
Eurographics Symposium on Parallel Graphics and Visualization (2006)
Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

Interactive Volume Rendering of Unstructured Grids with
Time-Varying Scalar Fields

Fábio F. Bernardon,1 Steven P. Callahan,2 João L. D. Comba,1 and Cláudio T. Silva2

1Instituto de Informática, Federal University of Rio Grande do Sul, Brazil
2Scientific Computing and Imaging Institute, University of Utah

Abstract

Interactive visualization of time-varying volume data is essential for many scientific simulations. This is a chal-
lenging problem since this data is often large, can be organized in different formats (regular or irregular grids),
with variable instances of time (from few hundreds to thousands) and variable domain fields. It is common to
consider subsets of this problem, such as time-varying scalar fields (TVSFs) on static structured grids, which are
suitable for compression using multi-resolution techniques and can be efficiently rendered using texture-mapping
hardware. In this work we propose a rendering system that considers unstructured grids, which do not have the
same regular properties crucial to compression and rendering. Our solution uses an encoding mechanism that is
tightly coupled with our rendering system. Decompression is performed on the CPU while rendering for the next
frame is processed. The rendering system runs entirely on the GPU, with an adaptive time-varying visualization
that has a built-in level-of-detail that chooses the most significant aspects of the data.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Advances in computational power are enabling the creation
of increasingly sophisticated simulations generating vast
amounts of data. Effective analysis of these large datasets
is a growing challenge for scientists who must validate that
their numerical codes faithfully represent reality. Data ex-
ploration through visualization offers powerful insights into
the reliability and the limitations of simulation results, and
fosters the effective use of results by non-modelers. Mea-
surements of the real world using high-precision equipments
also produces a lot of information that requires fast and pre-
cise processing techniques that produce an intuitive result to
the user.

However, at this time, there is a mismatch between the
simulation and acquiring capabilities of existing systems,
which are often based on high-resolution time-varying 3D
unstructured grids, and the availability of visualization tech-
niques. In a recent survey article on the topic, Ma [Ma03]
says:

“Research so far in time-varying volume data visu-
alization has primarily addressed the problems of
encoding and rendering a single scalar variable on
a regular grid. ... Time-varying unstructured grid
data sets has been either rendered in a brute force
fashion or just resampled and downsampled onto a
regular grid for further visualization calculations.
...”

One of the key problems in handling time-varying data is
the raw size of the data that must be processed. For render-
ing, these datasets need to be stored (and/or staged) in mem-
ory either on main memory or GPU memory. Data trans-
fer rates create a bottleneck for the effective visualization of
these datasets. A number of successful techniques for time-
varying regular grids have used compression to mitigate this
problem, and allow for better use of resources.

Most solutions described in the literature consider only
structured grids, where exploring coherence (either spatial
or temporal) is easier due to the regular structure of the

c© The Eurographics Association 2006.

Bernardon, Callahan, Comba, and Silva / Interactive Volume Rendering of Unstructured Grids with TVSFs

Figure 1: Different time instances of the Turbulent Jet dataset consisting of one million tetrahedra and rendered at approxi-
mately four frames per second. Our user interface consists of an adjustable orange slider representing the level-of-detail and
an adjustable gray slider representing the current time instance.

datasets. For unstructured grids, however, the compression
is more challenging and several issues need to be addressed.

There are four fundamental pieces to adaptively volume
render dynamic data. First, compression of the dynamic
data for efficient storage is necessary to avoid exhausting
available resources. Second, handling the data transfer of
the compressed data is important to maintain interactivity.
Third, efficient volume rendering solutions are necessary to
provide high-quality images. In addition, the volume render-
ing system needs to be flexible enough to handle data that
may change at each frame. Finally, maintaining a desired
level of interactivity or allowing the user to change the speed
of the animation is important for the user experience. There-
fore, level-of-detail approaches that generally work on static
datasets must be adapted to efficiently handle the dynamic
case.

