
Debugging MPI programs with the GNU
debugger

Version 1.1.0

Tom Fogal

Originally written: December 27th, 2013.
Last update: February 19, 2014.



Abstract

We often see people attempting to debug MPI-parallel programs using ‘printf
debugging’. While this is very simple to set up, it is a poor substitute for a
real debugger.

Back when the author used to work on VisIt1, parallel debugging was
of paramount concern, as work was mostly focused within the domain of
parallel rendering. Therefore we added some support for getting a debugger
attached at the appropriate time, and used it quite profitably. While the
technique is simple, it does not seem anybody else ever picked up on it. The
author still sees people in other contexts trying to debug confusing parallel
segmentation faults using traditional methods.

Here we expound a pattern that allows one to debug parallel jobs using
a real debugger.

The tl;dr version of the solution is: pause job execution until the debugger
is up and running.

1http://www.visitusers.org/

http://www.visitusers.org/


Chapter 1

GNU debugger and MPI
programs

There are two major issues with debugging in a parallel environment such as
MPI:

• There are multiple processes, and unlike with threads there is a
strong ‘1 debugger 1 process’ mapping with current tools.

• The MPI system handles process creation and execution, tasks
which the debugger traditionally wants to apply. The workaround—
attaching the debugger after process startup—suffers typical race con-
dition issues.

There are some debuggers which can debug parallel programs as a group.
Notably, TotalView boasts this kind of support. This feature is still lacking
in open source debuggers.

We solve these issues by writing our code such that one must attach a
debugger and twiddle a bit to get the program to continue. This may be
obvious to anyone with working knowledge of the GNU debugger, your shell,
and C, but the author finds that many people are missing one critical piece
of that puzzle.

2



1.1 Attaching a debugger

An ill-used feature of the GNU debugger is the ability to attach to an
already-running process1. The functionality takes a process ID as an argu-
ment to attach to:

(gdb) attach 12345

attaches to process ‘12345’.
The solution, then, is to start the MPI job and then ‘quickly’ attach

the debugger from another terminal2. The trouble is that ‘quickly’ is rather
difficult: frequently the program crashes before we can get it under debugger
control. Some use a solution based on sleep(3) to ensure they will have
enough time to get the debugger attached. This is undesirable: if we set the
argument too small, we might ‘miss’ the process’ bad behavior. If we set it
too large, then we have to wait excessively after it attaches, which increases
our iteration time.

What we really want is to just have the MPI job automatically wait until
we have attached the debugger, at which point it should continue instanta-
neously.

1.2 Process modification

Another ill-used feature of the GNU (and many other) debuggers is the ability
to modify arbitrary memory locations of a running process. The command
in gdb is set variable:

(gdb) set variable v=42

of course, the variable must exist in the current scope of where gdb is stopped.

1Note that many Linux distributions are now disabling this functionality at the kernel-
level by default. The error message you receive when attempting to attach to a running
process explains how to re-enable the required support.

2Note: if you are running on a cluster, you may have to ssh to a backend node first.
Identifying which nodes your job is running on is cluster-specific; ask your local IT people.

3



1.3 Wait for the debugger

We can use the ‘attach’ and ‘set variable’ features together to control
the execution of the MPI job. We make our program wait on a variable
which we set upon attaching the debugger. I do this with a method I call
wait for debugger:

#define ROOTp() /* ... true iff rank == 0 */

static void

wait_for_debugger ()

{

if(getenv("TJF_MPI_DEBUG") != NULL && ROOTp()) {

volatile int i=0;

fprintf(stderr , "pid %ld waiting for debugger\n"

, (long)getpid ());

while(i==0) { /* change ’i’ in the debugger */ }

}

MPI_Barrier(MPI_COMM_WORLD);

}

We insert wait for debugger very early in our program’s execution: per-
haps immediately after MPI Init. The debugging is controlled by an environ-
ment variable, in this case TJF MPI DEBUG. When the environment variable is
not set, then we execute a quick barrier and continue on. This is just a single
barrier that happens right at job start, and thus the method is lightweight
enough that you can leave the call to ‘wait for debugger’ in your code at
all times.

If the environment variable is set3, however, then our root process will
enter the body of the if statement. Every other process will end up waiting
at the Barrier. Inside the if, we produce what looks like an infinite loop,
and indeed in some sense it is.

While the job is held up in this loop, we jump into another terminal and
use the debugger to ‘unstick’ the process group:

$ pid=$(pgrep my -program|head -n 1) ; gdb -q \

-ex "attach ${pid}" \

3Many MPI executors provide a way to set environment variables from the executor.
Open MPI’s mpirun includes an -x option, for example, so that one can quickly enable
debugging by just saying mpirun -x TJF MPI DEBUG=1 ./my-program.

4



-ex "set variable i=1" \

-ex "finish"

...

Loaded symbols for /usr/lib/openmpi/lib/openmpi/

mca_dpm_orte.so

0x0000000000400af2 in wait_for_debugger () at open.

mpi.c:20

20 while(i == 0) { }

Run till exit from #0 0x0000000000400af2 in

wait_for_debugger ()

main (argc=1, argv=0 x7fff927d8998) at open.mpi.c:31

31 int rv = MPI_File_open(MPI_COMM_WORLD , "

atestfile", MPI_MODE_WRONLY ,

(gdb) ...

In every MPI system I have used, MPI creates processes for the ranks in-
order. This is convenient, as it means that rank 0 then has the lowest PID,
except in pathological cases where the PID wraps around. Thus, pgrep

program | head -n 1 will always return the PID of rank 0. Note that the
PID is also printed to standard error, so one could examine the program’s
output. That said, it is faster to maintain a terminal for such debugging,
and use ‘up-enter’ to attach to the latest program instance.

If one throws wait for debugger directly after MPI Init, as recommended
earlier, than the program is essentially guaranteed to be stuck in that infinite
loop when one attaches. gdb executes -ex commands in the order they are
given, so we then change the loop variable to force the loop to exit, and
finish to get us out of the wait for debugger function. Subsequently, we
can debug as normal (often continue until the program segfaults).

1.3.1 A note on optimization

The volatile on the loop variable is critically important. Many people seem
to be of the mistaken idea that volatile is for variables that one shares in
threaded programs, but the actual use of volatile is to indicate to the
compiler that the variable in question may change due to circumstances in
the external environment. The initial use was in memory-mapping external
devices: in this case, one would not want to cache the read of such a variable,
because the external device will change the value at an unknown time.

5



This is, of course, exactly what is occurring here: the external environ-
ment (i.e. gdb) is changing the value of the variable, and so we don’t want
to cache the variable’s value. Without the volatile qualifier, an optimizing
compiler can (and often will) decide that the loop is infinite and therefore
happily do things like ‘forget’ to update the frame pointer.

The author has found this works well and is quite portable in practice,
and the author has AIX experience.

6



Chapter 2

Updates

The author greatly appreciate emails which correct even minor typos, improve
upon this method, or just want to drop a note and say that this was useful for
you. I tend to be pretty easy to contact; generally ‘tfogal@my-current-affiliation’
is my email address, but you can also just google my name.

7


	GNU debugger and MPI programs
	Attaching a debugger
	Process modification
	Wait for the debugger
	A note on optimization


	Updates

