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Figure 1: (a) A fuel capsule for inertial confinement fusion showing the fill tube by which Hydrogen fuel is injected. (b) Simulations and
experiments indicate that during capsule compression the fill tube may cause a jet to form that may lead to reduced yield. (c) Simulated
radiographs are used to design diagnostics that can detect the jet during experiments and lead to quantitative measurements of position and
velocity.

ABSTRACT

We present the application of hardware accelerated volume render-
ing algorithms to the simulation of radiographs as an aid to scien-
tists designing experiments, validating simulation codes, and under-
standing experimental data. The techniques presented take advan-
tage of 32-bit floating point texture capabilities to obtain solutions
to the radiative transport equation for X-rays. The hardware accel-
erated solutions are accurate enough to enable scientists to explore
the experimental design space with greater efficiency than the meth-
ods currently in use. An unsorted hexahedron projection algorithm
is presented for curvilinear hexahedral meshes that produces simu-
lated radiographs in the absorption-only regime. A sorted tetrahe-
dral projection algorithm is presented that simulates radiographs of
emissive materials. We apply the tetrahedral projection algorithm to
the simulation of experimental diagnostics for inertial confinement
fusion experiments on a laser at the University of Rochester.
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1 INTRODUCTION

In this paper we present modifications to hardware accelerated vol-
ume rendering algorithms that enable the quantitative simulation of
radiographs. Hardware accelerated algorithms cannot match the ac-
curacy of a software solution utilizing double precision arithmetic.
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Our goal is to approach the accuracy of such techniques while re-
ducing the time to solution, thereby enabling new methods of inter-
acting with experimental and simulated radiographs.

Radiography is a diagnostic technique used in industrial and sci-
entific applications. In the industrial setting, high-energy X-rays
are passed through objects as in a medical X-ray. In these cases the
attenuation of the X-rays dominates. In high-energy physics appli-
cations radiographs may include both attenuation and emission of
X-rays by the object being imaged. In both cases it is necessary
to adjust the parameters of the radiographic set-up to optimize the
resulting image. Depending on the application, this optimization
process may be extensive. Designing an experimental diagnostic
may require a simulation of the experiment, followed by iteratively
modifying the diagnostic parameters in order to determine a set of
parameters that captures the features of the experiment.

Fast simulation of radiographs can also aid in understanding ra-
diographical images obtained experimentally. The positions and
shapes of interesting features in particular radiographs may not be
easy to identify, or their causes may be hard to determine due to
the lack of depth information in the experimentally obtained image.
However, if a simulation of the experiment is available, simulated
radiographs can be generated with varying orientations and mate-
rial properties. Such techniques may also be useful for tomography
applications.

The addition of 32-bit IEEE 754 floating point capability to com-
modity graphics hardware has opened up the possibility of using
this hardware for simulation. GPU-based linear algebra [10] and
computational fluid dynamics [11] are two examples in an increas-
ing set of algorithms that have been mapped to graphics hardware.
At Lawrence Livermore National Laboratory these new techniques
have not been adopted by computational scientists mainly due to
the difficulty of programming graphics hardware and the absence of
64-bit floating point arithmetic. We have found that 32-bit floating
point arithmetic is sufficient for the solution of the radiation trans-
port equation for X-rays although there is a reduction in accuracy.
The use of 16-bit floating point frame buffers is an option for less



accurate but higher performance implementations. The opacities
and emissivities encountered in some domains can span six orders
of magnitude or more, causing problems when compositing many
small values. Using 32-bit arithmetic appears to mitigate these er-
rors. Solving the transport equation allows us to create simulated
radiographs of proposed experiment diagnostics, and also to accel-
erate the simulation of industrial radiographs.

We describe an application involving experiment design for iner-
tial confinement fusion for which faster response times can enhance
the ability of scientists to design experimental diagnostics. The ac-
celerated techniques enable faster turn-around for a physicist ex-
ploring the design space of a particular radiographic apparatus.

2 PREVIOUS WORK

Simulated radiography tools for CAD models have been developed
to enable efficient use of non-destructive evaluation for engineer-
ing applications [6, 20]. Koenig [8] used software raytracing tech-
niques on CAD geometry to study the 3-D acquisition of defects im-
aged in experimental radiographs. Software raytracing techniques
have been used in simulations of radiograph equipment [5]. Bonin
et al. [1] developed a radiographical simulation based on Monte
Carlo techniques. In many cases these systems are used for defect
detection, in which many parameters must be adjusted in order to
determine the defect sizes that can be detected with a given radio-
graphic system. Such a use-case in not well suited to the present
work, in which accuracy is traded off for simulation time to enable
the detection of large features in physics experiments.