Though our goal is to eventually handle data that changes
in geometry and even topology over time, here we concen-
trate on the more specific case of time-varying scalar fields
on static geometry and topology. The main contributions of
this paper are:

• We show how the data transfer bottleneck can be miti-
gated with compression of time-varying scalar fields for
unstructured grids;

• We show how a hardware-assisted volume rendering sys-
tem can be enhanced to efficiently prefetch dynamic data
by balancing the CPU and GPU loads;

• We introduce a new importance sampling approach for
dynamic level-of-detail that operates on time-varying
scalar fields.

Figure 1 illustrates our system in action on an unstruc-
tured grid representation of the Turbulent Jet dataset. The
rest of this paper is organized as follows. Section 2 sur-
veys related previous work. Section 3 outlines our system for
adaptively volume rendering unstructured grids with time-
varying scalar fields. The results of our algorithm are shown

in Section 4 and conclusions and future work are described
in Section 5.

2. Previous Work

The visualization of time-varying data is of obvious impor-
tance, and has been the source of substantial research. Here,
we are particularly interested in the research literature re-
lated to compression and rendering techniques for this kind
of data. For a more comprehensive review of the literature,
we point the interested reader to the recent surveys by Ma
[Ma03] and Ma and Lum [ML04].

Very little has been done for compressing time-varying
data on unstructured grids, therefore all the papers cited be-
low focus on regular grids. Some researchers have explored
the use of spatial data structures for optimizing the render-
ing of time-varying datasets [ECS00, MS00, SCM99]. The
Time-Space Partitioning (TSP) Tree used in those papers is
based on an octree which is extended to encode one extra
dimension [SCM99] by storing a binary tree at each node
that represents the evolution of the subtree through time. The
TSP tree can also store partial sub-images to accelerate ray-
casting rendering.

The compression of time-varying isosurface and associ-
ated volumetric data with a wavelet transform was first pro-
posed in [Wes95]. With the advance of texture-based volume
rendering and programmable GPUs, several techniques ex-
plored shifting data storage and decompression into graph-
ics hardware, Coupling wavelet compression of structured
grids with decompression using texturing hardware was dis-
cussed in [GWGS02]. Lum et al. [LMC01, LMC02] com-
press time-varying volumes using the Discrete Cosine Trans-
form (DCT). Due to the fact that the compressed datasets fit
in main memory, they are able to achieve much higher ren-
dering rates than for the uncompressed data, which needs to
be incrementally loaded from disk. Because of their sheer

c© The Eurographics Association 2006.

Bernardon, Callahan, Comba, and Silva / Interactive Volume Rendering of Unstructured Grids with TVSFs

size, I/O issues become very important when dealing with
time-varying data [YMW04].

More related to our work is the technique proposed by
[SW03]. Their approach relies on vector quantization to se-
lect the best representatives among the difference vectors ob-
tained after applying a hierarchical decomposition of struc-
tured grids. Representatives are stored into textures and de-
compressed using fragment programs on the GPU Since the
multi-resolution representations are applied to a single un-
structured grid, different quantization and compression ta-
bles are required for each time instance. Issues regarding the
quality of rendering from compressed data were discussed
in [FAM∗05] using the approach described by [SW03] as a
test case.

Hardware-assisted volume rendering has received consid-
erable attention in the research community in recent years
(for a recent survey, see [SCCB05]). Shirley and Tuch-
man [ST90] introduced the Projected Tetrahedra (PT) al-
gorithm for decomposing tetrahedra into renderable trian-
gles based on the view direction. A visibility ordering of
the tetrahedra before decomposition and rendering is nec-
essary for correct transparency compositing. More recently,
Weiler et al. [WKME03] describe a hardware ray caster
which marches through the tetrahedra on the GPU in several
rendering passes. Both of these algorithms require neighbor
information of the mesh to correctly traverse the mesh for
visibility ordering or ray marching, respectively. An alter-
native approach was introduced by Callahan et al. [CICS05]
which treats the tetrahedral mesh as unique triangles that can
be efficiently rendered without neighbor information. This
algorithm is ideal for dynamic data because the vertices,
scalars, or triangles can change with each frame with very
little penalty. Subsequent work by Callahan et al. [CCSS05]
describes a dynamic level-of-detail (LOD) approach that
works by sampling the geometry and rendering only a subset
of the original mesh. Our system uses a similar approach for
LOD, but adapted to handle time-varying data.

