Adaptive Visualization of Dynamic Unstructured Meshes

Steven P. Callahan

Dissertation Defense in partial fulfillment for a Ph.D. in Computing

Overview

- What is the problem?
- Where were we then?
- Where are we now?
- How did we get here?
- Where do we go now?

Motivation

- Volume Rendering is important for analysis
- Visualization is not keeping pace with simulation/measurement

Direct Volume Rendering

Sampling

Classification

$$I(D) = I_0 e^{-\int_0^D \rho(t)Adt} + \int_0^D C(s)\rho(s)Ae^{-\int_s^D \rho(t)Adt}ds$$

[Blinn 1982] [Sabella 1988] [Max 1995]

Compositing

$$\mathbf{c}_{i} = \mathbf{c}_{i-1} + \mathbf{c}_{i}\alpha_{i}(1 - \alpha_{i-1}) \\
\alpha_{i} = \alpha_{i-1} + \alpha_{i}(1 - \alpha_{i-1})$$

Direct Volume Rendering

Sampling

Classification

$$I(D) = I_0 e^{-\int_0^D \rho(t)Adt} + \int_0^D C(s)\rho(s)Ae^{-\int_s^D \rho(t)Adt}ds$$

Absorption

[Blinn 1982] [Sabella 1988] [Max 1995]

Compositing

$$\mathbf{c}_{i} = \mathbf{c}_{i-1} + \mathbf{c}_{i}\alpha_{i}(1 - \alpha_{i-1}) \\
\alpha_{i} = \alpha_{i-1} + \alpha_{i}(1 - \alpha_{i-1})$$

Direct Volume Rendering

Sampling

Classification

$$I(D) = I_0 e^{-\int_0^D \rho(t) A dt} + \int_0^D C(s) \rho(s) A e^{-\int_s^D \rho(t) A dt} ds$$

Absorption

Emission

[Blinn 1982] [Sabella 1988] [Max 1995]

Compositing

$$\mathbf{c}_{i} = \mathbf{c}_{i-1} + \mathbf{c}_{i}\alpha_{i}(1 - \alpha_{i-1}) \\
\alpha_{i} = \alpha_{i-1} + \alpha_{i}(1 - \alpha_{i-1})$$

Structured vs. Unstructured

[Kindlmann and Durkin 1998]

[Kniss et al. 2002]

[Kindlmann et al. 2003]

[Demarle et al. 2003]

[Schneider and Westermann 2003]

Structured vs. Unstructured

Unstructured Volume Rendering

- Limitations of existing algorithms
 - Interactivity
 - Large data
 - Dynamic data

Thesis Statement

Interactive volume rendering of dynamic unstructured grids requires a combination of novel software algorithms and frameworks that efficiently amortize recent hardware configurations

Contributions

- Improved interactive volume rendering
 - Object-space acceleration (Chapter 3)
 - Image-space acceleration (Chapter 4)
- Increased limits on data size
 - Progressive volume rendering (Chapter 5)
- Extended support for dynamic data
 - Time-varying scalar field volume rendering (Chapter 6)
- Created support for exploration of large dynamic volumes
 - Transfer function specification (Chapter 7)

Contributions

Journal Publications

- Hardware-Assisted Visibility Sorting for Unstructured Volume Rendering. TVCG, 2005
- A Survey of GPU-Based Volume Rendering of Unstructured Grids. RITA, 2005
- Progressive Volume Rendering of Large Unstructured Grids. TVCG, 2006
- Streaming Simplification of Tetrahedral Meshes. TVCG, 2007
- An Adaptive Framework for Visualizing Unstructured Grids with Time-Varying Scalar Fields. Parallel Computing, 2007
- Direct Volume Rendering: A 3D Plotting Technique for Scientific Data. Computing in Sci. and Eng., 2008

Conference Publications

- Hardware Accelerated Simulated Radiography. Vis. 2005
- Interactive Rendering of Large Unstructured Grids Using Dynamic Level-Of-Detail. Vis, 2005
- Interactive Volume Rendering of Unstructured Grids with Time-Varying Scalar Fields. EGPGV, 2006
- Multi-Fragment Effects on the GPU using the k-Buffer. i3D, 2007
- iRun: Interactive Rendering of Large Unstructured Grids. EGPGV, 2007
- Hardware-Assisted Point-Based Volume Rendering of Tetrahedral Meshes. SIBGRAPI, 2007

Unpublished Manuscripts

- Interactive Transfer Function Specification for Direct Volume Rendering of Disparate Volumes. SCI Tech Report, 2007
- Image-Based Acceleration for Direct Volume Rendering of Unstructured Grids using Joint Bilateral Upsampling. Submitted, 2008

Contributions

- Improved interactive volume rendering
 - Object-space acceleration (Chapter 3)
 - Image-space acceleration (Chapter 4)
- Increased limits on data size
 - Progressive volume rendering (Chapter 5)
- Extended support for dynamic data
 - Time-varying scalar field volume rendering (Chapter 6)
- Created support for exploration of large dynamic volumes
 - Transfer function specification (Chapter 7)

Improving Interactivity

Object-Space Acceleration: Point-Based Volume Rendering

Object-Space Acceleration

Points are more flexible and require less data to represent

Large volumes have subpixel-sized geometry

Object-Space Acceleration

Error minimized by reshaping points

• Cull fragments in fragment shader

Object-Space Acceleration

Fragments distances are classified and composited

• Sample-based level-of-detail used for interactivity

Improving Interactivity

Image-Space Acceleration:
Joint Bilateral Upsampling
for Volume Rendering

Bilateral filter for image denoising

$$J_p = \frac{1}{k_p} \sum_{q \in \Omega} I_q f(\parallel p - q \parallel) g(\parallel I_p - I_q \parallel)$$