Volume rendering unstructured grids has been the subject of
much research in the visualization community. Due to recent ad-
vances in programmable graphics hardware, techniques have been
developed to shift much of the computation to the GPU for bet-
ter performance. The Projected Tetrahedra algorithm [16] was the
first to show how to render tetrahedral cells using the traditional
3D polygon-rendering pipeline. Roettger and Ertl [15] show the
efficiency of the GPU for compositing ray integrals of arbitrary un-
structured polyhedra using an emissive optical model. Weiler et
al. [17, 18] demonstrate a ray-caster implemented entirely on the
GPU with significant improvement in performance over software
algorithms. The ray-caster traverses the tetrahedral mesh by stor-
ing the topology in textures which are kept in GPU memory. A
more recent technique by Callahan et al. [2] removes the neces-
sity for topological structure by volume rendering the collection of
triangles that compose the mesh. Their algorithm works in both
object- and image-space by approximately sorting the geometry on
the CPU, then finalizing the sort and compositing the fragments
on the GPU. This provides a fast, efficient, and simple solution to
volume rendering unstructured grids. We extend on the work of
Callahan et al. and show that our work can be mapped to hardware-
assisted volume rendering algorithms.

3 RADIOGRAPHY

The radiative transfer equation for mono-energetic photons of fre-
quency ν is

dIν

ds
= Jν −Kν Iν (1)

where Iν is the specific intensity (or radiance, or spectral radiance)
in units of power per unit area per steradian per frequency, s is the
position, Kν is the extinction coefficient (or opacity) with units of
inverse length, and Jν is the specific emissivity in units of power
per unit volume per unit solid angle per frequency.

Introducing the differential optical thickness dτν = Kν ds gives:

dIν

dτν

= Sν − Iν (2)

where Sν = Jν/Kν is the source function with units of specific in-
tensity. In a region with constant Kν and Jν the solution is:

Iν = Iν0e−τ +(1− e−τ )Sν (3)

where Iν0 is the specific intensity entering the region and the ac-
cumulated attenuation, or optical thickness τ (frequency subscript
elided) is given by:

τ =
∫

Kν ds (4)

Given a mesh in which the values of Kν and Jν are constant over
each cell, Iν can be integrated along a linear path through the mesh
by solving the following first order recurrence:

Iν [i+1] = e−τ[i]Iν [i]+ (1− e−τ[i])Sν [i] (5)

where i indexes each cell in order from farthest to nearest with re-
spect to the detector, and in this context Jν , Kν , and τ are under-
stood as predefined per-cell quantities indexed by i.

In many cases a multi-group approximation is used to capture
effects of photons of different energies. In the present work, the
frequency specific quantities Iν , Jν , Kν , and τν are replaced by
piece-wise constant approximations over a set of energy bins. The
recurrence in equation 5 is then solved for each energy group using
the piece-wise constant values.

4 ABSORPTION-ONLY RADIOGRAPHS

In industrial and medical settings, the self emission of X-rays from
the subject can be neglected. The subject is back-lit by an X-ray
source and an image is obtained either on film or detector. Setting
the emissivity Jν to zero in equation 5 produces

Iν [i+1] = e−τ[i]Iν [i] (6)

Solving this recurrence results in a simple product of the exponen-
tial terms, which can be found from a sum of the optical thicknesses
of all cells projecting onto detector pixels. The optical thickness can
be computed in hardware, using the polyhedron projection method,
by summing the attenuation effects of each cell. Since addition
is commutative, the global back to front visibility sort usually re-
quired for the polyhedron projection method is not necessary. For
a tetrahedral mesh, we can use the method of Shirley and Tuchman
[16] to divide the image plane projection of each tetrahedron into
triangle fans for hardware rendering. One can divide any polyhe-
dral mesh into tetrahedra in a consistent way using the method of
Max et al. [13]. However, many of our meshes are curvilinear, and
there is a large saving in mesh storage and rendering time if the hex-
ahedral cells can be projected directly. We use the method of Max
[12], which describes how to define triangle fans or strips for all
projections of a non-degenerate hexahedron, as long as the projec-
tion of each face is a convex quadrilateral. Hexahedral cells which
are degenerate because they have coinciding vertices, or which have
faces whose projections are non-convex, are divided up into tetra-
hedra. Note, if these tetrahedra share non-planar faces with another
cell which is not subdivided, gaps or overlaps in the viewing ray
segments can occur, introducing small errors in the total absorp-
tion.