3. Adaptive Time-Varying Volume Rendering

Our system for adaptive time-varying volume rendering of
unstructured grids consists of four major components: com-
pression, data transfer, hardware-assisted volume rendering,
and dynamic level-of-detail for interactivity. Figure 2 shows
the interplay of these components. To balance the workload,
our algorithm efficiently takes advantage of both the CPU
and GPU simultaneously, which improves the user experi-
ence.

3.1. Compression

Compression is important to reduce the memory footprint of
time-varying data, and the consideration of spatial and tem-
poral coherence of the data is necessary when choosing a

Figure 3: Decompression of a given time instance for each
mesh vertex requires adding the scalar mean of a block to the
quantized differences recovered from the respective entries
(i8 and i64) in the codebooks.

strategy. For example, it is common to exploit spatial co-
herence in time-varying scalar fields defined on structured
grids, such as in the approach described by [SW03], where
a multi-resolution representation of the spatial domain using
vector quantization is used. This solution works well when
combined with texture-based volume rendering, which re-
quires the decompression to be performed at any given point
inside the volume by incorporating the differences at each
resolution level.

In unstructured grids, the irregularity of topological and
geometric information makes it hard to apply a multi-
resolution representation over the spatial domain. In our sys-
tem we apply compression on the temporal domain by con-
sidering scalar values individually for each mesh vertex. By
grouping a fixed number of scalar values defined over a se-
quence of time instances we obtain a suitable representation
for applying a multi-resolution framework.

Our solution collects blocks of 64 consecutive scalars as-
sociated with each mesh vertex, applies a multi-resolution
representation that computes the mean of each block along
with two difference vectors of size 64 and 8, and uses vec-
tor quantization to obtain two sets of representatives (code-
books) for each class of difference vectors. For convenience
we use a fixed number of time instances, but compensate for
this by increasing the number of entries in the codebooks
if temporal coherence is reduced and leads to compression
errors.

This solution works well for projective volume rendering
that sends mesh faces in visibility ordering to be rendered.
At each rendering step, the scalar value for each mesh vertex
in a given time instance is decompressed by adding the mean
of a given block interval to two difference values, which are
recovered from the codebooks using two codebook indices
i8 and i64 (Figure 3).

c© The Eurographics Association 2006.

Bernardon, Callahan, Comba, and Silva / Interactive Volume Rendering of Unstructured Grids with TVSFs

Figure 2: An overview of our system. (a) Data compression and importance sampling for level-of-detail are performed in
preprocessing steps on the CPU. (b) Then during each pass, level-of-detail selection, optional object-space sorting, and data
decompression for the next step occur on the CPU. (c) Simultaneously, the image-space sorting and volume rendering are
processing on the GPU.

3.2. Data Transfer

There are several alternatives to consider when decompress-
ing and transferring time-varying data to the volume ren-
derer. This is a critical point in our system and has a great
impact on its overall performance. In this section we discuss
the alternatives we explored and present our current solu-
tion. It is important to point out that with future CPU and
GPU configurations this solution might need to be revisited.

Since the decompression is done on a per-vertex basis, our
first approach is to use the vertex shader on the GPU. This
requires the storage of codebooks as vertex textures, and the
transfer for each vertex of three values as texture coordinates
(mean and codebook indices i8 and i64). This solution does
not work well since the current generation of graphics hard-
ware does not handle vertex textures efficiently and incurs
several penalties due to cache misses, and the arithmetic cal-
culations in the decompression are too simple to hide this
latency.

