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Overview

¢ \What is the problem?
¢ \Where were we then?
¢ \Where are we now?

e How did we get here?

¢ \Where do we go now?




Motivation

e \/olume Rendering is important for analysis

e \/isualization is not keeping pace with simulation/measurement




Direct Volume Rendering

e Sampling

e Classification
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e Compositing

[Porter and Duff 1990]
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Direct Volume Rendering
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Structured vs. Unstructured
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Structured vs. Unstructured
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Unstructured Volume Rendering

e [ imitations of existing algorithms
¢ Interactivity
¢ [ arge data

¢ Dynamic data




A Historical Perspective
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A Historical Perspective

Unstructured Volume Rendering
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A Historical Perspective

f Incremental Slicing
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A HiStOrical PerSpeC’[( Hardware Projected Tetrahedra
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Hardware Raycasting

A Historical Perspective
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A Historical Perspective
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Thesis Statement

Interactive volume rendering of dynamic unstructured grids requires a
combination of novel software algorithms and frameworks that efficiently
amortize recent hardware configurations




Contributions

¢ Improved interactive volume rendering
e Object-space acceleration (Chapter 3)
¢ Image-space acceleration (Chapter 4)
¢ [ncreased limits on data size
e Progressive volume rendering (Chapter 5)
e Extended support for dynamic data
e Time-varying scalar field volume rendering (Chapter 6)
e Created support for exploration of large dynamic volumes

e Transfer function specification (Chapter 7)
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Conference Publications

e Hardware Accelerated Simulated Radiography. Vis, 2005

* Interactive Rendering of Large Unstructured Grids Using Dynamic Level-Of-Detail. Vis, 2005

* Interactive Volume Rendering of Unstructured Grids with Time-Varying Scalar Fields. EGPGV, 2006
» Multi-Fragment Effects on the GPU using the k-Buffer. 13D, 2007

* iRun: Interactive Rendering of Large Unstructured Grids. EGPGV, 2007

» Hardware-Assisted Point-Based Volume Rendering of Tetrahedral Meshes. SIBGRAPI, 2007

Unpublished Manuscripts
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Dissertation Qutcome
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Contributions

¢ Improved interactive volume rendering
e Object-space acceleration (Chapter 3)
¢ Image-space acceleration (Chapter 4)
¢ [ncreased limits on data size
e Progressive volume rendering (Chapter 5)
e Extended support for dynamic data
e Time-varying scalar field volume rendering (Chapter 6)
e Created support for exploration of large dynamic volumes

e Transfer function specification (Chapter 7)




Improving Interactivity

Object-Space Acceleration:
Point-Based Volume Rendering




Object-Space Acceleration

e Points are more flexible and require less data to represent

=

e | arge volumes have subpixel-sized geometry




Object-Space Acceleration

e Error minimized by reshaping points

N-[ OO

e Cull fragments in fragment shader
/S |
o | ‘




Object-Space Acceleration

¢ Fragments distances are classified and composited

e Sample-based level-of-detail used for interactivity




Improving Interactivity

Image-Space Acceleration:
Joint Bilateral Upsampling

for Volume Rendering




Image-Space Acceleration

e Bilateral filter for image denoising

|
Jp=1 L1af(lp—qlel I )
P geQd

Domain

Example from Siggraph 2007 Tutorial by Sylvain Paris

| = Image

R = Reference Image

f = spatial filter

g = range filter

p = position of center pixel
k = normalization term
Omega = spatial support

Output

[Tomasi and Manduchi 1998]




Image-Space Acceleration

e Joint bilateral upsampling for efficient image enhancement

1
Sp=1- L Raf(lpy—ay Dl 14 )
Pgeq

Reference
Image (R)

Original Solution
Image (1) Image (S)

Example from Siggraph 2007 presentation by Johannes Kopf

| = Image

R = Reference Image

f = spatial filter

g = range filter

p = position of center pixel
k = normalization term
Omega = spatial support

[Kopf et al. 2007]




Image-Space Acceleration

e Joint bilateral upsampling for accelerating rendering

1
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Image (R)

| = Image

R = Reference Image

f = spatial filter

g = range filter
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k = normalization term
Omega = spatial support
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Image (S)




Image-Space Acceleration

e Effect similar to smoothing the geometry

Full Resolution Joint Bilateral Upsampled x4




Image-Space Acceleration

e Overview
¢ Render image into small offscreen buffer ()
e Render boundaries as n depth layers into large offscreen buffers (R1...Rn)

e Bind | and R1...Rn as textures and render large image (S) using joint bilateral
upsampling

Depth Layer 1 (R1) Depth Layer 2 (R2) Solution Image (S)