I = Image
R = Reference Image
f = spatial filter
g = range filter
p = position of center pixel
k = normalization term
Omega = spatial support

Output

[Tomasi and Manduchi 1998]

• Joint bilateral upsampling for efficient image enhancement

$$S_{p} = \frac{1}{k_{p}} \sum_{q_{\downarrow} \in \Omega} R_{q_{\downarrow}} f(\parallel p_{\downarrow} - q_{\downarrow} \parallel) g(\parallel I_{p} - I_{q} \parallel)$$

Image (I)

R = Reference Image
f = spatial filter
g = range filter
p = position of center pixel
k = normalization term
Omega = spatial support

I = Image

Image (S)

[Kopf et al. 2007]

Joint bilateral upsampling for accelerating rendering

$$S_{p} = \frac{1}{k_{p}} \sum_{q_{\downarrow} \in \Omega} I_{q_{\downarrow}} f(\parallel p_{\downarrow} - q_{\downarrow} \parallel) g(\parallel R_{p} - R_{q} \parallel)$$

I = Image

R = Reference Image

f = spatial filter

g = range filter

p = position of center pixel

k = normalization term

Omega = spatial support

• Effect similar to smoothing the geometry

Full Resolution Joint Bilateral Upsampled x4

Overview

- Render image into small offscreen buffer (I)
- Render boundaries as n depth layers into large offscreen buffers (R₁...R_n)
- Bind I and R₁...R_n as textures and render large image (S) using joint bilateral upsampling

Image-Space Acceleration

Image-Space Acceleration

• Performance Results

Increasing Allowable Data Size

Progressive Volume Rendering

Progressive Volume Rendering

- Data too large to...
 - Render at once
 - Fit in memory
 - Render locally
- Render incrementally
 - Decompose (server)
 - Transmit (network)
 - Accumulate (client)

Progressive Volume Rendering

- Modes
 - Interactive
 - Boundaries
 - Progressive
 - Some internal finished
 - Some internal approximated
 - Completed
 - Save the image
- Configurations
 - Thin client
 - Robust client

Handling Dynamic Data

Volume Rendering Time-Varying Scalar Fields

- Volume rendering
- Dynamic level-of-detail
- Compression and data transfer
- Parallel processing

- Volume rendering
- Dynamic level-of-detail
- Compression and data transfer
- Parallel processing

- Volume rendering
- Dynamic level-of-detail
- Compression and data transfer
- Parallel processing

- Volume rendering
- Dynamic level-of-detail
- Compression and data transfer
- Parallel processing

- Sampling strategies:
 - Statistically dynamic data
 - Local sampling
 - Statistically static data
 - Global Sampling $C_v(t) = \sum_{i=1}^{3} \frac{\sqrt{Var[X_{t(i)}]}}{E[X_{t(i)}]}$

- Volume rendering
- Dynamic level-of-detail
- Compression and data transfer
- Parallel processing

- Volume rendering
- Dynamic level-of-detail
- Compression and data transfer
- Parallel processing

- Manage all resources with threads
 - Level-of-Detail and Sorting
 - Decompression
 - Rendering

- Volume rendering
- Dynamic level-of-detail
- Compression and data transfer
- Parallel processing

- Manage all resources with threads
 - Level-of-Detail and Sorting
 - Decompression
 - Rendering

Results: dynamic data is only 5% slower than static data

Enabling Volume Exploration

Transfer Function Specification

- Transfer Functions
 - Maps a data value to color and opacity

$$f(x) = \mathbf{R} \to \mathbf{R}^4, s \to (r, g, b, \alpha)$$

- Lookup table
 - Fixed number of bins
- Problems for unstructured grids
 - High-dynamic range data
 - Multiple features
 - Time-varying data

Range Mapping for high-dynamic range data

Blending for feature finding

Keyframing for time-varying data

Results

Full Quality

1 Million Tetrahedra40 Time Steps4 Transfer Functions

20% LOD

Summary

This dissertation introduced new algorithms and frameworks that efficiently use available hardware for improving the state-of-the-art in volume rendering for large, dynamic unstructured volumes

Contributions:

- Image-space acceleration for volume rendering
- Object-space acceleration for volume rendering
- Progressive volume rendering for large data
- Time-varying volume rendering for dynamic data
- Transfer function specification for large, dynamic data

Future Work

- Bricking strategies for unstructured meshes
- Stencil-routed k-buffer for volume rendering
- Dynamic geometry/topology
- Higher order elements
- Source code release of complete tool

Acknowledgments

- Advisor:
 - Clàudio Silva
- Committee:
 - Clàudio Silva, Peter Shirley, Mike Kirby, Valerio Pascucci, João Comba
- Contributors:
 - Erik Anderson, Fabio Bernardon, Louis Bavoil, João Comba, Linh Ha, Valerio Pascucci, Carlos Scheidegger, John Schreiner, Clàudio Silva
- Other:
 - SCI, SoC, VGC, VisTrails groups
 - Karen, Deb, and other administrative staff
 - Faculty and Staff in SCI and SoC
- Funding:
 - Department of Energy, National Science Foundation, U of U Graduate Research Fellowship
- Family:
 - Kristy Callahan, Lowell and Janice Callahan, Helen and Verlon Duncan

Thank You!

Questions?