
Eurographics Symposium on Parallel Graphics and Visualization (2018)
H. Childs, F. Cucchietti (Editors)

Hardware-Accelerated Multi-Tile Streaming for Realtime Remote
Visualization

T. Biedert1, P. Messmer2, T. Fogal2 and C. Garth1

1Technische Universität Kaiserslautern, Germany
2NVIDIA Corporation

Abstract
The physical separation of compute resource and end user is one of the core challenges in HPC visualization. While GPUs are
routinely used in remote rendering, a heretofore unexplored aspect is these GPUs’ special purpose video en-/decoding hardware
that can be used to solve the large-scale remoting challenge. The high performance and substantial bandwidth savings offered
by such hardware enable a novel approach to the problems inherent in remote rendering, with impact on the workflows and
visualization scenarios available. Using more tiles than previously thought reasonable, we demonstrate a distributed, low-
latency multi-tile streaming system that can sustain stable 80 Hz when streaming up to 256 synchronized 3840x2160 tiles and
can achieve 365 Hz at 3840x2160 for sort-first compositing over the internet.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics

1. Introduction

The growing use of distributed computing in computational sci-
ences has put increased pressure on visualization and analysis tech-
niques. A core challenge of HPC visualization is the physical sep-
aration of visualization resources and end-users. Furthermore, with
increasing dataset sizes, in-situ scenarios, and complex visualiza-
tion algorithms, transfer to a separate visualization system becomes
impractical. Modest demand for interactivity, low screen resolu-
tions and user bases on relatively high-speed connections made
frame based compression sufficient to provide a workable remote
visualization experience. With novel interactive workflows, com-
modity high-resolution monitors, complex rendering algorithms,
latency sensitive display technologies and globally distributed user
bases, new approaches to solve the remoting challenge are required.

The wide availability of GPUs in current and future generation
HPC systems allows not only to leverage the GPUs’ rendering ca-
pabilities, but also their special purpose video en-/decoding hard-
ware: to both weakly scale and render significantly more pixels
without requiring large amounts of streaming bandwidth, and to
strongly scale the rendering tasks and reduce the overall latency.

Being able to drive high-resolution displays directly from a re-
mote supercomputer opens up novel use cases. In particular, it en-
ables cheaper infrastructure at the client’s side, as all the heavy lift-
ing is done on the server side. It also allows the visualization and
rendering system to scale with the scale of the simulation, rather
than having to scale a separate system for visualization of large-
scale data sets. As will be shown in Section 2, driving remote tiled

displays is nothing new. However, contemporary resolutions of at
least 4K or more per display at interactive frame rates far exceed
the capabilities of previous approaches.

Strong scaling the rendering and delivery task enables novel in-
teractive uses of HPC systems. Splitting the rendering load enables
expensive rendering solutions at interactive frame rates. This can
improve perception when visualizing a high-resolution simulation’s
results. In addition, the renewed interest in virtual reality with head
mounted displays begs the question for streaming directly from the
HPC system.

In this comprehensive case study, we demonstrate the impact of
video compression and multi-tile streaming for low-latency dis-
tributed remote rendering at interactive frame rates. Using com-
prehensive benchmarks we demonstrate the practicability of this
approach and the impact on possible workflows and visualization
scenarios. With these investigations, we address several basic ques-
tions:

• Is it feasible to stream content directly from a supercomputer to
remote large-scale tiled displays at sufficiently high frame rates
(e.g. interactively)? Which latency and bandwidth requirements
does this entail, and how do they correlate to image contents?

• How does hardware-accelerated progressive video compression
compare to conventional CPU-based compressors applied to in-
dividual frames?

• What frame rates can be delivered to a remote end-user by strong
scaling the rendering and delivery task, i.e., using video hard-
ware for direct-send sort-first compositing?

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



T. Biedert et al. / Hardware-Accelerated Multi-Tile Streaming for Realtime Remote Visualization

• Could this even be used for latency-sensitive environments such
as VR?

It is not our intention to validate remote visualization as a gen-
eral approach, but rather to highlight possible process improve-
ments and streamline the end-user experience through the use of
hardware-accelerated video compression.

The outline of the paper is as follows. In Section 2 we provide
some background on related activities in this field. Sections 3 and 4
show the general setup of our multi-tile streaming approach using
hardware-accelerated video compression. Section 5 demonstrates
the achievable frame rates that our system provides in various con-
figurations. Possible opportunities for enhancements are discussed
in Section 6.

2. Related Work

As observed above, remote visualization techniques have by ne-
cessity been in practical use since the advent of computational
sciences. Fundamentally, this is a consequence of the fact that
end-user analysis resources cannot be expected to scale with data-
production resources, severely limiting visualization capability for
state-of-the-art problems.

A substantial body of previous work focuses on using dedi-
cated computational resources (such as a visualization server or
visualization clusters) where images are generated and transmit-
ted to commodity hardware such as a PC or mobile device. En-
gel et al. [ESE00] observe the necessity to access remotely avail-
able high-performance visualization clusters, and provide a web-
based interface to the remote servers. Lamberti and Sanna [LS07]
and Noguera and Jiminez [NJ16] examine the challenges and op-
portunities of using low-powered, mobile viewing devices, which
naturally integrate into this setting. Several general purpose frame-
works have been described in the literature, e.g. SAGE2 [MAN∗14]
and Equalizer [EMP09], but standard visualization tools such as
e.g. VisIt [CBW∗12] and ParaView [AGL05, HOPU08] also sup-
port corresponding modes of operation. As visualization is typi-
cally used in an interactive setting, latency is important. Stegmaier
et al. [SDWE03] describe improvements to naive image streaming
aimed at improving poor interactive performance due to high la-
tency. Most notably, they find image compression to be beneficial
in reducing latency. Focusing especially on compression of visu-
alization images, specific solutions can be developed for particular
algorithms. For example, Cui et al. addressed latency by transmit-
ting annotated depth images from which different viewpoints can
be reconstructed without data retransmission [CMP14]. Similarly,
Lalgudi et al. [LMB∗09] exploit view coherency to derive effective
compression for volume rendering. Similar techniques have also
been used in other applications, e.g. remote gaming [FE10]. While
both these works exemplify non-standard compression schemes for
specific visualization techniques, it is difficult to extend them to a
general setting.