Our users require floating point accuracy in the attenuation com-
putation. Unfortunately, although current graphics chips can do in-
ternal fragment computations with 32-bit floating point accuracy,
the compositing operations to the framebuffer, which are necessary
to add up the attenuation effects of all the cells, are not possible
with this accuracy. Therefore, the attenuation for each cell was
added in a simple fragment program (see [9]). The attenuation for
each vertex was the extinction coefficient Kν times the thickness,



which was computed in software, using the geometry of the cell.
The accumulated attenuation was taken from an image-aligned tex-
ture, and the attenuation for the current cell was interpolated by the
hardware from the vertex data. The floating point sum was written
to a floating point off-screen P-buffer, which was copied to the tex-
ture for input to the next iteration. This copying is necessary to keep
the texture current, because writes to any output buffer, including a
texture, are not guaranteed to be in polygon order, and also because
the texture caching mechanism does not account for textures chang-
ing on the fly. We can accumulate the attenuation for four different
X-ray wavelength bands in parallel, using the red, green, blue, and
alpha channels.

Copies from the P-buffer to a texture are slow, so it is impractical
to do the copy after rendering every cell. Therefore we attempted to
render as many non-overlapping cells to the P-buffer as possible, in
order to minimize the copying. This was done in multiple passes.
In the first pass, all the hexahedra were tested to see if they could
be projected as a whole, as described above, and if not, they were
subdivided into five tetrahedra. A logically circular list of pointers
to all cells was formed, and for each, an image plane bounding box
was saved. Then in subsequent passes of writing the P-buffer, this
list was traversed in jumps of a size relatively prime to the list’s
length, so that every cell would be touched once before any was
repeated, and yet adjacent cells would not be touched consecutively,
in order to reduce the chance of overlap. Cells whose bounding
boxes did not overlap any others rendered in the current pass could
be rendered into the P-buffer.

Overlapping bounding boxes were tested in software as follows.
At the beginning of each pass, a 1-bit per pixel test buffer was
cleared. Then for each cell touched in the list, the bounding box
was tested by scan converting it to check if there was any over-
lap with the test buffer. Because the 1 bit buffer was represented
in multi-bit words, aligned per scan line to the left of the screen,
the pattern along a scan line in a box often consists of a left hand
partly filled word, found from a look up table, zero or more full
words, and a right hand partly filled word from another look-up ta-
ble. Otherwise, it consists of a single partly filled word which is
the bitwise intersection of words from the left and right look-up ta-
bles. To check for overlaps, the words involved in each scan line for
the box are tested against the words in the test buffer using bitwise
logical ands, and if any of the results is non-zero, there is overlap
of bounding boxes, and the cell is skipped in this pass. If not, bit-
wise logical ors are used to set the bits for the bounding box in the
test buffer, and the cell is rendered into the P-buffer, and marked
as completed in the list of cells. We also tried scan converting the
actual projection of the cell using these logical operations, instead
of just its bounding box, but the extra cost of stepping along the
edges of the projection balanced the speed-up from fewer layers,
and there was no net gain.

Once a threshold number of cells are skipped due to overlap,
the current pass is terminated, the smallest rectangle in the P-buffer
containing all the rendered bounding boxes is copied into the tex-
ture, and the next pass is started. Note that the P-buffer contains
the results of adding all the passes, so when no cells are left, it is
copied to the output buffer. If an X-ray image rather than an attenu-
ation image is desired, the negative exponential is done during this
copy.

The number of passes required is related to the depth complex-
ity of the volume decomposition. This is another reason why it is
preferable to render a hexahedral cell as a whole, rather than as five
tetrahedra, which would increase the depth complexity.

4.1 Computing Extinction Coefficients

In order to simulate radiographs in the non-emissive regime, accu-
rate extinction coefficients are required. In this section we describe

the procedure for obtaining extinction coefficients from calculated
atomic cross-sections for X-rays.

The extinction coefficient Kν can be defined in terms of the cold
opacities of the atomic elements:

Kν = κρ (7)

where κ is the opacity in units of cm2/g and ρ is the density of the
material.