A second approach is to use the GPU fragment shader.
Since computation is done at a fragment level, the decom-
pression and the interpolation of the scalar value for the frag-
ment is necessary. This requires three decompression steps
instead of a single step as with the vertex shader approach
(which benefits from the interpolator hardware). Also, this
computation requires accessing the mean and codebook in-
dexes. Sending this information as a single vertex attribute is
not possible since they are interpolated, and multiple-vertex
attributes increase the amount of data transfer per vertex.
Since our volume renderer runs in the fragment shader, this
solution also increases the shader complexity and thus re-
duces performance of the system.

The final and our current solution is to perform the decom-
pression on the CPU. Since codebooks usually fit in CPU
memory – a simple paging mechanism can be used for re-

ally large data – the main cost of this approach is to perform
the decompression step and send scalar values through the
pipeline. This data transfer is also necessary by the other two
approaches. The number of decompression steps is reduced
to the number of vertices, unlike the vertex shader approach
which requires three times the number of faces. In addition,
decompression of the next time step can be performed on
the CPU while the GPU renders the current frame. This pro-
vides a better distribution of the computation through all the
system resources.

3.3. Volume Rendering

Our system is based on the Hardware-Assisted Visibility
Sorting (HAVS) algorithm of Callahan et al. [CICS05]. Fig-
ure 2 shows how the volume rendering system handles time-
varying data.

The HAVS algorithm works in both object-space and
image-space. In object space the unique triangles that com-
pose the tetrahedral mesh are sorted approximately by their
centroids. This step occurs entirely on the CPU. In image-
space, the triangles are sorted and composited in correct vis-
ibility order using a fixed size A-buffer called the k−buffer.
The k-buffer is implemented entirely on the GPU using frag-
ment shaders. Because the HAVS algorithm operates on tri-
angles with no need for neighbor information, it provides a
flexible framework for handling dynamic data. In this case,
the triangles can be stored on the GPU for efficiency, and
the scalar values as well as the object-space ordering of the
triangles can be streamed to the GPU at each time instance.

Our algorithm extends the HAVS algorithm with time-
varying data with virtually no overhead by taking advantage
of the HAVS architecture. Since work performed on the CPU
can be performed simultaneously to work on the GPU, we
can leverage this parallelization to prefetch the time-varying

c© The Eurographics Association 2006.

Bernardon, Callahan, Comba, and Silva / Interactive Volume Rendering of Unstructured Grids with TVSFs

data. During the GPU rendering stage of the current time
instance, we use the CPU to decompress the time-varying
field of the next time step and prepare it for rendering. We
also distinguish user provided viewing transformations that
affect visibility order from those that do not and perform vis-
ibility ordering only when necessary. Therefore, the object-
space centroid sort only occurs on the CPU during frames
that have a change in the rotation transformation. This avoids
unnecessary computation when viewing time-varying data.

To manage the time stepping of the time-varying data, our
algorithm automatically increments the time instance at each
frame. To allow more control from the user, we also provide
a slider for interactive exploration of the time instances.

3.4. Time-Varying Level-of-Detail

Recent work by Callahan et al. [CCSS05] introduces a
new dynamic level-of-detail approach that works by using
a sample-based simplification of the geometry. This algo-
rithm operates by assigning an importance to each triangle
in the mesh in a preprocessing step based on properties of
the original geometry. Then, for each pass of the volume
renderer, a subset of the original geometry is selected for
rendering based on the frame rate of the previous pass. This
recent level-of-detail strategy was incorporated into the orig-
inal HAVS algorithm to provide a more interactive user ex-
perience.

An important consideration for visualizing time-varying
data is the rate at which the data is progressing through the
time instances. To address this problem, our algorithm uses
this level-of-detail approach to allow the user to control the
speed and quality of the animation. Since we are dealing
with time-varying scalar fields, heuristics that attempt to op-
timize the quality of the mesh based on the scalar field are
ideal. However, approaches that are based on a static mesh
can be poor approximations when considering a dynamically
changing scalar field.