The present paper is inspired by the work of Jiang et
al. [JFWM16], who describe a lightweight general purpose im-
age compression library that utilizes the video compression hard-
ware on NVIDIA GPUs [Nvi]. They use temporal and spatial im-
age coherence during compression to obtain 25x improved com-

pression ratios at reduced latency, and demonstrated the benefits
of their approach through integration with ParaView for single-
tile streaming. The compression scheme is based on the H.264
standard [WSBL03], and is thus in principle a lossy approach.
However, this is acceptable in practice as evidenced by the nowa-
days ubiquitous use of such codecs in the entertainment industry.
While to the best of our knowledge the specialized video hardware
available in modern GPUs is still mostly unused in high perfor-
mance visualization, an interesting alternative application was re-
cently presented by Leaf et al. [LMM17], who have demonstrated
in-situ compression of floating-point volume data using hardware
encoders.

In this paper, we take the hardware-accelerated video streaming
approach to the extreme by applying it to diverse large-scale multi-
tile scientific visualization scenarios. Although demonstrated on
vendor hardware, the technique is in principle vendor-independent
and could be extended to utilize corresponding hardware in In-
tel [Int] and AMD GPUs [Adv], which provide similar codec ca-
pabilities. Furthermore, given modern hardware support, it appears
feasible to adopt the HEVC standard [SOHW12] that improves im-
age quality while retaining strong compression. In this work, we
consider both H.264 and HEVC codecs, but focus on the still more
ubiquitous H.264 variant, given its wide availability of hardware
implementations.

A necessity of using distributed resources to compute visualiza-
tion images in a remote scenario is compositing: to send a single
image to the end-user, partial results computed on different nodes
must first be composited onto a single node. This implies that the
image data incurs latency twice – first when sent to the compositing
node, and a second time when sent to the client. Since compositing
speed and latency can dramatically limit end-to-end performance of
remote visualization systems, a significant body of prior work has
therefore investigated how to in particular conduct the compositing
phase with minimum latency. Corresponding strategies broadly fall
into several classes. In direct send compositing [EP07, SML∗03],
render nodes directly send pixel data to the compositing node. The
binary swap [MPHK94] and radix-k [YWM08, PGR∗09, KPH∗10]
strategies improve on this by intelligently spreading intermediate
compositing operations across many nodes and exchanging pixel
data using optimized communication schemes. The performance
and scalability of corresponding implementations are demonstrated
e.g. in the IceT framework [MKPH11].

In constrast, in this paper, we demonstrate that it is feasible and
advantageous to perform direct-send compositing on the client and
display tiles at very high frame rates. This enables a system de-
sign in which render nodes directly send to the end-user client. We
set out to demonstrate that with vastly improved (de-)compression,
even a large number of render nodes do not overwhelm the recipient
of their images.

3. Multi-Tile Streaming

Hardware-accelerated multi-tile streaming is a promising approach
to make the distributed rendering capabilities of the GPUs within
a remote HPC system directly accessible to visualization systems,
such as tiled displays, CAVEs [FNT∗13], workstations, virtual re-
ality (VR) headsets, thin clients or mobile devices.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



T. Biedert et al. / Hardware-Accelerated Multi-Tile Streaming for Realtime Remote Visualization

HPC System Clients

A

B

C

D

X

Y

Buffer
(Device)

Buffer
(Host)EncodeRender Send

Buffer
(Host)

Buffer
(Device)Decode DisplayReceive

01
010101 01

01
010101 01

01
010101 01

01
010101 01

01
010101 01

01
010101 01

01
010101

01

01
010101

01

01
010101

01

01
010101

01

01
010101

01

01
010101

01

A B

C D

A B

C D

X Y

Tiled Display

VR

Figure 1: Conceptual overview of the multi-tile streaming approach using asynchronous pipelines. Several tiles are streamed directly from
the compute nodes’ GPUs in the HPC system (left) to muliple client GPUs for display (right). Each pipeline consists of individual threads for
hardware-accelerated en-/decoding and communication. The threads within a pipeline interact through buffers that are strategically placed
on device or host memory, thereyby minimizing costly PCIe bus transfers. Frames rendered by the source GPU are immediately encoded and
sent to the destination GPU for direct decoding to the display engine.

A multitude of contemporary GPUs is equipped with dedicated
hardware units that enable low latencies and interactive frame rates
for high-resolution remote streaming. For instance, NVIDIA GPUs
contain one or more hardware-based decoders and encoders (sep-
arate from the CUDA cores) that provide hardware-accelerated
video decoding and encoding for several popular codecs [Nvi].
With decoding/encoding offloaded, the rendering engine and the
CPU are free for other operations, such as visualization, computa-
tion, and data management. In contrast to the stand-alone compres-
sion of individual frames based on compression algorithms such
as LZ4, Squirt (run-length encoding) or Zlib that have been used
in previous remote visualization applications [AGL05], progressive
video-based encoders such as H.264 or HEVC provide better com-
pression ratios by exploiting not only the spatial coherence within
but also the temporal coherence between frames in scientific visual-
ization applications. Using the hardware-accelerated codec units of
NVIDIA GPUs, we have implemented a prototypical client/server
library providing concurrent streaming pipelines between source
and target applications.

Conceptually, a pipeline connects two GPUs and streams (parts
of) a source image from the rendering framebuffer to a remote
destination for display. Figure 1 illustrates multiple concurrent
pipelines connecting rendering nodes from a remote HPC clus-
ter and local visualization systems driving tiled displays or vir-
tual reality devices. A streaming pipeline essentially consists of
three stages for encoding, transmission and decoding. Technically,
each pipeline is implemented as a series of parallel tasks con-
nected through thread-safe queues. This ensures the high degree
of asynchronicity within each pipeline that is crucial to achieve
high throughput at low latencies. All involved hardware units, i.e.,
rendering/display (GPU), encoding/decoding (GPU) and network
transmission (CPU), work concurrently. Depending on the stage,

buffers are strategically placed on either device or host memory to
minimize host bus transfers. Notably, host memory transfers can
be completely avoided by using DMA transfers (e.g. GPUDirect
RDMA on recent NVIDIA GPUs). This technique requires certain
hardware configurations and is out of the scope of this work.