Elemental opacities can be calculated using publicly available
tabulations of computed atomic cross sections [4, 7]. These tables
are indexed by photon energy which is defined as E = hν where h
is Planck’s constant (6.6263×10−27erg/s) and ν is the frequency.
The opacity for a given element can be computed from the tabulated
atomic cross sections by interpolation:

κE =
σE

uA
(8)

where the cross section σE is interpolated at energy E and has units
of barns/atom (1barn = 10−24cm2), u is the atomic mass unit (amu;
1amu = 1.6605402×10−24g), and A is the atomic mass of the ele-
ment in amu. Photon energies are typically given in electron volts
(1eV = 1.60206×10−12erg).

Figure 2: A plot of the opacity κ of Titanium for 200 energy groups.
The sawtooth shape is due to the absorption edge of the K shell
electrons.

The opacity information is divided into energy groups defined by
lower and upper energies Eg and Eg+1 respectively, where g denotes
the group number and Eg < Eg+1. For each energy group a constant
approximation is computed according to:

κg =
1

Eg+1−Eg

∫ Eg+1

Eg

κE ′dE ′ (9)

Figure 2 shows a piecewise constant approximation of the absorp-
tion spectrum of Titanium generated using this method. The saw-
tooth shape approximates the absorption edge of the K shell elec-
trons. At an absorption edge, the photon energy passes the binding
energy of an electron in a specific shell. This allows the photon to
ionize the atom, and increases the opacity.

The opacities of mixtures and compounds can be estimated by
assuming atomic mixing:

κmat,g =
N−1

∑
i=0

miκi,g (10)

where mat is a material index, g is the energy group, κi,g is the
opacity of element i, and mi is the mass fraction of element i in the
mixture or compound.



Figure 3: Unique faces share up to two cells and are encoded with
extinction and source values for both. Determining which values to
use (shown as blue and green cells) is determined per view by a dot
product with the face normal.

The resulting extinction coefficients can be stored in a table in-
dexed by material number and energy group number.

5 RADIOGRAPHY OF EMISSIVE OBJECTS

Radiographs of emissive objects require the full solution of equa-
tion 5. Thus, the compositing operation is not commutative and
must be done in back-to-front order. We assume the extinction co-
efficient Kν and source term Sν are provided as piecewise constant
quantities on a geometric object or mesh. We extend the Hardware-
Assisted Visibility Sorting (HAVS) volume rendering system pro-
posed by Callahan et al. [2]. The HAVS algorithm operates on
a list of the unique faces (triangles) in the tetrahedral mesh. In
object-space, the faces are depth sorted by their centroid and then
passed to the GPU for rasterization. This first sorting pass places
the geometry in an approximate depth order. Upon rasterization, the
fragments undergo an image-space sort via the k-buffer which has
been implemented on programmable graphics hardware using frag-
ment shaders. The k-buffer is a fragment stream sorting network
that keeps a fixed number (k) of fragments for each pixel in the
framebuffer. As a new fragment is rasterized, it is compared with
the other entries in the k-buffer and the two entries that are farthest
from the viewpoint (for back-to-front traversal) are used to find the
color and opacity for the fragment using a lookup table which con-
tains the preintegrated volume integral [14]. The color and opacity
are composited into the framebuffer, and the remaining fragments
are written back to the k-buffer.

In our case, we are interested in solving the transport equation
for each energy group along a ray passing though a set of ordered
cells. Unlike the previously described approach, a pre-computed
lookup table would introduce considerable error due to the large
dynamic range of extinction coefficients and source terms encoun-
tered in many applications. Therefore, we compute the transport
equation in the fragment program which requires the opacity value
and source function value for each energy group in addition to the
distance of the fragment from the viewpoint. We limit the num-
ber of energy groups we visualize to four, one per image channel
(R,G,B,A). Since the HAVS algorithm uses Multiple Render Tar-
gets (MRT) to keep the k-buffer entries during rasterization, the
size of k depends on the number of values that are stored for each
fragment. In the original algorithm, HAVS only uses two entries
(v,d) per fragment: one for scalar value and the other for distance
from the viewpoint. On current hardware, three render targets are
available in addition to the framebuffer which allow up to six frag-
ment entries (k = 6). Unfortunately, by removing the lookup table,
we require much more information in our per-fragment computa-
tion. The viewpoint distance for each fragment is still needed as
well as an opacity value and a source function value per energy
group. Storing all these values for each fragment would only allow
one fragment entry in the k-buffer. This would limit the amount of

Figure 4: An overview of the ICF process. Several laser beams strike
the inside surface of a hohlraum (the green cylindrical canister) and
heat it to millions of degrees. The resulting thermal X-rays emitted
by the hohlraum’s inner surface heat the outer surface of the capsule.
The ”rocket exhaust” effect of material ablated from the capsule’s
surface compresses the hydrogen fuel in the center to conditions
where fusion occurs.

image-space sorting that occurs and may affect overall image qual-
ity. A more conservative approach is to perform a separate render-
ing pass for each energy group g. This allows each fragment entry
to be reduced to three values, the distance, opacity, and source for
the current energy group (d,og,sg), which leads to a k size of four.
This improves the image quality by sacrificing some performance.