Image-Space Acceleration

e Quality Results

Original Linearly Upsampled x8



Image-Space Acceleration

e Quality Results

Original Bilaterally Upsampled x8



Image-Space Acceleration

e Performance Results

Software Raycaster Hardware Raycaster
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Increasing Allowable Data Size

Progressive Volume Rendering




Progressive Volume Rendering

¢ Data too large to...
e Render at once
e Fit in memory
e Render locally
¢ Render incrementally
e Decompose (server)
¢ Transmit (network)

e Accumulate (client)




Progressive Volume Rendering

e Modes

¢ Interactive
e Boundaries
® Progressive
e Some internal finished
e Some internal approximated
e Completed
e Save the image
e Configurations
¢ Thin client

e Robust client




Handling Dynamic Data

Volume Rendering

Time-Varying Scalar Fields




Time-Varying Scalar Fields

e \/olume rendering
¢ Dynamic level-of-detall
e Compression and data transfer

e Parallel processing

Preprocessing
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.Com pref‘.s Decompression
Time-Varying Thread
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r
Rendering Rasterize Completely
Thread F Sort Fragments
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Direct Volume
Rendering
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Time-Varying Scalar Fields

¢ \/olume rendering
¢ Dynamic level-of-detall
e Compression and data transfer

e Parallel processing
Direct

Preprocessing

Assign Level-of-Detail )
Importance and Sorting Direct Vol_ume
to Faces Thread Rendering

) Completely
Rendering Sort Fragments
Thread
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Compress D .
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Time-Varying Scalar Fields

¢ \/olume rendering
¢ Dynamic level-of-detail
e Compression and data transfer

100% at 18 fps  25% at63 fps  10% at 125 fps

¢ Parallel processing

Preprocessing
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Time-Varying Scalar Fields

¢ \/olume rendering e Sampling strategies:

¢ Dynamic level-of-detail e Statistically dynamic data

e Compression and data transfer ¢ | ocal sampling
¢ Parallel processing e Statistically static data

¢ Global Sampling

Preprocessing
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Time-Varying Scalar Fields

e \Jolume rendering Median [

e Dynamic level-of-detail /"\
SN

e Compression and data transfer M + /\

e Parallel processing W - - - R

v [T I - - -
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Time-Varying Scalar Fields

¢ \/olume rendering e Manage all resources with threads
¢ Dynamic level-of-detail ¢ | evel-of-Detail and Sorting
e Compression and data transfer e Decompression

¢ Parallel processing ¢ Rendering

Preprocessing
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Time-Varying Scalar Fields

¢ \/olume rendering e Manage all resources with threads
¢ Dynamic level-of-detail ¢ | evel-of-Detail and Sorting
e Compression and data transfer e Decompression

¢ Parallel processing ¢ Rendering

Results: dynamic data is only 5% slower than static data

Preprocessing
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Importance and Sorting Direct Vol_ume
to Faces Thread Rendering
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rea aces With k-Buffer
Compress D .
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Enabling Volume Exploration

Transfer Function Specification




Transfer Function Specification

e Transfer Functions
e Maps a data value to color and opacity
f(z)=R = R* s — (r,g,b,0)
¢ |_ookup table
e Fixed number of bins
e Problems for unstructured grids
¢ High-dynamic range data
e Multiple features

¢ Time-varying data

TR
\ Y




Transfer Function Specification

e Range Mapping for high-dynamic range data

Original
Histogram
HEEEEES |
0.46 0.54
Zooming

Range
Mapping
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Original Histogram Range Mapping




Transfer Function Specification

¢ Blending for feature finding

e - Y .

| —
TF1 TF2 TF1 ADD TF2 TF1 AND TF2 TF1 XOR TF2

AND XOR
= Maxz(C1(i),C2(i))  Cr(i) = (C1(i) A C2(i)) V (C1(i) A Ca(i))
Min(aq (1), a2(i)) ar(i) = (a1(i) A as(i)) V (a1(2) A as(i))




Transfer Function Specification

e Keyframing for time-varying data

T

Time Step 12 Time Step 15 Time Step 32 Time Step 35

TF2 TF2

Linear Blend Non-Linear Blend

TF1

Step 1 Step 2



Results

1 (o]
Full Quality 1 Million Tetrahedra 20% LOD

40 Time Steps
4 Transfer Functions




Summary

This dissertation introduced new algorithms and frameworks that efficiently use
available hardware for improving the state-of-the-art in volume rendering for
large, dynamic unstructured volumes

Contributions:
¢ Image-space acceleration for volume rendering
e Object-space acceleration for volume rendering
e Progressive volume rendering for large data
e Time-varying volume rendering for dynamic data

e Transfer function specification for large, dynamic data




Future Work

¢ Bricking strategies for unstructured meshes
¢ Stencil-routed k-buffer for volume rendering
e Dynamic geometry/topology

e Higher order elements

e Source code release of complete tool
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