The following section describes all stages in the life of a
streamed frame (or tile) through the pipeline from source to desti-
nation. After rendering the main render thread accesses the frame-
buffer and pushes the requested tile into the device-memory en-
code buffer. The encode thread pulls from its input buffer and for-
wards the raw image data into the hardware encoder. The result-
ing compressed bitstream is enqueued into a host-memory send
queue. Compressed data in the send buffer is continuously trans-
mitted onto the network by a separate thread. On the client side,
a pipeline consists of a receive thread and a decode thread. As the
receive thread receives compressed frames from its network socket,
it pushes them into the host-memory decode queue. The subse-
quent decode thread pulls compressed data from its input queue and
performs hardware-accelerated decoding. The resulting raw tiles
are placed into a device-memory display queue. The main display
thread of the client application pulls from the display queue to as-
semble the complete output image. A single server or client process
can contain one or more concurrent pipelines. For instance, a server
application could split the framebuffer into two tiles and use two
concurrent pipelines to better utilize the available hardware encod-
ing units. A similar approach can be employed at client-side, either
to decode and display full frames to distinct monitors, or composite
partial tiles of a single display.

For synchronization purposes the frame number of each tile is
passed through the pipeline, in addition to latency statistics. While
synchronization between server processes is optional depending
on the context (e.g., typically already provided by the underlying

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



T. Biedert et al. / Hardware-Accelerated Multi-Tile Streaming for Realtime Remote Visualization

Figure 2: NASA’s Synthesis 4K video footage used for stream-
ing benchmarks, representing typical content of scientific visualiza-
tions at various image complexities: Space (low), Orbit (medium),
Ice (high), Streamlines (extreme).

simulation in case of in-situ scenarios), synchronization at client-
side is obligatory to ensure consistent display of all contributing
tiles. In our benchmarks we perform synchronization across pro-
cesses at both server-side (before frame grab) and client-side (be-
fore display). Note that by synchronization across processes we
only refer to processes contributing to a single output device, e.g.,
all pipelines to a tiled display wall in case of weak scaling or all
pipelines to a single display in case of strong scaling. There is no
need for precise per-frame synchronization between seperate iso-
lated output devices.

4. Implementation

We have implemented the multi-tile streaming approach based on
concurrent asynchronous pipelines as a server-client library that
can be combined with arbitrary rendering applications. Both server
and client internally use MPI for synchronization across proces-
sors and support using multiple GPUs for encoding and decoding,
respectively. Newly created pipeline instances are assigned to the
node’s available GPUs in a round robin way.

The streaming server creates a standard TCP socket and listens
for incoming connections. The use of the TCP protocol instead of
UDP relieves from additional frame/packet loss handling, while
still enabling high performance as demonstrated in Section 5. For
each connection, a server pipeline instance is created as described
in Section 3. The rendering application can retrieve the bounding
rectangles of the required tiles from the server instance to optimize
the rendering process by restricting rasterization or ray casting to
the relevant regions. OpenGL-based renderers require the use of
the CUDA/GL interoperability APIs to copy (parts of) the frame
buffer to device memory, either via PBO or framebuffer texture ac-
cess. OptiX-based renderers output directly to CUDA device mem-
ory. Pre-rendered frames as used in our synthetic benchmarks are
placed in device memory.

Analogously, the streaming client can connect to one or mul-
tiple servers simultaneously and request specific (sub) tiles. For
each connection, the application creates a separate client pipeline
instance. Similar to an OpenGL-based server, this step utilizes

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

1 2 4 8 16 32 64 128 256

SS
IM

Bitrate (90 Hz) [Mbps]

Space (H.264) Orbit (H.264) Ice (H.264) Streamlines (H.264)

Space (HEVC) Orbit (HEVC) Ice (HEVC) Streamlines (HEVC)

Figure 3: Structural similarity (SSIM) index of the four test scenes
at different encoder bitrates for H.264 and HEVC.

CUDA/GL interop to copy each tile into the mapped color texture
of a framebuffer object or a target PBO. Using the frame number
provided with each tile, initial client-side synchronization at the be-
ginning of the streaming process is ensured by dropping outdated
tiles based on the maximum frame number until all clients involved
are synchronized. Since frame loss is prevented by TCP, display of
subsequent frames is easily synchronized using barriers. In case of
multiple distributed client processes, e.g., multiple nodes driving
a tiled display wall, an MPI-based all-reduction is used to collec-
tively determine the maximum frame number all clients must syn-
chronize to.

5. Results

We have conducted comprehensive benchmarks to demonstrate the
practicality of the presented multi-tile streaming approach and its
impact on possible workflows and visualization scenarios.

As a stand-in for high-resolution scientific visualization render-
ings, we have selected the Synthesis 4K footage from NASA. Fig-
ure 2 illustrates scenes of varying complexity we have streamed
from this source. Pre-rendered frames are extracted from the video,
copied into device memory, and pushed into the multi-tile stream-
ing server, as described in Sections 3 and 4. We have restricted our
benchmarks to two commonly used resolutions: 3840x2160 and
2160x1200. The former is usually referred to as 4K and the latter
is a typical resolution for current-generation VR devices, such as
Oculus Rift and HTC Vive. We have used YUV 4:2:0 color format
with a color depth of 8 bits per channel. The required CUDA-based
conversion kernels between RGB and YUV have been profiled to
be of negligible impact.

All benchmarks have been conducted on the Piz Daint supercom-
puter at the Swiss National Supercomputing Centre (CSCS). In our
experiments we have used up to 512 GPU nodes for simultaneous
multi-tile encoding and decoding. Additionally, at client-side we
have benchmarked a multitude of scenarios on three locations for
multi-tile decoding:

• Site A (ping 5 ms, 1x NVIDIA Quadro GP100)
• Site B (ping 25 ms, 2x NVIDIA Quadro GP100)
• Site C (ping 200-1000 ms, 4x NVIDIA Tesla P100)

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



T. Biedert et al. / Hardware-Accelerated Multi-Tile Streaming for Realtime Remote Visualization

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32 64 128 256

La
te

nc
y 

[m
s]

Bitrate (90 Hz) [Mbps]

Encode (HEVC, Space)

Encode (HEVC, Orbit)

Encode (HEVC, Ice)

Encode (HEVC, Streamlines)

Encode (H.264, Space)

Encode (H.264, Orbit)

Encode (H.264, Ice)

Encode (H.264, Streamlines)

Decode (HEVC, Space)

Decode (HEVC, Orbit)

Decode (HEVC, Ice)

Decode (HEVC, Streamlines)

Decode (H.264, Space)

Decode (H.264, Orbit)

Figure 4: Comparison of en-/decode latencies for the four test scenes at different bitrates for H.264 and HEVC at 4K resolution.