Another important detail to consider is that our transport equa-
tions provide a first order recurrence over a piece-wise constant
approximation. Thus, the opacity and source terms for the en-
ergy groups are assigned per cell. Since the HAVS algorithm op-
erates on the unique faces that make up a tetrahedral mesh, no
connectivity information is maintained, unlike in ray-casting ap-
proaches [17, 18]. This also considerably reduces the number of
primitives that are rasterized when compared with the Projected
Tetrahedra [16] algorithm. To keep the fragment count low, these
unique faces are extended to keep the energy group terms for pos-
sibly two cells (the cell that the face belongs to and a neighboring
cell if it is not on the boundary).

Figure 3 shows how opacity and source terms are determined
using only face information. A ray passing through the volume will
enter a cell by passing through one face and exit the cell by passing
through the next face. To determine whether a ray is entering or
exiting a cell represented only by a face, a comparison can be made
of the normal direction of the face and the direction of the ray. In
an extra object-space step, we perform a dot product of every face
normal with the viewing direction and choose the energy groups for
the faces based on the view. Another possibility we would like to
explore is to store the two energy groups in material properties of
the primitives and decide at the fragment level which energy group
to use. This would exploit recent fragment program extensions that
specify whether a front or back face is rasterized.

A final consideration is that due to the nature of graphics hard-
ware, the extinction coefficients and source terms are passed to the
GPU per vertex in texture coordinates. However, since multiple
faces may share one vertex, this can cause inconsistencies in the
energy group terms across a face. Therefore we perform a prepro-
cessing step which duplicates the vertices that are shared by multi-
ple faces. Though this introduces some redundancy in the vertices,
the number of rasterized faces remains the same and constant source
and opacity values are guaranteed across the faces.
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Figure 5: A simulation showing a jet formed inside the fill tube as the capsule implodes. Times are shown in nano-seconds.

6 APPLICATION: DESIGNING DIAGNOSTICS FOR NIF EX-
PERIMENTS

We now describe an application involving radiographs of subjects
with emissive materials for laser experiments. When completed,
the National Ignition Facility (NIF) is expected to produce fusion
by compressing a tiny capsule of Deuterium-Tritium (DT) fuel in
a process known as inertial confinement fusion (ICF). NIF experi-
ments will reproduce the physical conditions inside stars.

Figure 4 depicts the indirect-drive ICF process. A small spheri-
cal capsule with a radius of roughly 1 millimeter is placed inside a
hollow cylinder called a hohlraum (a German word meaning ”cav-
ity”) which is typically a few millimeters in diameter and about 10
millimeters long. Multiple laser beams enter through the ends of a
hohlraum and strike its inside surface. The hohlraum is composed
of a heavy material like gold or lead which is heated to millions of
degrees by the laser beams. The hohlraum wall is hot enough that it
emits X-rays which bathe the inside of the hohlraum and cause the
ablation of the outer (plastic) surface of the capsule. This ablation
turns the outer surface of the capsule into a spherical rocket, driving
the shell of the capsule inward and compressing the DT fuel within.

Two key components of the ICF process are that the DT fuel
remains cool during the compression process and that the compres-
sion is uniform (spherically symmetric). If the fuel is too warm, the
DT will be more difficult to compress and the fusion output will be
reduced. If the compression is not symmetric, the peak density will
be lowered, again resulting in a smaller amount of fusion.

Capsules will be filled with fuel through a tiny tube connecting
the capsule to a reservoir outside the hohlraum. Simulations and ex-
periments of this system have shown that a plasma jet is formed by
the tube as it is imploded along with the capsule by the X-rays. The
presence of the jet has been detected in experiments on a smaller
laser at the University of Rochester. Follow-up experiments are
necessary to accurately measure the position and velocity of the
jet and compare this information against simulations. The primary
goal of this paper is to demonstrate GPU based radiography algo-
rithms that enhance the productivity of scientists designing such
experiments. It is likely that after a set of experimental parameters
have been determined, a scientist will validate the results with a full
precision software calculation. Thus, our contribution is a drop-in
replacement for software approaches that trades off some accuracy
for increased performance.