Callahan et al. introduce a heuristic based on the scalar
field of a static mesh for assigning an importance to the tri-
angles. The idea is to create a histogram and use stratified
sampling to stochastically select the triangles that cover the
entire range of scalars. This approach works well for static
geometry, but may miss important regions if applied to each
time instance when considering time-varying data. In addi-
tion, attempting to assign a different importance for each
time instance is not practical for interactive rendering. Our
goal is to create a sampling strategy that works globally for
every time step.

For n time-steps, consider the n scalar values s for one
vertex as an independent random variable X , then the expec-
tation at that position can be expressed as

E[X] =
n

∑
1

s(Pr{X = s}),

where Pr{X = s} = 1/n. The dispersion of the probability
distribution of the scalars at a vertex can then be expressed
as the variance of the expectation:

Var[X] = E[X2]−E2[X]

=
n

∑
1

(s2

n

)
−

(n

∑
1

s
n

)2

In essence, this gives a spread of the scalars from their ex-
pectation. To measure dispersion of probability distributions
with widely differing means, it is common to use the co-
efficient of variation Cv, which is the ratio of the standard
deviation to the expectation. Thus, for each triangle t, the
importance can be assigned by calculating the sum of the Cv
for each vertex as follows:

Cv(t) =
3

∑
i=1

√
Var[Xt(i)]

E[Xt(i)]

This results in a dimensionless quantity that can be used for
assigning importance to each face by directly comparing the
amount of change that occurs at each triangle over time. This
algorithm provides good quality visualizations even at lower
levels-of-detail because the regions of interest (those that are
changing) are given a higher importance (see Figure 4). This
heuristic works especially well if the mesh has regions that
change very little over time since they are usually assigned a
lower opacity and their removal introduces very little visual
difference. For datasets with regions that change frequently
during some time steps and infrequently at others, this ap-
proach could be used on a subset of the time-steps and the
importance of the triangles could be changed at a small cost
several times throughout the animation.

To incorporate this level-of-detail strategy into our time-
varying system, we allow two types of interactions based on
user preference. The first is to keep the animation at a de-
sired frame-rate independent of the data size or viewing in-
teraction. This dynamic approach adjusts the level-of-detail
on the fly to maintain interactivity. Our second type of in-
teraction allows the user to use a slider to control the level-
of-detail. This slider dynamically changes the speed of the
animation by setting the level-of-detail manually. Since visi-
bility ordering-dependent viewing transformations occur on
the CPU in parallel to the GPU rendering, they do not change
the level-of-detail or speed of the animation. Figure 2 shows
the interaction of the level-of-detail algorithm with the time-
varying data.

4. Results

In this section we report results obtained using as computa-
tional environment a PC with Pentium D 3.2 GHz Proces-
sors, 2 GB of RAM, and an nVidia 7800 GTX GPU with
256 MB RAM. All images were generated at 512×512 res-
olution.

c© The Eurographics Association 2006.

Bernardon, Callahan, Comba, and Silva / Interactive Volume Rendering of Unstructured Grids with TVSFs

Mesh Num Num Time Size Size Compression SNR SNR Max Static Time-Varying Time-Varying
Verts Tets Instances TVSF VQ Ratio Min Max Error FPS FPS Tets/s

SPX1 36K 101K 64 9.0M 504K 18.3 39.5 42.0 0.0045 32.2 30.7 3.1M
SPX2 162K 808K 64 40.5M 2.0M 20.6 39.2 42.0 0.0091 5.0 4.7 3.8M
SPXF 19K 12K 192 14.7M 2.0M 7.1 20.8 30.2 0.0144 125 83.3 1.0M

BLUNT 40K 183K 64 10.0M 552K 18.6 41.7 44.4 0.0046 23.1 16.7 3.0M
TORSO 8K 50K 360 11.2M 1.0M 11.4 20.5 28.1 0.0017 49.2 48.9 2.5M

TJET 160K 1M 150 93.8 M 2.7M 34.7 5.3 17.9 0.2042 3.7 3.6 3.6 M

Table 1: Results of compression sizes, ratios, and error as well as performance comparisons for static and time-varying volume
rendering.