0

2

4

6

8

10

12

14

16

3840x2160 2720x1530 1920x1080 1360x766 960x540 672x378 480x270

La
te

nc
y 

[m
s]

Resolution

Encode (HEVC) Encode (H.264) Decode (HEVC) Decode (H.264)

Figure 5: Comparison of en-/decode latencies (averaged across
test scenes) at different resolutions for H.264 and HEVC. Default
bitrate for 4K at 90 Hz is 32/16 Mbps (H.264/HEVC), downscaled
proportionally with pixel count.

Both the NVIDIA Tesla P100 and the Quadro GP100 are from
the Pascal architecture family, featuring two independent hardware
units for both encoding and decoding. In all benchmarks the hard-
ware encoders were configured to use the low latency - high quality
preset for both H.264 and HEVC. The target frame rate was set to
90 Hz, which always has to be considered in conjunction with a
specific bitrate.

5.1. Codec Performance

The encoding quality of H.264 and HEVC can be configured to
aim for a constant target bitrate. Intuitively, bandwidth require-
ments increase with frame complexity to sufficiently represent
important details. We have used the structural similarity index
(SSIM) [WBSS04] to measure and compare the encoding quality
of H.264 and HEVC. Figure 3 shows the SSIM for the four test
scenes at different bitrate settings. Higher bitrates improve recon-
struction detail, where more complex scenes require higher bitrate
settings to look acceptable. In general, HEVC outperforms H.264
by providing higher quality at the same bitrate. However, interest-
ingly the high complexity Ice scene is slightly better reconstructed
using H.264 for lower bitrates. Based on our visual experiments,

0

300

600

900

1200

1500

1800

2100

2400

0

20

40

60

80

100

120

HEVC
(GPU)

H.264
(GPU)

HEVC
(CPU)

H.264
(CPU)

TurboJPEG BloscLZ LZ4 Snappy

Ba
nd

w
id

th
 [

M
B/

s]

La
te

nc
y 

[m
s]

Encode Decode Bandwidth

Figure 6: Comparison of average en-/decode latencies and re-
quired bandwidths at 90 Hz for 4K using different GPU and
CPU codecs. Bandwidth shows min/max ranges across test cases.
H.264/HEVC configured to 32/16 Mbps at 90 Hz, JPEG quality at
80, others at maximum compression level.

we have chosen default bitrates of 32 Mbps for H.264 and 16 Mbps
for HEVC in all following streaming benchmarks. If not specified
otherwise, benchmarks are based on the Ice scene as a representa-
tive for high complexity.

The impact of image complexity on en-/decoding latencies is
close to negligible for both H.264 and HEVC as illustrated in Fig-
ure 4. Also, the bitrate level only starts to affect latencies slightly
at very high settings with increased memory bus pressure. In gen-
eral, H.264 requires approx. 10 ms for encoding a full 4K frame on
our test hardware, whereas HEVC needs 14 ms at the same bitrate.
Decoding latency is similar for both codecs at 5-6 ms. When con-
sidering smaller tiles, overall latencies decrease as expected and the
gap between encoding latencies narrows, as shown in Figure 5.

We set out to demonstrate that hardware-accelerated progressive
video encoding is superior to conventional single frame compres-
sion approaches for realtime streaming scenarios. Figure 6 shows
the latency and required bandwidths at 4K resolution and a fixed
frame rate of 90 Hz for several popular compression algorithms
in comparison to the GPU. Both latency and bandwidth depict av-
erages measured across the four test scenes. While the impact of

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



T. Biedert et al. / Hardware-Accelerated Multi-Tile Streaming for Realtime Remote Visualization

0

100

200

300

400

500

600

700

800

900

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64 128 256

Ba
nd

w
id

th
 [

M
B/

s]

Fr
am

e 
Ra

te
 [H

z]

Tiles

HEVC (Bandwidth) H.264 (Bandwidth) HEVC (Frame Rate) H.264 (Frame Rate)

Figure 7: Weak scaling (N:N) within Piz Daint: Client-side frame
rates and bandwidths for up to 256 concurrent full 4K streams of
the Ice video at 32/16 Mbps (H.264/HEVC).

image complexity is negligible for latency, high complexity con-
tent requires increased amounts of bandwidth. This is indicated by
the error bars depicting the bandwidth range for the low and ex-
treme complexity scenes. All CPU-based compressor benchmarks
have been conducted on an Intel Core i7-6850K CPU at 3.6 GHz
with hyper threading. TurboJPEG has been configured to a qual-
ity of 80, and the general purpose compressors have been set to
use multi-threading and the maximum compression level possi-
ble. When considering latencies, GPU-accelerated video codecs
are faster than their CPU-variant (using FFmpeg) by an order of
magnitude. Interestingly, modern CPU-based compressors such as
LZ4 or Snappy are comparable in latency to GPU video encoding,
even with the additional PCIe bus transfer of the rendered frame
between device and host memory included. The compressors Zlib
and Zstd are not shown due to impractically large encoding laten-
cies. In contrast, when considering required streaming bandwidth,
progressive video encoding starts to shine due to its consideration
of temporal coherence between frame. While for instance HEVC at
16 Mbps needs approximately 2 MB/s to stream the high complex-
ity Ice scene at good quality, LZ4 requires an excessive bandwidth
of more than 2 GB/s. The latency of TurboJPEG is comparable to
the CPU-based video codecs, however its required bandwidth is up
to two orders of magnitude larger.

5.2. Full Tiles Streaming

Being able to drive tiled displays directly from a remote supercom-
puter enables cheaper infrastructure at the client side, as all the
heavy lifting is done on the server side, and allows the rendering
system to scale with the simulation, rather than having to scale a
separate system for visualization.