6.1 Imaging the Effects of the Fill Tube

Figure 5 shows the jet that is formed by the fill tube as the outer
layer of the capsule is ablated. A fundamental question is the effect
of this jet on capsule implosion. Scientists are designing experi-
ments using capsules that have shells doped with titanium. When
these doped capsules are imploded the titanium dopant emits X-
rays at a higher intensity than the capsule material. The diagnostics

Figure 6: X-rays emitted from the capsule travel through the
hohlraum and onto an array of pinholes.

must be designed to maximize the photon count at the detector, and
to enhance the contrast between the dopant (Ti) and the shell mate-
rial (primarily carbon). Simulated radiography is used optimize the
free parameters.

Figure 6 shows the set up of the experiment.
There are several parameters that can be adjusted to achieve these

goals:

1. Capsule Dopant: changing the dopant and varying the
amount of dopant in the capsule. The jet must be detected
along with the capsule material in order to discover the posi-
tion of the jet relative to the capsule.

2. Reference Wires: adding one or more wires of an optically
thick material to the outside of the hohlraum. The wires would
cast shadows on the detector to enable accurate measurement
of the position of the jet. The thickness and spacing of these
wires is critical.

3. Filtering of X-rays: introducing slabs of different materials
between the hohlraum and detector can cause preferential at-
tenuation of X-rays at certain wavelengths. These can be used
to emphasize emission of one material over another. However,
the use of additional filtering reduces the overall intensity of
the radiation striking the detector, resulting in more noise in
the images.

The application presented in this paper requires images of about
160 by 160 pixels where the resolution is limited by detector sen-
sitivity. Actual detectors have uncertainties in calibration, limits on
spatial and temporal resolution, and are subject to noise. Scientists
simulating radiographs with current software methods do not ex-
pect predictions to be accurate to closer than 10% but systematic



errors are not acceptable. We focus on performance gains produced
by using graphics hardware to solve the transport equation. Our
goal is to render images at speeds high enough that the process of
adjusting experimental parameters above becomes less onerous.

7 RESULTS

There is a large variation in requirements for radiographic diagnos-
tics. Detector/film resolutions vary from a few hundred pixels per
side to several thousand. Cell projection methods shine on large
images, but can also be applied to small images with appropriate
trade-offs. The scientists we interact with uniformly use raytracing
algorithms in both industrial and high-energy physics regimes. We
expect our techniques to show the most utility at large image sizes,
but below we present results that are competitive even for the small
detector resolution of the capsule experiment.

7.1 Attenuation-Only Radiographs

Figure 7: A simulated radiograph using low intensity X-rays. The
capsule and hohlraum material reduce the received intensity, but the
ejected material is visible.

Figure 8: Higher intensity radiation resolves the capsule.

Figures 7 and 8 show absorption-only radiographs of a simulated
hohlraum and capsule using the unsorted layer-rendering algorithm
with a low and high intensity X-ray source. This data set contained
five different materials for which extinction coefficients were com-
puted based on the EPDL [4] database. The detector was assumed
to have uniform sensitivity at all photon energies.

This data set had 32 curvilinear grid domains, for a total of
141,960 hexahedral cells, of which 40,656 were collapsed to a sin-
gle point. There were also 9696 other cells which had at least
two coinciding vertices, and 924 with quadrilateral faces with non-
convex projections. Cells of both types were subdivided into tetra-
hedra and projected by the method of [16]. The remaining 90,684
hexahedra were projected by the method of Max [12]. On one pro-
cessor of a dual processor 860 MHz Pentium4 Xeon PC, with an
nVidia 6800 GT graphics card, it took 2.2 seconds to read in the
data and compute an attenuation table for four frequency bands and
the five materials which may be mixed into each cell. Another 35
seconds were required to determine the overlaps in software, ren-
der the cells is 824 separate layers into the P-buffer and copy them
back out into the texture, and finally draw the texture to the screen
at 512×512 resolution.

The overlap determination and texture copying are a bottleneck
to this method. One way to eliminate this bottleneck is to read and
write from the same framebuffer object, as in [9]. As discussed
above, this can cause errors if texture data is used before it has
been written out. We experimentally found that we had to draw
a textured square of size 120× 120 pixels to remove these read-
before-write artifacts. Nevertheless, the rendering time decreased
from 35 seconds to 7.4 seconds.