Datasets

Datasets used in our tests have diverse sizes and number of
time instances. The SPX1, SPX2 and Blunt Fin (BLUNT)
datasets were procedurally generated by linear interpolation
that fades scalar values to zero. The Torso dataset shows the
result of a simulation of a rotating dipole in the mesh. The
SPX-force (SPXF) dataset represents the magnitude of re-
action forces obtained when a vertical force is applied to a
mass-spring model that has as particles the mesh vertices and
as springs the edges between mesh vertices. Finally, the Tur-
bulent Jet (TJET) dataset represents a regular time-varying
dataset that was tetrahedralized and simplified to a reduced
representation of the original. The meshes used in our tests
with their respective sizes are listed in Table 1 and results
showing different time instances are shown in Figs 1 and 6.

Compression

The compression of TVSF data uses the vector quantization
code written by Schneider et al. [SW03]. The only caveat
while using this code is that it works with structured grids
with building blocks of 4× 4× 4 (for a total of 64 values
per block). In order to adapt its use for unstructured grids
it is necessary to group TVSF data into basic blocks with
the same amount of values. For each vertex in the unstruc-
tured grid, the scalar values corresponding to 64 contiguous
instances of time are grouped into a basic block and sent to
the VQ code.

The VQ code produced two codebooks containing dif-
ference vectors for the first and second level in the multi-
resolution representation, each with 256 entries (64× 256
and 8×256 codebooks). For our synthetic datasets this con-
figuration led to acceptable compression results as seen on
Table 1. However, for the TJET and SPX2F datasets we in-
creased the number of entries in the codebook due to the
compression error obtained. Both datasets were compressed
using codebooks with 1024 entries.

The size of TVSF data without compression is given by
sizeu = v× t × 4B, where v is the number of mesh vertices,
t is the number of time instances in each dataset, and each
scalar uses four bytes (float). The compressed size using VQ
is equal to sizevq = v× c× 3× 4B + c× size_codebook,
where c is the number of codebooks used (c = t/64), s is
the number of entries in the codebook (256 or 1024), each

vertex requires 3 values per codebook (mean plus codebook
indices i8 and i64), and each codebook size corresponds to
s×64×4B + s×8×4B.

In Table 1 we summarize the compression results we ob-
tained. In addition to the signal-to-noise ration given by the
VQ code, we also measured the minimum and maximum
descrepancy between the original and quantized values. Re-
sults show that procedurally generated datasets have a higher
SNR and smaller discrepancy, since they have a linear varia-
tion on their scalar fields. The TJET dataset has smaller SNR
values since it represents a real fluid simulation, but it also
led to higher compression ratios since codebook sizes are
fixed.

Rendering

The rendering system allows the user to interactively inspect
the time-varying data, play continuously all time instances,
and pause or even manually select a given time instance
by dragging a slider. Level-of-detail changes dynamically to
achieve interactive frame rates, or can be manually set using
a slider.

Rendering time statistics were produced using a fixed
number of viewpoints. In Table 1 we show timing results
for our experimental datasets. To compare the overhead of
our system with the original HAVS system that handles only
static data, we also measure the rendering rates for static
scalar fields. The dynamic overhead is minimal even for the
larger datasets. Note that for the smaller datasets, it is diffi-
cult to accurately measure the frame-rates when they exceed
60 frames per second.

In addition to the compression results described above,
we evaluate the image quality for all datasets by comparing
it against the rendering from uncompressed data. For most
datasets the difference in image quality was minimal. How-
ever, for the TJET dataset (the one with the smaller SNR val-
ues), there are some small differences that can be observed
in close-up views of the simulation (Figure 5)

Level-of-Detail

Our sample-based level-of-detail for time-varying scalar
fields computes the importance of the faces in a preprocess-
ing step that takes less than two seconds for even the largest
dataset in our experiments. In addition, there is no noticeable

c© The Eurographics Association 2006.