This begs the question of how many simultaneous full resolu-
tion streams can be handled by GPUs and network to fulfill given
requirements such as interactivity. For instance, how many GPUs
are required to drive a particular tiled display or CAVE configura-
tion at a certain target frame rate? To investigate such questions, we
have conducted synthentic benchmarks for streaming within the Piz
Daint supercomputer: up to 256 synchronized server nodes stream
4K frames from the complex Ice scene to up to 256 synchronized

0

20

40

60

80

100

120

0 ms 50 ms 150 ms 500 ms

Fr
am

e 
Ra

te
 [H

z]

Network Delay

1 2 4 8 16 32 64 128 256

Figure 8: Weak scaling (N:N) within Piz Daint: Mean frame rates
and min/max ranges for different simulated network delays (+10%
jitter), streaming up to 256 concurrent full 4K tiles of Ice sequence
using H.264 at 32 Mbps.

client nodes, which virtually display into an offscreen framebuffer
via EGL. Figure 7 shows the mean frame rates and accumulated
bandwidths for both H.264 and HEVC. Even for 256 concurrent
streaming pipelines, the system manages to sustain stable frame
rates of 80 Hz and 60 Hz, respectively. The required bandwidths in-
crease linearly with node count. While this setup may appear overly
optimistic at first, we expect this to be a plausible environment for
possible improvements towards cheaper infrastructures: provided a
sufficiently large low-latency link, a large-scale tiled display wall
could be directly driven by super computer located either at the
same site or possibly even a remote facility.

By delaying the sending of frames for a predefined amount of
simulated network latency plus a random jitter within a given range,
we have measured the impact of network latency on the multi-tile
setup. A sufficiently large buffer was used to correctly simulate in-
flight network packets without blocking the encoding pipeline. As
each frame is assigned a random amount of delay within the spec-
ified window, frame burst patterns start to emerge, thereby affect-
ing frame rate stability. Figure 8 shows the mean, minimum and
maximum frame rates for different network delays with 10% jitter.

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 32 64 128 256

La
te

nc
y 

[m
s]

Tiles

Synchronize (Servers) Encode Network Decode Synchronize (Clients)

Figure 9: Weak scaling (N:N) within Piz Daint: Pipeline latencies
for full 4K streams of Ice using H.264 (32 Mbps).

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



T. Biedert et al. / Hardware-Accelerated Multi-Tile Streaming for Realtime Remote Visualization

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64 128 256

Fr
am

e 
Ra

te
 [H

z]

Tiles

Site A (1x GP100) Site B (1x GP100) Site B (2x GP100)

Figure 10: Weak scaling (N:1): Client-side achieved frame rate for
streaming full 4K frames of Ice sequence to Site A (blue) and Site
B (orange, gray) using H.264 at 32 Mbps.

While frame rate stability decreases with simulated network latency
due to increased amounts of jitter, the overall frame rate remains in
interactive magnitudes.

However, not only throughput, i.e., frame rate, but also the com-
plete pipeline latency for a single frame from source to destination
has to be considered for interactivity. Figure 9 illustrates the mean
latencies of each pipeline stage across nodes without simulated net-
work delay. Besides the expected encoding and decoding laten-
cies, synchronization across nodes at both server and client side
contributes a considerable amount of additional latency, which in-
creases with node count. With overall latencies of up to approx. 40
ms plus potential network delay this can still be considered highly
interactive. While server-side synchronization can be eliminated
depending on the scenario, client-side synchronization is obligatory
for multi-node clients, e.g. for coherent display and buffer swap on
a tiled display wall.

Since modern GPUs can drive multiple screens at 4K or higher
resolutions, an interesting question is how many full streams can be
handled by a single device at which frame rates, esp. when aiming
for cheaper infrastructure. Figure 10 shows the achievable frame
rates at client side for 4K resolution when streaming multiple con-
current full size tiles to Site A and Site B. A single NVIDIA Quadro
GP100 card can decode up to two full 4K streams at approximately
80 Hz, using its two independent hardware decoding units. Given
that this card features four display connectors, it is interesting to see
that it can still handle four full 4K streams at 50 Hz. This perfor-
mance capability enables high-resolution tiled displays with high
tile counts driven by only a few GPUs for multi-tile decoding at
interactive frame rates. As indicated by the shifted curve when us-
ing two GP100s for decoding, using hardware-accelerated multi-
tile streaming is a scalable approach with the number of devices
and is mainly limited by the available network bandwidth. As ex-
pected, the difference of network latency between Site A and Site
B seems to be of negligible impact on frame rate.

To demonstrate the severe effect of a highly erratic link on frame
rate, we have benchmarked multiple 4K streams from Piz Daint
to Site C, California, USA. Figure 11 shows the effective client-
side frame rate sampled at 10 Hz over 45 seconds. The presented

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

Fr
am

e 
Ra

te
 [H

z]

Time [s]

1 2 4

Figure 11: Weak scaling (N:1): Streaming up to 4 full 4K frames
of Ice sequence across Atlantic Ocean to Site C using HEVC at 16
Mbps. Frame rate sampled at 10 Hz.

graphs exemplify the unpredictability in such a setup, where due to
frequent extreme latency spikes the overall frame rate drops signif-
icantly.

5.3. Strong Scaling / Sort-First Compositing

Strong scaling the remote rendering and delivery task opens up
novel interactive uses of HPC systems. A plethora of server nodes
enables expensive rendering solutions at interactive frame rates and
low latency. This can be in support of improved perception in chal-
lenging visualization tasks, for instance by computing sophisticated
global illumination models for complex geometries. In addition, the
renewed interest in virtual reality (VR) gives rise to the question if
streaming directly from the HPC system is a viable approach for
time-critical VR scenarios. We have conducted several experiments
to quantify the strong-scaled multi-tile streaming performance us-
ing up to 256 Piz Daint nodes streaming to a single client which
performs sort-first compositing.

Figure 12 shows the achievable frame rates using strong scaling
for 4K and VR resolution. Considering a single Quadro GP100 for
decoding, frame rates up to 190 Hz are possible for 4K when uti-
lizing 4 servers for encoding (Figure 12a). Full 4K encoding on
a single node is limited by the encoder at approx. 80 Hz. With
increased tile counts the maximum achievable frame rate slowly
decreases due to increasing overhead from decode session multi-
plexing. The curves for Site A and Site B are almost identical for
the 1x GP100 case, confirming that 20 ms of network latency has
little effect on achievable throughput. Adding a second GP100 for
decoding strongly amplifies the decoding capabilities at client side,
enabling frame rates up to 365 Hz for 4K when utilizing 8 servers
for encoding. Evidently, also the second card is subject to overhead
at high tile counts. Yet, strong scaled multi-tile 4K streaming from
256 servers is still possible at 120 Hz using two GP100s for decod-
ing.