7.2 Attenuation Plus Emission Radiographs

Figure 9: (Left) Software raytrace of gas bag experiment showing
the 10th energy group on a 321×33 grid with cylindrical symmetry.
Only the top half of the image is generated. (Right) HAVS image of
the same grid extended to three dimensions by rotation axially. The
final mesh size was 321×33×16 vertices.

The HAVS algorithm was validated against the two raytrace
packages currently used by scientists for simulation of radiographs
of laser-plasma experiments. A 2-D raytracer is used for cylin-
drically symmetric meshes and is optimized for that case. A 3-D
raytracer is used for hexahedral meshes. The 3-D package divides
hexes into five tetrahedra to compute ray propagation. The three
techniques were used to produce radiographs of a ’gas bag’ data
set. In this experiment, a cylinder is filled with a cold gas of various
elements and a laser beam is directed down the axis of the cylin-
der. A radiographic diagnostic is used to visualize the laser-plasma
interaction.

Figure 9 shows the radiographs generated by the 2-D software
raytrace and the HAVS algorithm. The initial 2-D mesh had an
arrangement of 321×33 vertices with 12 energy groups. The data
was extruded 180 degrees about the axis of the cylinder to match
the 2-D software raytrace. The final 3-D mesh size was 321×33×
16 vertices. The HAVS and 3-D software implementations were
applied to this mesh.



Table 1: Solution times in seconds for gas bag data set
Image Size 2-D Raytrace 3-D Raytrace HAVS

860MHz 2.2GHz 860MHz 2.2GHz 860MHz
128×128 6.1 2.5 44 18 17
256×256 23.4 9 216.4 81.2 17

Table 1 shows times in seconds for two different image sizes
obtained on two different workstations. All algorithms were run
on a 860 MHz Pentium Xeon Linux workstation with an NVidia
6800 GT. The software packages were also tested on a 2.2GHz
Xeon workstation. The results show that depending on the reso-
lution used to create the extrusion the efficiency cross-over for the
hardware implementation occurs at image sizes of about 256×256
for the 2-D raytrace, and at 128× 128 for the 3-D raytrace. The
raytrace packages are linear in image size while the HAVS algo-
rithm timings remain nearly constant until the card memory limit
is reached. Interestingly, we found that the software implementa-
tions scale linearly in the number of energy groups, which allows
the HAVS implementation to be competitive even for large numbers
of energy groups. Experience with the HAVS algorithm for visual-
ization applications indicates that its performance can vary between
ATI and NVidia hardware. We have found that on an ATI X800 Pro
our algorithm can run up to two times faster than on an nVidia 6800
GT.

The software raytracer produced radiographs with intensities
ranging from 5.6× 10−15 to 1.4× 10−3. We compared the inten-
sities computed by 2-D software raytrace against the HAVS algo-
rithm for an image size of 512× 512. We observed different error
characteristics depending the absolute intensity of pixels. In low-
emission regions (intensity less than 10−8) of the image the HAVS
algorithm had a mean relative error of 11 to 30 percent with a max-
imum of 98%. These errors appeared evenly spread across low-
emission regions of the radiograph. We suspect these errors are due
to a combination of small extinction and source terms and 32-bit
arithmetic. The HAVS algorithm was substantially more accurate
for pixels with intensity greater than 10−9 with a mean relative er-
ror of 1.6 to 2.5 percent and a maximum of nearly 95 percent. The
large errors are due to pixel size differences in the vertical locations
of horizontal edges in the intensity introduced by the piecewise lin-
ear extrusion of the 2-D mesh about the axis of symmetry. Many of
these edges were jumps in intensity by an order of magnitude across
two or three pixels, so pixel-by-pixel comparisons showed a large
relative error at these locations. Finally, we expect some errors to
occur due to incorrect fragment ordering which can occur when the
k-buffer algorithm is used.

7.3 Simulated Radiographs of Capsule Experiments

Figure 10 depicts the experimental setup for detection of the jet
created by the capsule fill tube. The capsule material is doped with
titanium which is more emissive than the shell material which is
primarily plastic. The X-rays pass through a window cut into the
hohlraum made of a lower Z material such as beryllium (Z=4). The
X-rays pass through an array of pinholes, which are imaged at dif-
ferent times to generate a time-lapse series to capture the compres-
sion of the capsule.