Bernardon, Callahan, Comba, and Silva / Interactive Volume Rendering of Unstructured Grids with TVSFs

Figure 4: Time-varying level-of-detail(LOD) strategy using
the coefficient of variance. For a close-up view, (a) 100%
LOD at 18 fps, (b) 50% LOD at 33 fps, (c) 25% LOD at 63
fps, and (d) 10% LOD at 125 fps.

overhead in adjusting the level-of-detail at a per frame basis
because only the number of triangles in the current frame is
computed (see [CCSS05]). Figure 4 shows the results of our
level-of-detail strategy on the TORSO dataset at decreasing
levels-of-detail. Figure 5 shows the increase in image qual-
ity when using our time-varying level-of-detail approach in-
stead of a static approach that is based on sampling the field
of one time-step. For comparison, we used the field-based
approach from [CCSS05] which gave the best image qual-
ity for this dataset. In our experiments, the frame-rates in-
crease at the same rate as the level-of-detail decreases (see
Figure 4).

Limitations

Our algorithm successfully balances CPU and GPU work-
loads. However, with GPU speeds increasing faster than
CPU speeds, this balance will need to be revisited to push
more work onto the GPU or shift the CPU burden to multi-
ple cores. Another limitation of our approach is that because
our compression exploits temporal coherence, it may not be
suitable for datasets with abrupt changes between time in-
stances.

5. Conclusion

Rendering dynamic data is a challenging problem in vol-
ume visualization. In this paper we have shown how time-
varying scalar fields on unstructured grids can be efficiently
rendered with virtually no penalty in performance. In fact,
for the larger datasets in our experiments, time-varying ren-
dering only incurred a performance penalty of 6% or less.
We have described how vector quantization can be employed

Figure 5: Comparison of rendering using (a) uncompressed
and (b) compressed data. Level-of-Detail is compared at 5%
using (c) our time-varying approach and (d) a published
technique for static datasets based on the field [CCSS05].

with minimal error to mitigate the data transfer bottleneck
while leveraging a GPU-assisted volume rendering system
to achieve interactive rendering rates. Our algorithm exploits
both the CPU and GPU concurrently to balance the compu-
tation load and avoid idle resources. In addition, we have
introduced a new time-varying approach for dynamic level-
of-detail that improves upon existing techniques for static
data and allows the user to control the interactivity of the an-
imation. Our algorithm is simple, easily implemented, and
most importantly, it closes the gap between rendering time-
varying data on structured and unstructured grids. To our
knowledge this is the first system for handling time-varying
data on unstructured grids in an interactive manner.

In the future, we plan to explore the VQ approach to find
a general way of choosing its parameters based on dataset
characteristics. Also, when next generation graphics cards
become available, we would like to revisit our GPU solution
to take advantage of new features. Finally, we would like to
explore solutions for time-varying geometry and topology.

6. Acknowledgments

The authors thank J. Schneider for the VQ code, Mike Calla-
han and the SCIRun team at the University of Utah for the
torso dataset, Bruno Notrosso (Electricite de France) for
the SPX dataset, Kwan-Liu Ma for the TJET dataset, Huy
Vo for the tetrahedral simplification, and NVIDIA from do-
nated hardware. The work of Fábio Bernardon and João
Comba is supported by a CNPq grant 478445/2004-0. The
work of Steven Callahan and Cláudio Silva has been sup-
ported by the National Science Foundation under grants
CCF-0401498, EIA-0323604, OISE-0405402, IIS-0513692,

c© The Eurographics Association 2006.

