph generated using a DS bricked via 36^3 bricks: 
245760 bricks total



  

 

  

Memory Needed

here's a measure of how much data we need, 
per-frame, for some common operations.  
Wholebody: 1.5Gb; RMI: 7.5Gb; VHuman: 12.2Gb
I am sure almost everyone could guess that the data 
needed is a subset of the overall volume.  The point 
here is how small that subset is.



  

 

  

Vis Pipeline

This is the standard vis pipeline.  Actually, I stole this 
directly from the lecture we give graduate students.  
The problem with this is that it's the wrong way to 
teach students how to do visualization



  

 

  

Growth of Data

Let's take a look at how fast data are growing.  This 
graph has a lot of information, but what let's just 
focus on this “All info per year” line now.  And all I 
really want you to note is that we've got a 'linear' 
growth on a log scale.



  

 

  

Growth of Data (2)
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Thus: data are growing exponentially.



  

 

  

Growth of Display Devices
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What about display devices?  Displays look much 
more like a linear function.  Actually, if we want to get 
technical, it's more of a step function; but either way, 
it's linear.
And, in recent years, it has hit a peak: so-called 
“retina resolution”.
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Vis Pipeline

This is the standard vis pipeline.  Actually, I stole this 
directly from the lecture we give graduate students.  
The problem with this is that it's the wrong way to 
teach students how to do visualization: it implies this 
waterfall model which is really awful for performance.



  

 

  

Rendering

==

Filtering

We've got this whole vis pipeline thing upside down.  
Rendering is filtering; they should not be separate 
operations, else we give up 2 to 3 orders of 
magnitude of performance.  We need to stop 
considering large data as a waterfall, with our job 
being to direct that flow to where it's desired.  
Instead, consider large data a lake and our task is to 
identify where we should insert our 'sampling straw'.
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