The graphs look similar for the reduced VR resolution (Figure
12b), generally showing much higher frame rates, which is ex-
pected due to reduced en-/decoding latency. A full 2160x1200 tile
can be streamed from a single server node at 260 Hz, whereas

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



T. Biedert et al. / Hardware-Accelerated Multi-Tile Streaming for Realtime Remote Visualization

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64 128 256

Fr
am

e 
Ra

te
 [H

z]

Tiles

Site A (1x GP100) Site B (1x GP100) Site B (2x GP100)

(a) 4K (3840x2160)

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32 64 128 256

Fr
am

e 
Ra

te
 [H

z]

Tiles

Site A (1x GP100) Site B (1x GP100) Site B (2x GP100)

(b) VR (2160x1200)

Figure 12: Strong scaling (N:1): Client-side frame rate for streaming Ice sequence at 4K (left panel) and VR resolution (right panel) from
up to 256 servers to Site A (blue), Site B (orange) and Site B with two GPUs per tile (gray) using H.264 (32 Mbps).

0

2

4

6

8

10

12

14

16

1 2 4 8 16 32 64 128 256

M
ea

n 
La

te
nc

y 
pe

r T
ile

 [m
s]

Tiles

Encode (1x P100 per Tile) Decode (1x GP100)

Figure 13: Mean latency for encoding a 4K frame (blue) on the
server side (strong-scaled, N:1) and decoding all tiles on the client
side (Site B, orange) using H.264 (32 Mbps).

streaming multiple tiles peaks at 520 Hz in the 1x GP100 case.
Strongly scaling to 8 server nodes can achieve frame rates up to
900 Hz in the 2x GP100 case. Despite the decoding bottleneck at
high tile counts, utilizing two GPUs for decoding of 256 tiles we
can still achieve 135 Hz, comfortably above the suggested 90 Hz
threshold for common VR applications. Again, the curves for Site
A and Site B are almost identical.

Figure 13 illustrates the strong scaled en-/decoding latencies for
4K frames in the 1x GP100 case and helps to further understand
curve progression in Figure 12. Clearly, full 4K frame encoding
(approx. 11 ms) is more than twice as costly as decoding (approx. 5
ms). In this context, note that the NVIDIA Tesla P100 and Quadro
GP100 cards are very similar with respect to their en-/decoding
hardware units. In the strong scaling scenario, encoding latencies
drop as expected with increased tile counts due to the reduced pixel
count per tile. Note that each tile is encoded by a different GPU
in this case. At the same time, the mean decode latency per tile
increases due to the high number of simultaneous decode sessions
on the single decoding GPU. Based on Figure 13, the frame rate

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64 128 256

Fr
am

e 
Ra

te
 [H

z]

Tiles

4 Mbps @ 90 Hz 72 Mbps @ 90 Hz 256 Mbps @ 90 Hz

Figure 14: Client-side frame rate for strong-scaled streaming of
Ice 4K frames from up to 256 servers at different H.264 bitrates.
Highest setting is limited by link bandwidth (gray).

peak at 4 tiles in Figure 12 can thus be interpreted as the setup with
minimal decode overhead where the frame rate is not limited by the
encoder anymore.

The influence of encoding bitrate on frame rate is depicted in
Figure 14. The results demonstrate the negative effect of high bi-
trate settings on the maximum achievable throughput, which drops
from 185 Hz at low quality (4 Mbps @ 90 Hz) to 176 Hz at high
quality (72 Mbps @ 90 Hz), and to 148 Hz at extreme quality (256
Mbps @ 90 Hz) for H.264. However, note that the extreme quality
setting maximizes bandwidth utilization at approx. 46 MB/s, which
coincides with the physical bandwidth limit measured in a separate
network speed benchmark between Site B and Piz Daint. This find-
ing is backed by the clamped nature of the high bitrate graph in
comparison to the lower bitrate graphs, suggesting a theoretically
greater achievable frame rate on high bandwidth connections. In
practice, the particular bandwidth envelope at hand must be con-
sidered for stream design to prevent frame queueing effects from
reducing interactivity.

In addition to the synthetic pre-rendered benchmarks, we have

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



T. Biedert et al. / Hardware-Accelerated Multi-Tile Streaming for Realtime Remote Visualization

(a) Groundwater (Auto-Tuned Tiling)

0

10

20

30

1 2 4 8 16 32 64 128 256

Fr
am

e 
Ra

te
 [H

z]

Tiles

Regular Tiling Auto-Tuned Tiling

(b) Strong Scaling

Figure 15: Left: Groundwater scene used in the OptiX-based pathtracer for the 4K strong scaling rendering experiments with auto-tuned
distribution of tile sizes. Data courtesy of TACC/FIU. Right: Client-side frame rate achieved for strong scaling of path traced image at 4K
resolution on up to 256 nodes using fixed tile distribution (blue) and auto-tuned tile sizes (orange).

implemented a basic distributed path tracer, which builds on the
path tracer sample from the OptiX SDK and uses screen space tiling
in combination with replicated geometry. As a test scene we have
used the Groundwater data set, which consists of approximately 8
million triangles. Previous benchmarks have used a regular tiling,
but this tiling exhibits a strong load imbalance for the path tracing
situation. We thus use an irregular tiling, an example of which is
shown in Figure 15a, for benchmarks with the path tracer.

We have implemented simple two-dimensional recursive auto-
tuning for this irregular tiling. The tiling is iteratively modified in a
guided way until all tiles are subject to approx. the same rendering
times. Starting with the regular tiling for a given number of tiles,
e.g. 8x4 for 32 tiles, the algorithm works in two phases. First, only
the vertical tiling is optimized by shifting the row heights until the

Figure 16: Streaming unmodified CUDA simpleGL example from
headless node to web browser using EGL-based shim library as
GLUT replacement, WebSocket-based bidirectional communica-
tion (including interaction), on-the-fly MP4 wrapping of raw H.264
stream, and a JavaScript client.

differences between the rendering times of all rows are minimal.
Once the optimal vertical tiling has been determined, the same pro-
cedure is applied to the horizontal tiling in each row recursively.
In both dimensions, each iteration the shifting process determines
the tile with maximum rendering time, decreases its size and in-
creases the size of the fastest tile appropriately. After each iteration
timings are re-evaluated and the tiling is shifted until convergence.
The tiling of each iteration is checked against a recorded history for
cycle detection. Convergence is then approximated by selecting the
tiling configuration from the different tilings in the detected cycle
with the minimum total rendering latency. An example auto-tuned
tiling for 32 tiles is depicted in Figure 15a, demonstrating smaller
tiles due to increased computational requirements for path tracing
in the vicinity of the emissive streamlines going through the stone
geometry.