This apparatus is simulated in several stages. First, the capsule
is simulated at high resolution (∼ 10 million cells) by a coupled
radiation-hydrodynamics code. The simulation models the progress
of the compression and the jet formed by the fill tube. The result of
the simulation is a mesh defining the emissivity and opacity per cell
per photon energy group. This data is used as input to a raytracing
package that computes the photon intensity over each detector pixel

Figure 10: The diagnostic set-up depicting each stage of simulation.
The heated capsule shell emits X-rays, which travel through a window
on the hohlraum made of a material with lower atomic number than
the hohlraum itself. The radiation then passes through an array of
pinholes, which are imaged in successively to create a set of images in
time. The GPU-based tetrahedral projection code is used to simulate
the initial set of radiation leaving the hohlraum.

for each photon energy group in the simulation. The effects of the
low Z window, the pinholes, and any other filters are computed
using image processing techniques on the resulting photon intensity
information computed by the raytrace. For example, a Gaussian
blur is used to model pinholes and noise is added directly to the
image in a single pass. These image processing operations account
for less than 5% of the processing time.

Figure 11: A simulated radiograph of the fill-tube experiment creat-
ing using the raytrace package used by the physicists. The original
simulated data is two dimensional, so all features that are not on
the axis are rotated about the axial coordinate creating the banding.
The jet created by the fill tube is visible on the Z-axis (vertical).

The fill-tube simulation resulted in a 2-D mesh of 47,750 quadri-
laterals with assumed cylindrical symmetry. The software raytrace
used by the experimentalists raytraces the cylindrical extrusions of
each quadrilateral in the data set. For the hardware-accelerated k-
buffer algorithm the entire data set was extended about the axial
coordinate, partitioned into hexahedra, then partitioned into tetra-
hedra.

Figure 11 shows a simulated radiograph of a fill-tube jet experi-



ment. The image size was 160×160 pixels. The software raytrac-
ing package currently in use by the experimentalists took 2 minutes
for 57 energy groups on a machine with a 2.2 GHz Pentium class
processor and 896 MB of RAM. The hardware accelerated k-buffer
algorithm was applied to a 3-D stand-in of the fill tube data with
1,719,000 tetrahedra. The system was a 3.2 GHz Pentium 4 with
2 gigabytes of RAM running Windows XP. The graphics card was
an ATI X800 Pro with 256 MB of RAM. The initial sort took 0.656
seconds and the solution for all energy groups took 57.7 seconds.
We validated the results by running a software emulator of the k-
buffer algorithm on the actual fill tube data set.

8 CONCLUSION AND FUTURE WORK

We have demonstrated modified volume rendering algorithms that
can be used to produce accurate simulated radiographs. We de-
scribed implementations of cell projection algorithms with and
without sorting for the attenuation-only and attenuation-emission
cases. The algorithms described require recent graphics cards and
drivers, due to the requirement of floating point accuracy and the
use of advanced texture capabilities.

Our goal of interactivity for users at their workstations will re-
quire modification of the algorithms. Accuracy must be carefully
traded off against performance. A combination of smoothing and
coarsening of meshes, a reduction in the number of photon en-
ergy groups by preintegration, and more precomputation will be
required. It is possible that using 16-bit framebuffer capabilities
may also be an option for some applications. We would like to
be able to produce a visualization tool that enables interactive sub-
setting, orientation, and modification of material properties so that
scientists who combine simulation with experiment can better un-
derstand their data.

In the polyhedron projection method of Section 4.1, which is
guaranteed to be accurate because it does not involve read-before-
write hazards or limitations in the k size of the HAVS k-buffer, the
software scan conversion is a speed bottleneck. The Meshed Poly-
hedra Visibility Ordering (MPVO) sorting algorithm [19] can also
produce layers of non-overlapping cells, if the data volume is con-
vex, and the grid connection topology (which cells share faces) is
known. In our application to curvilinear grids (see Section 7.1) we
currently do not know the connection topology across the multiple
domain boundaries, but hope to reconstruct it in the future. For a
non-convex data volume, the Scanning Exact MPVO (SXMPVO)
sort of Cook et al. [3] uses software scan conversion of only the ex-
ternal faces to add the necessary extra links across empty gaps to the
directed visibility graph. A breadth-first sort of this graph can pro-
duce a set of non-overlapping layers for even a non-convex mesh,
and we plan to apply this in the future to attenuation plus emission
radiographs, where sorting is required. We also plan to investigate
parallel implementations on graphics clusters to obtain interactive
performance. Several strategies are possible including distributing
photon energy groups across several processors in cases where the
data can be duplicated and there are many photon energies. Domain
decomposition is a trivial exercise for absorption-only radiographs
thanks to order independence. However, domain decomposition for
algorithms modeling emissive materials will require modification
due to possible ordering complications at domain boundaries.
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