Progressive Volume Rendering of Large Unstructured Grids

Steven P. Callahan¹, Louis Bavoil¹, Valerio Pascucci², and Cláudio T. Silva¹

¹ SCI Institute, University of Utah
² Lawrence Livermore National Laboratory
Motivation

- Large-scale simulations produce a lot of data
- Interactive visualization techniques not keeping up
- Meshes may be too large to render locally
Progressive Volume Rendering

3%
0.01 sec

33%
7 sec

66%
18 sec

100%
34 sec
Objective

- Progressive Rendering
 - Show intermediate results
 - Reuse intermediate results
 - Allow user interrupt
 - Only render pertinent data

- Client-Server Architecture
 - Support a thin client with limited memory
 - Standard server used as a data repository
 - Facilitate remote visualization
Issues

- Tetrahedra are not natively supported
 - Projected Tetrahedra
 - [Shirley and Tuchman ‘90, Wiley et al. ‘02]
- Compositing requires strict order
 - Visibility Sorting
 - [Williams et al. ‘92]
 - Ray Casting
 - [Bunyk et al. ‘97, Weiler et al. ‘03]
 - Hybrids
 - [Farias et al. ‘00, Callahan et al. ‘05]
Issues

- Hierarchical level-of-detail not suitable
 - Regular Sampling
 - [Leven et al. 2002]
 - Geometry Simplification
 - [Cignoni et al. 2005]
 - LOD Without Hierarchies
 - [Callahan et al. 2005]

- Remote Visualization difficult using a standard server
 - Image Transmission
 - [Engel et al. 2000]
 - Uncomposited Image Transmission
 - [Bethel et al. 2000]
 - Data Transmission
Background

- Hardware-Assisted Visibility Sorting
 - Sort in both object-space and image-space

[Callahan et al. 2005]
http://havs.sourceforge.net and vtk/ParaView
Background

- Dynamic Level-of-Detail

[Callahan et al. 2005]
http://havs.sourceforge.net and vtk/ParaView
Overview

- **Server**: Processes geometry and transmits triangles in visibility order
- **Client**: Receives geometry and renders it progressively
The Server

- Preprocess
 - Create min-max octree
- Geometry Server
- Octree Traversal
- Object-Space Sort
The Server

- Preprocess
- Geometry Server
 - Calculate depth range
- Octree Traversal
- Object-Space Sort
The Server

- Preprocess
- Geometry Server
- Octree Traversal
 - Cull range geometry
 - Frustum cull geometry
- Object-Space Sort
The Server

- Preprocess
- Geometry Server
- Octree Traversal
- Object-Space Sort
 - Sort geometry by centroid
 - Compress and send
The Client

- Preprocess
 - Get boundary geometry from server
 - Build pre-integration table
- Interactive Mode
- Progressive Mode
- Completed Mode
The Client

- Preprocess
- Interactive Mode
 - Volume render the boundary geometry
 - Keep the back boundary fragments
- Progressive Mode
- Completed Mode
The Client

- Preprocess
- Interactive Mode
- Progressive Mode
 - Render range of geometry
 - Display progressive image
- Completed Mode
Use three buffers to render progressive image
- *Complete*: finished volume rendering
- *Active*: temporary storage of k fragments
- *Progressive*: *Complete* blended with approximation

Progressive Mode
Progressive Mode

- Pass 1:
 - Render geometry into Active buffer
 - Composite overflow fragments into Complete buffer.
Progressive Mode

- Pass 2:
 - Render empty space into Progressive buffer using Active buffer and back boundary fragments

Approximate Empty Space
Progressive Mode

- Pass 3:
 - Composite *Complete* buffer into *Progressive* buffer
 - Display *Progressive* buffer
 - Keep *Complete* and *Active* buffers for next progressive step

Approximate = Complete + Approximate
Overview

- Preprocess
- Interactive Mode
- Progressive Mode
- Completed Mode
 - Composite Active buffer into Complete buffer
 - Display and store Complete buffer
Results
Results
Considerations

- The network
- Transfer functions
- Other interaction methods
Conclusion

- Remote visualization of large unstructured grids
- Progressions converge to full-quality renderings
- Allows interactive exploration of large datasets

Future Work:
- Cutting planes
- Stream compression
- Time-varying data
Acknowledgments

- Carlos Scheidegger, Huy Vo
- Datasets
 - Neely and Batina (NASA)
 - O’Hallaran and Shewchuck (CMU)
- Funding
 - DOE
 - IBM
 - SNL
 - LLNL
 - ARO
 - University of Utah