Figure 15b shows the achievable client-side frame rates when
strong scaling the path tracer at 4K resolution up to 256 nodes
streaming to Site A. Clearly, the auto-tuned tiling provides highly
improved load balancing and thus reduced overall latencies in com-
parison to regular tiling. Starting with 0.5 Hz when streaming from
a single node, the auto-tuned tiling strong-scales well: up to 14 Hz
on 32 nodes, a scaling efficiency of almost 90%. Adding additional
servers further increases the overall achievable frame rate up to 28
Hz on 256 nodes, yet with worse scaling efficiency. This can be
explained by the high sensitivity of the approach towards load im-
balances at high counts of tiny tiles, for which the path tracer in this
scenario is a good example.

While effective load-balancing of distributed path tracers is out
of the scope of this work, the presented path tracer benchmark
shows how an otherwise slow-performing rendering application
can easily be strong-scaled to interactive frame rates by using a re-
mote HPC system to benefit from hardware-accelerated multi-tile
streaming at low latencies.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



T. Biedert et al. / Hardware-Accelerated Multi-Tile Streaming for Realtime Remote Visualization

5.4. Interoperability

Although demonstrated on vendor hardware, the presented ap-
proach is compatible with any hardware or software following
the H.264/HEVC specification, thus inherently providing interop-
erability. For instance, for verification we have successfully mixed
GPU and FFmpeg-based compressors, or have directly written a se-
quence of raw H.264 to a file for playback with VLC media player.

Motivated by direct (potentially hardware-accelerated) support
for video decoding in modern web browsers, we have implemented
a prototypical streaming implementation based on WebSockets and
JavaScript through Media Source Extensions. Figure 16 shows the
simpleGL CUDA example running on Piz Daint and streamed into
the browser. Aiming for minimal changes at application-side, we
have created an EGL-based shim library as dynamic replacement
for GLUT, which is normally used by that demo for display and
interaction. Our shim library internally creates an EGL offscreen
buffer for rendering, starts a WebSocket server for bidirectional
communication with the browser client (including mouse interac-
tion events), and replaces the buffer swap by encoding and stream-
ing. The latter involves an additional on-the-fly wrapping of the
raw H.264 stream into the MP4 container format, as required by
the browser. Since the container specification only allows constant
frame rates (as common for standard video content), the stream-
ing application must take care not to let the browser buffer frames,
thereby delaying interaction events and reducing responsiveness.
In our experiments we have specified the container frame rate to
30 Hz and adjusted the encoder to drop frames as nececessary to
maintain a constant browser-side buffer underrun.

6. Conclusion

We have demonstrated how the specialized video encod-
ing/decoding hardware on current and future generation GPUs
can be harnessed for fast multi-tile streaming at low latency. This
promising approach addresses modern challenges in remote HPC
visualization, such as interactive workflows with complex render-
ing algorithms, supporting globally distributed user bases and driv-
ing latency-sensitive display technologies at high resolutions. Us-
ing hardware-accelerated streaming, traditional dedicated visual-
ization clusters or workstations can be reduced to mere thin clients
that leave the heavy lifting to the remote supercomputer.

Based on these encouraging results, we anticipate that many
enhancements are possible and look forward to seeing multi-tile
streaming as a technical foundation for future HPC visualization
workflows. Similar to classic direct send, our approach will be lim-
ited in scalability at high tile counts. A hybrid tree-based/direct
send compositing approach such as radix-k could alleviate this bot-
tleneck. Hardware-accelerated sort-last compositing could be in-
vestigated based on depth buffer compression using video codecs.
With high frame rates and low latencies indicating suitability for
time-critical VR scenarios, the combined strong-scaled hardware
power could be used for predictive rendering and streaming to rem-
edy network latency.

Acknowledgements

Synthesis 4K footage by M. Starobin from NASA Scientific Vi-
sualization Studio. Groundwater simulation by S. Garcia and M.
Sukop from Florida International University; and K. Cunningham
from the United States Geological Survey.

References
[Adv] Advanced Media Framework. http://gpuopen.com/
gaming-product/advanced-media-framework. Accessed:
2018-01-20. 2

[AGL05] AHRENS J., GEVECI B., LAW C.: ParaView: An End-User
Tool for Large Data Visualization. In The Visualization Handbook,
Hansen C. D., Johnson C. R., (Eds.). 2005. 2, 3

[CBW∗12] CHILDS H., BRUGGER E., WHITLOCK B., MEREDITH J.,
AHERN S., PUGMIRE D., BIAGAS K., MILLER M., WEBER G. H.,
KRISHNAN H., FOGAL T., SANDERSON A., GARTH C., BETHEL
E. W., CAMP D., RÜBEL O., DURANT M., FAVRE J., NAVRATIL P.:
VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data.
In High Performance Visualization—Enabling Extreme-Scale Scientific
Insight, Bethel E. W., Childs H., Hansen C., (Eds.), Chapman & Hall,
CRC Computational Science. CRC Press/Francis–Taylor Group, Boca
Raton, FL, USA, Nov. 2012, pp. 357–372. 2

[CMP14] CUI J., MA Z., POPESCU V.: Animated Depth Images for In-
teractive Remote Visualization of Time-Varying Data Sets. IEEE Trans-
actions on Visualization and Computer Graphics 20, 11 (2014), 1474–
1489. 2

[EMP09] EILEMANN S., MAKHINYA M., PAJAROLA R.: Equalizer: A
Scalable Parallel Rendering Framework. IEEE Transactions on Visual-
ization and Computer Graphics 15, 3 (May 2009), 436–452. 2