Bernardon, Callahan, Comba, and Silva / Interactive Volume Rendering of Unstructured Grids with TVSFs

Figure 6: Different time instances of the SPXF (above) and Torso (below) datasets at 100% LOD.

and CCF-0528201, the Department of Energy, an IBM Fac-
ulty Award, the Army Research Office, and a University of
Utah Seed Grant.

References

[CCSS05] CALLAHAN S. P., COMBA J. L. D., SHIRLEY P.,
SILVA C. T.: Interactive rendering of large unstructured grids
using dynamic level-of-detail. In IEEE Visualization ’05 (2005),
pp. 199–206.

[CICS05] CALLAHAN S. P., IKITS M., COMBA J. L., SILVA

C. T.: Hardware-assisted visibility ordering for unstructured vol-
ume rendering. IEEE Transactions on Visualization and Com-
puter Graphics 11, 3 (2005), 285–295.

[ECS00] ELLSWORTH D., CHIANG L.-J., SHEN H.-W.: Accel-
erating time-varying hardware volume rendering using TSP trees
and color-based error metrics. In Volume Visualization Sympo-
sium (2000), pp. 119–128.

[FAM∗05] FOUT N., AKIBA H., MA K.-L., LEFOHN A., KNISS

J. M.: High-quality rendering of compressed volume data for-
mats. In EuroVis ’05 (2005).

[GWGS02] GUTHE S., WAND M., GONSER J., STRASSER W.:
Interactive rendering of large volume data sets. In IEEE Visual-
ization ’02 (2002), pp. 53–60.

[LMC01] LUM E., MA K.-L., CLYNE J.: Texture hardware as-
sisted rendering of time-varying volume data. In IEEE Visualiza-
tion ’01 (2001), pp. 263–270.

[LMC02] LUM E., MA K.-L., CLYNE J.: A hardware-assisted
scalable solution of interactive volume rendering of time-varying
data. IEEE Transactions on Visualization and Computer Graph-
ics 8, 3 (2002), 286–301.

[Ma03] MA K.-L.: Visualizing time-varying volume data. Com-
puting in Science & Engineering 5, 2 (2003), 34–42.

[ML04] MA K.-L., LUM E.: Techniques for visualizing time-
varying volume data. In Visualization Handbook, Hansen C. D.,
Johnson C., (Eds.). Academic Press, 2004.

[MS00] MA K.-L., SHEN H.-W.: Compression and accelerated
rendering of time-varying volume data. In International Com-
puter Symposium Workshop on Computer Graphics and Virtual
Reality ’02 (2000), pp. 82–89.

[SCCB05] SILVA C. T., COMBA J. L. D., CALLAHAN S. P.,
BERNARDON F. F.: A survey of GPU-based volume rendering
of unstructured grids. Brazilian Journal of Theoretic and Applied
Computing (RITA) 12, 2 (2005), 9–29.

[SCM99] SHEN H.-W., CHIANG L.-J., MA K.-L.: A fast vol-
ume rendering algorithm for time-varying field using a time-
space partitioning (TSP) tree. In IEEE Visualization ’99 (1999),
pp. 371–377.

[ST90] SHIRLEY P., TUCHMAN A.: A polygonal approximation
to direct scalar volume rendering. San Diego Workshop on Vol-
ume Visualization 24, 5 (1990), 63–70.

[SW03] SCHNEIDER J., WESTERMANN R.: Compression do-
main volume rendering. In IEEE Visualization ’03 (2003).

[Wes95] WESTERMANN: Compression time rendering of time-
resolved volume data. In IEEE Visualization ’95 (1995), pp. 168–
174.

[WKME03] WEILER M., KRAUS M., MERZ M., ERTL T.:
Hardware-Based Ray Casting for Tetrahedral Meshes. In IEEE
Visualization ’03 (2003), pp. 333–340.

[YMW04] YU H., MA K.-L., WELLING J.: I/O strategies for
parallel rendering of large time-varying volume data. In Euro-
graphics Symposium on Parallel Graphics and Visualization ’04
(2004), pp. 31–40.

c© The Eurographics Association 2006.