[EP07] EILEMANN S., PAJAROLA R.: Direct Send Compositing for
Parallel Sort-last Rendering. In Proceedings of the 7th Eurographics
Conference on Parallel Graphics and Visualization (2007), EGPGV ’07,
pp. 29–36. 2

[ESE00] ENGEL K., SOMMER O., ERTL T.: A Framework for Interac-
tive Hardware Accelerated Remote 3D-Visualization. Springer Vienna,
Vienna, 2000, pp. 167–177. 2

[FE10] FECHTELER P., EISERT P.: Accelerated video encoding using
render context information. In Proceedings of the International Confer-
ence on Image Processing, ICIP 2010, September 26-29, Hong Kong,
China (2010), IEEE, pp. 2033–2036. 2

[FNT∗13] FEBRETTI A., NISHIMOTO A., THIGPEN T., TALANDIS J.,
LONG L., PIRTLE J. D., PETERKA T., VERLO A., BROWN M.,
PLEPYS D., SANDIN D., RENAMBOT L., JOHNSON A., LEIGH J.:
CAVE2: a hybrid reality environment for immersive simulation and in-
formation analysis, 2013. 3

[HOPU08] HERELD M., OLSON E., PAPKA M. E., URAM T. D.:
Streaming visualization for collaborative environments. Journal of
Physics: Conference Series 125, 1 (2008). 2

[Int] Intel Media SDK. https://software.intel.com/en-us/
media-sdk. Accessed: 2018-01-20. 2

[JFWM16] JIANG J., FOGAL T., WOOLLEY C., MESSMER P.: A
Lightweight H.264-based Hardware Accelerated Image Compression Li-
brary. In 2016 IEEE 6th Symposium on Large Data Analysis and Visual-
ization (LDAV) (2016), pp. 99–100. 2

[KPH∗10] KENDALL W., PETERKA T., HUANG J., SHEN H.-W., ROSS
R.: Accelerating and Benchmarking Radix-k Image Compositing at
Large Scale. In Proceedings of the 10th Eurographics Conference on
Parallel Graphics and Visualization (2010), EG PGV’10, pp. 101–110.
2

[LMB∗09] LALGUDI H. G., MARCELLIN M. W., BILGIN A., OH H.,
NADAR M. S.: View Compensated Compression of Volume Rendered
Images for Remote Visualization. IEEE Transactions on Image Process-
ing 18, 7 (2009), 1501–1511. 2

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

http://gpuopen.com/gaming-product/advanced-media-framework
http://gpuopen.com/gaming-product/advanced-media-framework
https://software.intel.com/en-us/media-sdk
https://software.intel.com/en-us/media-sdk


T. Biedert et al. / Hardware-Accelerated Multi-Tile Streaming for Realtime Remote Visualization

[LMM17] LEAF N., MILLER B., MA K. L.: In situ video encoding of
floating-point volume data using special-purpose hardware for a posteri-
ori rendering and analysis. In 2017 IEEE 7th Symposium on Large Data
Analysis and Visualization (LDAV) (2017), pp. 64–73. 2

[LS07] LAMBERTI F., SANNA A.: A Streaming-Based Solution for Re-
mote Visualization of 3D Graphics on Mobile Devices. IEEE Transac-
tions on Visualization and Computer Graphics 13, 2 (2007), 247–260.
2

[MAN∗14] MARRINAN T., AURISANO J., NISHIMOTO A., BHARAD-
WAJ K., MATEEVITSI V., RENAMBOT L., LONG L., JOHNSON A.,
LEIGH J.: SAGE2: A new approach for data intensive collaboration
using Scalable Resolution Shared Displays. In 10th IEEE International
Conference on Collaborative Computing: Networking, Applications and
Worksharing (Oct 2014), pp. 177–186. 2

[MKPH11] MORELAND K., KENDALL W., PETERKA T., HUANG J.:
An image compositing solution at scale. In 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analy-
sis (SC) (2011), pp. 1–10. 2

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D., KROGH M. F.:
Parallel volume rendering using binary-swap compositing. IEEE Com-
puter Graphics and Applications 14, 4 (1994), 59–68. 2

[NJ16] NOGUERA J. M., JIMÃL’NEZ J. R.: Mobile Volume Rendering:
Past, Present and Future. IEEE Transactions on Visualization and Com-
puter Graphics 22, 2 (Feb 2016), 1164–1178. 2

[Nvi] NVIDIA Video Codec SDK. https://developer.nvidia.
com/nvidia-video-codec-sdk. Accessed: 2018-01-20. 2, 3

[PGR∗09] PETERKA T., GOODELL D., ROSS R., SHEN H.-W.,
THAKUR R.: A Configurable Algorithm for Parallel Image-compositing
Applications. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (2009), SC ’09, pp. 4:1–
4:10. 2

[SDWE03] STEGMAIER S., DIEPSTRATEN J., WEILER M., ERTL T.:
Widening the remote visualization bottleneck. In 3rd International Sym-
posium on Image and Signal Processing and Analysis, 2003. ISPA 2003.
Proceedings of the (Sept 2003), vol. 1, pp. 174–179 Vol.1. 2

[SML∗03] STOMPEL A., MA K.-L., LUM E. B., AHRENS J., PATCH-
ETT J.: SLIC: Scheduled Linear Image Compositing for Parallel Volume
Rendering. In Proc. of the 2003 IEEE Symposium on Parallel and Large-
Data Visualization and Graphics (2003), PVG ’03, pp. 6–. 2

[SOHW12] SULLIVAN G. J., OHM J. R., HAN W. J., WIEGAND T.:
Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE
Transactions on Circuits and Systems for Video Technology 22, 12
(2012), 1649–1668. 2

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: from error visibility to structural similarity.
IEEE Transactions on Image Processing 13, 4 (2004), 600–612. 5

[WSBL03] WIEGAND T., SULLIVAN G. J., BJONTEGAARD G.,
LUTHRA A.: Overview of the H.264/AVC video coding standard. IEEE
Transactions on Circuits and Systems for Video Technology 13, 7 (2003),
560–576. 2

[YWM08] YU H., WANG C., MA K.-L.: Massively Parallel Volume
Rendering Using 2-3 Swap Image Compositing. In Proc. of the 2008
ACM/IEEE Conference on Supercomputing (2008), SC ’08, pp. 48:1–
48:11. 2

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk

