
Interactive Rendering of Large Unstructured Grids Using Dynamic
Level-of-Detail

Steven P. Callahan 1 João L. D. Comba 2 Peter Shirley 3 Cláudio T. Silva 1,3

1 Scientific Computing and Imaging Institute, University of Utah
2 Instituto de Informática, UFRGS, Brazil
3 School of Computing, University of Utah

Figure 1: Volume renderings of the Torso data set with over one million tetrahedra using view-aligned sampling. From left to right: full quality
(100% LOD) rendering at 2.0 fps, 25% LOD at 5.3 fps, 10% LOD at 10.0 fps, and 5% LOD at 16.1 fps.

ABSTRACT

We describe a new dynamic level-of-detail (LOD) technique that
allows real-time rendering of large tetrahedral meshes. Unlike ap-
proaches that require hierarchies of tetrahedra, our approach uses
a subset of the faces that compose the mesh. No connectivity is
used for these faces so our technique eliminates the need for topo-
logical information and hierarchical data structures. By operating
on a simple set of triangular faces, our algorithm allows a robust
and straightforward graphics hardware (GPU) implementation. Be-
cause the subset of faces processed can be constrained to arbitrary
size, interactive rendering is possible for a wide range of data sets
and hardware configurations.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling— Surface and object representations,
geometric algorithms; I.3.3 [Computer Graphics]: Picture/Image
Generation

Keywords: interactive volume rendering, multiresolution meshes,
level-of-detail, tetrahedral meshes

1 INTRODUCTION

Unstructured meshes are common in scientific computing. Direct
volume rendering for these meshes follows two main approaches:
ray casting and cell projection in visibility order. These approaches
are typically too slow for interactivity when full resolution meshes
are rendered. Thus, level-of-detail (LOD) techniques are an attrac-
tive way to trade off rendering quality for rendering speed. How-
ever, unlike for rectilinear volumes, it is not well studied how LOD

techniques should be applied to unstructured meshes.
There have been two basic approaches to LOD for unstructured

meshes, typically for the special case of tetrahedral meshes. The
first has been employed in ray casting where the scalar field along
the ray is sparsely sampled to improve speed. The second is to
simplify the mesh into a hierarchy of new meshes, each with fewer
tetrahedra than its parent mesh. The ray tracing approach has the
advantage of simplicity and robustness, and the mesh simplification
approach has the advantage that it can be easily used in a graphics
hardware (GPU) implementation.

This paper describes a technique that attempts to capture the sim-
plicity of the ray sampling method while still allowing a natural
GPU implementation. This is accomplished by sparsely sampling
the faces between tetrahedra in the mesh without creating an ex-
plicit hierarchy of LODs. The GPU is used to perform ray integra-
tion between these sparsely sampled faces without the need for con-
nectivity information. This avoids the complexity of the mesh sim-
plification methods, but still allows a GPU implementation, which
makes a fast and robust LOD rendering system possible (Figure 1).
Our main contributions are:

1. We propose a new sample-based LOD framework for render-
ing unstructured grids that can be implemented by simply us-
ing a subset of mesh faces.

2. We examine several strategies for deciding which faces to
draw, and discuss their relative merits.

3. We provide an efficient implementation of our techniques, and
show that they can be applied to generate high-quality render-
ings of large unstructured grids.

The remainder of this paper is layed out as follows. We summa-
rize related work in Section 2. In Section 3 we lay the framework
for sample-based simplification for LOD. A description of our sam-
pling strategies is described in Section 4. In Section 5 we present

our implementation details. Our experimental results are shown in
Section 6, and in Section 7 we discuss the different trade-offs with
our approach. Finally, in Section 8 we provide our conclusions and
future work.

2 RELATED WORK

Volume rendering unstructured grids has been a topic of much re-
search, and major advances have been made in performing this ren-
dering efficiently (e.g., [1, 25, 31, 34, 37, 40]). Because the size of
the unstructured grids continues to increase faster than our visual-
ization techniques can handle them, other research has focused on
approximately rendering unstructured grids to maintain interactiv-
ity [4, 13, 20, 28]. The two main techniques have been to use LOD
representations of the data [2, 3, 16, 33], or to sparsely sample view-
ing rays.

The approximate rendering was first done by sampling sparsely
along viewing rays [8]. This idea can work for unstructured meshes
as well, provided there is a mechanism for skipping cells entirely
(e.g., [30]). Alternatively, a multiresolution approach is commonly
used to increase the rendering speed of triangle meshes [23]. They
often work by dynamically selecting a set of triangles to approx-
imate the surfaces to within some error bound, or to meet some
target frame rate [15, 22].

For structured grids, computing and dynamically rendering mul-
tiple LODs is relatively straightforward. This can be accomplished
by using hardware-accelerated techniques that involve slicing the
volume with view-aligned texture hierarchies [19, 38]. Because the
data is structured, the view-aligned slices can be computed quickly
and compositing can be accomplished by blending the fragments
into the framebuffer in the order in which they are generated.

For unstructured meshes the problem is not as well studied. One
way to speed up the rendering is to statically simplify the mesh in
a preprocessing step to a mesh small enough for the volume ren-
derer to handle [2, 3, 16]. However, this approach only provides a
static approximation of the original mesh and does not allow for
dynamic changes to the level of detail. This way, the user can not
easily refine features of interest, or dynamically adapt the LOD to
the capabilities of the hardware being used. Dynamic LOD ap-
proaches are preferable, and have shown to be useful by Museth
and Lombeyda [28] even if the pictures generated are of a more
limited type than full-blown volume renderings. To our knowledge,
the only two approaches that describe dynamic LOD volume ren-
dering for unstructured meshes are the recent works by Cignoni et
al. [4] and Leven et al. [20].

Cignoni et al. [4] propose a technique based on creating a
progressive hierarchy of tetrahedra that is stored in a multi-
triangulation data structure [14] that is dynamically updated to
achieve interactive results. Their algorithm is quite clever (and in-
volved), as an efficient implementation requires the use of compres-
sion of the topology and hierarchical information to be practical.
Leven et al. [20] convert the unstructured grid into a hierarchy of
regular grids that are stored in an octree, and can be rendered us-
ing LOD techniques for regular grids. Their experiments show that
the resulting LOD hierarchy is over two orders of magnitude larger
than the original data. Both of these techniques require some form
of hierarchical data structures, fairly involved preprocessing, and
relatively complex implementations.

Many methods have simplified triangle meshes into smaller sets
of textured polygons (e.g., [9, 24]). Another approach is to use com-
pression schemes to minimize the bandwidth of the geometry [11].
Of these, our method is most similar in spirit to the randomized Z-
buffer [36] or the work by Deussen et al. [10], where a subset of
all the geometry is drawn. Our algorithm is also related to the sam-
pling work of Danskin and Hanrahan [8]. Some of our sampling
strategies are reminiscent of Monte Carlo rendering (e.g., [5, 7]).

3 A SAMPLE-BASED LOD FRAMEWORK

In scientific computing, it is common to represent a scalar function
f : D ⊆ R3 → R as sampled data by defining it over a domain D,
which is represented by a tetrahedral mesh. For visualization pur-
poses, we define the function f as linear inside each tetrahedron of
the mesh. In this case, the function is completely defined by assign-
ing values at each vertex vi(x,y,z), and is piecewise-linear over the
whole domain. The domain D becomes a 3D simplicial complex
defined by a collection of simplices ci. It is important to distinguish
the domain D from the scalar field f . The purpose of visualization
techniques, such as isosurface generation [21] and direct volume
rendering [25] are to study intrinsic properties of the scalar field
f . The time and space complexity of these techniques are heavily
dependent on the size (or number of simplices) and shape of the
domain D.

For large data sets, it is not possible to achieve interactive visu-
alization without using an approximation. In these cases, it is often
useful to generate a reduced-resolution scalar field f̄ : D̄⊆R3→R,
such that:

• the new scalar field f̄ approximates f in some natural way,
i.e., | f̄ − f | ≤ ε;

• the new domain D̄ is smaller than D.

LOD techniques attempt to compute multiple approximations f̄i
from f at decreasing resolutions for interactive visualization. Re-
cently, techniques have been proposed that hierarchically simplify
the tetrahedral mesh by using edge collapses (see [4]). These tech-
niques work similarly to triangle based simplification and use con-
nectivity information to incrementally cull simplices ci from the
domain D, i.e., when a 1-simplex is collapsed, several 2- and 3-
simplices become degenerate and can be removed from the mesh.
Most techniques order the collapses using some type of error cri-
terion, stopping when the size of the domain |D̄| reaches the de-
sired LOD. f̄ computed in this way for LOD can be considered as
a domain-based simplification of f because the domain D is being
resampled with fewer vertices.

An alternative approach for computing f̄ is sample-based simpli-
fication. If we consider a ray r that leaves the viewpoint and passes
through screen-space pixel (x,y) then enters the scalar field f , a
continuous function g(t) is formed for r where g(t) = f (r0 + trd).
In the domain D, represented by a tetrahedral mesh, this function
g(t) is piecewise-linear and defined by the set of points P = {pi

x,y}.
An approximation ḡ(t) can be created by using a subset P̄ of P. In
other words, by removing some of the samples that define g(t), we
obtain an approximating function ḡ(t). This subsampling can occur
on the tetrahedral mesh using any of the 2- or 3-simplices.

The key difference between domain- and sample-based simpli-
fication is that they approximate the domain D in different ways
with respect to the volume integral. If you consider the ray r pass-
ing through a medium represented by D, the volume rendering in-
tegral is computed at each 2-simplex intersection within D (see
Max [26]). Domain-based simplification approximates the domain
D, then computes an exact volume integral over the approximate
geometry. Sample-based simplification uses the original geometry
to represent D, then computes an approximate volume integral over
the original geometry. Figure 2 shows a 2D example of the func-
tion g(t) and approximate functions ḡ1(t) and ḡ2(t) using these two
approaches as the ray r passes through D. It is important to empha-
size that sample-based simplification provides different, though not
necessarily better, results than domain-based simplification. The
advantage of this approach is the simplicity of the simplification
method and data structures necessary to perform dynamic LOD.

Because we want f̄ to be a good approximation of f , when us-
ing sample-based simplification it is necessary to ensure that each

Figure 2: Classification of LOD simplification techniques in 2D represented by a mesh and the function occurring at a ray r through the mesh.
Undefined areas of the volume are expressed as dashed lines. (a) The original mesh showing the function g(t) that ray r passes through. (b)
The mesh after sample-based simplification where the function approximation ḡ1(t) is computed by removing samples from the original function
g(t). (c) The mesh after domain-based simplification, where the approximating function ḡ2(t) is computed by resampling the original domain.

ray r passing through f̄ encounters at least two samples to avoid
holes in the resulting image. Furthermore, by removing geome-
try without constraint in a nonconvex mesh, we could possibly be
computing the volume integral over undefined regions outside of D.
This problem can easily be resolved by always guaranteeing that the
boundary B of f is always sampled (see Figure 2).

This problem is similar to importance sampling where the in-
tegral can be approximated using probabilistic sampling or Monte
Carlo techniques [7, 32]. However, this is a much more difficult
problem when considering the entire space of functions that occur
because of the infinite number of viewpoints. Therefore, sampling
strategies that attempt to optimize the coverage of the functions
from all viewpoints become necessary.

3.1 Face Subsampling

The sample-based simplification strategy described above operates
on the existing geometric representation of the mesh. In principle,
the sampling could be done on any of the simplices that compose
the mesh. We choose to sample by the faces (triangles) that make
up the tetrahedra. This is due to the flexibility and speed of the
sampling that it allows.

If we consider the topology of the mesh as a collection of tri-
angles (2-simplices) embedded in R3, f̄i can be computed at each
LOD i by selectively sampling a portion of the faces. Thus, by re-
moving one triangle, we are effectively removing one sample of the
function g(t) that represents f along the ray r. The advantage of this
technique is that it provides a natural representation for traversing
the different LODs.

Given a set of unique faces F in a tetrahedral mesh, boundary
faces B and internal faces I can be extracted such that B∪ I = F .
Since B gives a minimum set of faces that bound the domain D of
the mesh, B should remain constant. By adding and removing faces
from I, we get an approximation of the mesh where B∪ I ⊆ F . This
leads to a simple formula for determining the number of faces in I
that need to be selected in each pass:

|I| =
|Iprev|×TargetTime

RenderTime
,

where TargetTime is the amount of time you would like each frame
to take for interactive viewing, i.e., 0.1 seconds, and RenderTime is
the time that the previous frame required to render. This allows the
system to adapt the LOD to the current view and render complexity.

It also allows an easy return to the full quality mesh by selecting all
the internal faces to be drawn with the boundary faces.

4 SAMPLING STRATEGIES

To minimize visual error the faces should be chosen while account-
ing for both transfer function and viewpoint. However, to maxi-
mize visual smoothness when the viewpoint or the transfer func-
tion change, the faces should be based only on mesh geometry and
scalar field values. This conflict between accuracy and ability to
change viewpoint and transfer function easily indicates that the best
sampling strategy will depend on user goals and properties of the
data. For this reason we provide a variety of sampling strategies.

We described the steps that are required to achieve interactive
rates given an internal face list. However, the heuristics that are
incorporated to assign importance to the faces are just as important.
We describe four methods that operate on different properties of the
mesh: topology sampling, view-aligned sampling, field sampling,
and area sampling strategies (Figure 4). The first two strategies
are deterministic. The second two strategies are randomized, each
rewarding different data attributes. We also implemented a naive
randomized algorithm that selected a uniformly random subset of
faces, but these results were poor for the same reason unstratified
sampling is poor when sampling pixels: clumping and holes [27].

4.1 Topology Sampling

The first sampling method that we employ is based on the topol-
ogy of the initial tetrahedral mesh. This approach assigns layers to
some of the faces in an attempt to select faces that are connected,
resulting in an image that looks more continuous. Similar work has
been done for determining a sequence of nonconvex hulls on a point
set [12]. This approach requires a preprocessing step in which we
extract the boundary, remove the tetrahedra on the boundary, and re-
peat until all the tetrahedra have been peeled from the mesh. A new
layer value is assigned to the faces on the boundary at each step in
the algorithm and separated into the boundary face list (layer zero)
and the internal face list (all other faces). The preprocessing layer
extraction algorithm is given in Figure 3.

This algorithm assigns layers to some of the faces, but not all
of them. In practice, it uses enough of the faces for a good image.
However, when all of the layer faces cannot be drawn because they
exceed the limit of internal faces allowed for interactive rendering,

EXTRACT LAYERS
CurrentLayer← 0
for each tetrahedron t

Peeled[t]← false
while there exists t such that Peeled[t] = false

for each face f
f ← External

Set s = /0
for each tetrahedron t such that Peeled[t] = false

for each face f in t
if f is already in s

f ← Internal
else insert f into s

for each face f such that f = External
f ←CurrentLayer
for each tetrahedron t such that f and t share a vertex

Peeled[t] = true
CurrentLayer←CurrentLayer +1

Figure 3: Pseudocode for extracting the topology layers of a tetra-
hedral mesh.

a subset of the layers are rendered. This is done by picking an
even distribution of the layers throughout the mesh until the target
internal face count is reached.

4.2 View-Aligned Sampling

The second sampling strategy that we use is view-aligned sampling.
The intuition to this approach is that the faces perpendicular to the
viewing direction are the most visible ones. Therefore, by selecting
the internal faces that are more closely aligned to the current view,
we can optimize the screen-space coverage. A simple approach
would be to perform a dot product between each internal face nor-
mal and the viewing direction to order the faces in the internal face
list. However, this approach is costly because it requires processing
on every face independent of the LOD. Instead, we use a simple
technique based on the work of Kumar et al. [18] and Zhang and
Hoff [41] for back-face culling. In a preprocessing step, the faces
are clustered by their normals. The clusters are computed by fitting
a bounding box to a unit sphere and subdividing the faces of the
box into regions. This grid is then projected onto the sphere, and
the internal faces are clustered based on their normal’s location in
the distribution. Clearly, this is not a uniform distribution, but in
practice it produces good results. We used a 4×4 grid for each of
the faces of the bounding box, which results in 96 normal clusters.
This allows us to detect view-aligned faces based on their cluster in-
stead of individually, which significantly increases the performance
of the algorithm.

4.3 Field Sampling

Our third approach for sampling internal faces is based on the field
values of the tetrahedral mesh. In most cases this is represented
as a scalar at each vertex in the mesh. This technique assigns im-
portance to a face based on the average scalar value at its vertices.
In a preprocessing step, a histogram is built using the normalized
scalar values, which shows the distribution of the field. Using an
approach similar to stratified sampling in Monte Carlo integration,
we divide this histogram into evenly spaced intervals (we use 128),
then randomly pick the same number of faces from each interval to
be rendered. Unlike Monte Carlo integration, which provides the
underlying theory for randomly sampling to approximate a func-
tion, we are randomly sampling over the entire space of functions.
The internal face list is filled with these random samples, so that
no extra computation is required for each viewpoint or change in
LOD.

Figure 4: A 2D example of sampling strategies for choosing internal
faces. (a) A topology sampling which calculates layers by peeling
boundary tetrahedra. (b) A view-aligned sampling that selects the
faces most relevant to the current viewpoint. (c) A field sampling
which uses stratified sampling on a histogram of the scalar values.
(d) An area sampling which selects the faces by size.

A similar technique can be applied to the field using the transfer
function. Intuitively, samples should be selected based on opacity
instead of scalar value. A histogram is built using the opacity of the
scalar values from the transfer function and sampled randomly as
previously described. The tradeoff of this method is that it requires
resampling with every transfer function update. Due to this con-
straint, we sample without the transfer function in our experiments.

4.4 Area Sampling

Our fourth strategy recognizes that if the removal of a triangle
causes an error of a certain magnitude at a given pixel, then the
total error magnitude for all pixels is proportional to the area of that
triangle. Thus we could prioritize based on area. An easy way to
do this while preserving the possibility of choosing small faces is to
prioritize based on Ai ∗ξi where Ai is the area in R3 of the ith face
and ξi is a uniform random number. This randomizes the selected
triangles, but still favors the larger ones being drawn. As with field
sampling, this list does not need to be rebuilt for new viewpoints or
number of faces to be drawn.

5 IMPLEMENTATION

The algorithm for dynamic LOD builds on the Hardware-Assisted
Visibility Sorting (HAVS) volume rendering system proposed by
Callahan et al. [1]. Figure 5 shows an overview of how the sampling
interacts with the volume renderer.

In a preprocessing step, the boundary faces are separated from
the internal faces and each are put in a list. Each internal face con-
tains a neighboring face with the same vertices and scalar values.
To avoid the redundancy of computing a zero-length interval, these
duplicate faces are removed. The internal face list is reordered from
most important to least important based on one of sampling strate-
gies previously described. This allows us to dynamically adjust the
number of faces that are being drawn by passing the first |I| faces to
the volume renderer along with the boundary faces. For full quality
images, which are shown when the user is not interactively viewing
the mesh, the entire internal face list is used.

Figure 5: Overview of the dynamic LOD algorithm. (a) The LOD
algorithm samples the faces and dynamically adjusts the number of
faces to be drawn based on the previous frame rate. (b) The HAVS
volume rendering algorithm sorts the faces on the CPU and GPU and
composites them into a final image.

Once the proper subset of faces has been selected, the HAVS
algorithm prepares the faces for rasterization by sorting them by
their centroids. This provides only a partial order of the faces in
object-space since the mesh may contain faces of varying size or
even visibility cycles. Upon rasterization, the fragments undergo
an image-space sort via the k-buffer, which has been implemented
using fragment shaders. The k-buffer keeps a fixed number of frag-
ments (k) in each pixel of the framebuffer. As a new fragment is ras-
terized, it is compared with the other entries in the k-buffer, the two
entries closest to the viewpoint (for front-to-back) are used to find
the color and opacity for the fragment using a lookup table which
contains the preintegrated volume integral. The color and opacity
are composited in the framebuffer, and the remaining fragments are
written back to the k-buffer (see [1] for more detail).

For dynamic LOD, we are interested in the time that each frame
requires to render so we can adjust accordingly. Therefore, we track
the render time at each pass and use it to adjust the number of in-
ternal faces that are sent to the rasterizer in the next step. This is
very important when you are interacting with the system. Since the
bottleneck of the volume renderer is rasterization, by zooming in or
out, the frame rate can increase or decrease depending on the size
of the faces being drawn. Dynamically adjusting the LOD ensures
that frame rates remain constant. We use 10 frames per second as a
target frame rate for a good balance in interactivity and quality.

As described above, HAVS requires a preintegrated lookup ta-
ble to composite the image-space fragments. This table is repre-
sented as a 3D texture that looks up a front fragment scalar, a back
fragment scalar, and the distance between the fragments. Unfortu-
nately, we remove samples, thereby introducing intervals that are
larger than the maximum edge length from which the lookup ta-
ble is built. In a software implementation, this problem could be
resolved by repeatedly compositing the fragment until the gap has
been filled similar to Danskin and Hanrahan [8]. However, this
repetition does not map to current hardware. To solve this issue
we create a separate lookup table, which is preintegrated to handle
rays that span the entire bounding box of the mesh. This secondary
lookup table is used during the dynamic LOD where the quality
difference is not as noticeable and is replaced by the original ta-
ble when rendering full quality images. Using a logarithmic scale
of the distance to build the lookup table would further improve the
image quality during LOD rendering [17].

6 RESULTS

Our experiments were run on a PC with a 3.2 GHz Pentium 4 pro-
cessor and 2,048 MB RAM. The code was written in C++ with
OpenGL and uses an ATI Radeon X800 Pro graphics processor with
256 MB RAM. The Spx2, Torso, and Fighter data sets were used to
measure performance and to compare the sampling strategies.

Figure 6: Plot of the render time for the Spx2 (blue), Torso (red),
and Fighter (black) at different LODs using field sampling. Approxi-
mately 3% LOD is the boundary only and 100% LOD is a full quality
image.

An important consideration with LOD techniques is the prepro-
cessing time to create the data structures necessary for interactive
rendering. Table 1 shows the three data sets with their sizes and
the time required to preprocess the original mesh into static LODs
using the different sampling strategies. The results show that all
strategies can be preprocessed quickly, which is important in real-
world use, where data may be regenerated with different parameters
repetitively.

Rendering a tetrahedral mesh using sample-based LOD dynam-
ically is based on the fundamental assumption that the render time
decreases proportionally to the number and size of the faces that
are sampled. The performance of our volume renderering system is
based on the number of fragments that are processed at each frame.
This roughly corresponds to the number of faces that are rasterized.
Figure 6 shows the performance of the volume rendering system as
the number of sampled faces increases. The almost linear scale fac-
tor provides a good estimate of the number of faces that would be
required to render a data set at a specific frame rate. It is important
to note that sampling by area or by view decreases the number of
faces that can be rasterized interactively because the screen-space
area of the faces is generally larger, resulting in more fragments.
For example, 10% LOD using area sampling will take longer to
render than 10% LOD using field sampling.

Another important aspect of sample-based LOD is choosing a
sampling strategy that gives the best approximation of your original
mesh. To measure the effectiveness of our sampling strategies, we
generated images of each data set at 14 fixed viewpoints using all
the sampling strategies and compared the results with full quality
results from the same viewpoints. Unfortunately there are not yet
accepted methods for accurately predicting the magnitude of the
difference between two images (as opposed to whether images are
perceived as identical where good methods do exist [29]). In the
absence of such an ideal method, we compare images with root
mean square error (RMSE). These measurements should only be

Data Set Tetrahedra Topology View Field Area
Spx2 828 K 17.8 5.3 4.5 13.9
Torso 1,084 K 87.2 11.6 10.5 11.2
Fighter 1,403 K 75.6 15.3 13.9 15.3

Table 1: Preprocessing time in seconds of the different sampling
strategies for dynamic LOD. The time represents all operations on
the mesh after it has been loaded from file before the first rendering
pass occurs.

Figure 7: Direct comparison of the different sampling strategies with a full quality rendering of the Spx2 data set (828 K tetrahedra). Full
quality is shown at 2.5 fps and LOD methods are shown at 10 fps (3% LOD for area sampling and 10% LOD on all other strategies).

Figure 8: Error measurements of the different sampling strategies for 14 fixed viewpoints on the Spx2, Torso, and Fighter data sets. Root mean
squared error is used to show the difference between the full quality rendering and the LOD rendering at 10 fps.

used as a subjective tool for where the images differ as opposed
to any quality ranking for LOD strategies. Figure 8 shows the three
data sets at the different viewpoints and the error measured between
each LOD sampling strategy and a full quality image. Notice that
no sampling strategy is superior in all cases, but they all provide a
good approximation.

To provide a more qualitative analysis of the sampling strategies,
we also show images of the different techniques on the same data
set. Figure 7 shows a direct comparison of the strategies with a full
quality rendering.

7 DISCUSSION

Our algorithm is designed to meet a speed goal while maintaining
what visual quality is possible and in this sense it is oriented toward
time-critical systems such as TetSplat [28]. Unlike TetSplat, our
method aims to do direct volume rendering with transfer functions
rather than surface rendering with castaways. Our method also has
the advantage that it requires very little additional storage beyond
the original mesh. Approaches that sample the unstructured mesh
on a regular grid [20] increase the original data size substantially
and require extensive preprocessing.

Our method is an alternative to rendering explicit hierarchical
meshes [4]. While explicit hierarchies are elegant and provide
excellent visual quality, they require more preprocessing than our
technique, are difficult to implement, and they do not easily al-
low for continuous LOD. The main advantage of explicit hierar-
chies over our technique is that they can provide smoother imagery
that may be a better visual match to an exact rendering. However,
our subjective impression is that our approximate rendering is more
than accurate enough for interaction with volume data, and what
objective visual accuracy is needed for visualization tasks is an in-
teresting and open question (see Figure 9).

A key characteristic of our algorithm is that it operates on mesh

faces rather than mesh cells. This results in fewer primitives than
methods that render cells by breaking them into polygons (e.g., [31,
39]), which improves overall bandwidth of the rendering algorithm.
For example, given n tetrahedra, projected tetrahedra algorithms
render 3.4n triangles, while HAVS renders only 2n. Furthermore,
the set of all possible mesh faces to be rendered do not change with
viewpoint, just the order and number of the face indices. Thus, we
can leave the geometry in memory on the GPU for better efficiency.
Another advantage of our system is that it works with perspective
or parallel projections with no additional computation. Most im-
portantly, a face-based method allows faces to be dropped without
major errors in opacity because the HAVS method is aware of ad-
jacent faces visible through a pixel, whereas dropping cells in cell-
based methods leads to undesirable accumulation of empty space
which causes the volume to gradually grow more and more trans-
parent as cells are dropped. So for cells, unlike faces, some explicit
simplification hierarchy is required.

Our four sampling strategies each select a subset on the set of
mesh cell faces. View-aligned sampling attempts to choose a sub-
set based on view directions, and this emphasizes the quality of
individual frames at the expense of coherence between frames. The
other three methods choose a subset independent of viewpoint and
thus do not have flickering artifacts. Topology sampling builds a
set of shells for its subsets and produces images without obvious
holes, but does so at the expense of correlated regions in the image.
Field sampling uses a randomized algorithm over binned densities
to choose a subset. This is a robust strategy but because it com-
pletely ignores connectivity it has obvious discontinuities in inten-
sity. In practice, sampling by scalar value and sampling by opacity
using the transfer function produce simlar results. Area sampling
rewards larger faces and also achieves robustness via randomiza-
tion. While rewarding larger faces does seem to lower visual error,
it also lowers the number of triangles that are rasterized because of
the larger fill requirements. Overall, each method has its merits and
we expect the best choice to be data and application dependent.

Figure 9: The Fighter data set (1.4 million tetrahedra) shown in multiple views at full quality on top (1.3 fps), 15% LOD (4.5 fps) in the
middle, and at 5% LOD (10.0 fps) on the bottom. The LOD visualizations use area-based sampling.

We tried to keep our implementation both simple and robust
while minimizing preprocessing costs. The idea behind trying to
minimize preprocessing costs was to lower the effort to load new
data into the system. Our design choices cause certain limitations.
One of the most significant being that the lowest LOD the current
system can support is limited by the size of the boundary of the
mesh (which appears to hover around 3% for several of the data
sets we tried). We note that there are ways around this issue, e.g.,
we can simplify the boundary using traditional surface simplifica-
tion as done in [35]. We also note that we have not fully optimized
our system. In particular, we are not using view-frustum culling,
which certainly can lead to substantial speedups in closeup views.

8 CONCLUSIONS AND FUTURE WORK

Our technique is based on an alternative solution to the subsampling
problem needed for LOD rendering. Instead of using a domain-
based approach which maintains different versions of a valid un-
structured mesh in a hierarchical data structure our sample-based
approach is based on rendering with a subset of the mesh faces.
These faces correspond to the intersection points of the underlying
unstructured grid with rays going through the center of the screen-
space pixels. In effect, our technique directly subsamples the vol-

ume rendering integral as it is computed. We have shown this to
be effective in interactive visualization of unstructured meshes too
large for approximation-free rendering. This effectiveness is largely
because our technique is particularly well-suited to GPU implemen-
tation.

In the future it would be useful to do user-studies to determine
what types of visual error are detrimental to success in visualiza-
tion tasks. Such studies could guide which sampling strategies are
best. It would also be interesting to see whether our face sampling
method would be useful in ray tracing volume renderers as the data
reduction might benefit them as well. Another area of future work
is to extend our system to handle data sets too large for main mem-
ory through the use of compression techniques similar to [11] or
out-of-core storage of the data set as in [6]. We would also like to
extend our algorithm to handle hexahedron which should involve
either using quadrilaterals directly or splitting them into triangles
for efficiency. As a final direction for future work, we are interested
in using our algorithm to visualize dynamic data.

ACKNOWLEDGMENTS

The authors thank Carlos Scheidegger for insightful discussions,
John Schreiner for help with the paper, and Mark Segal from ATI

for donated hardware. The authors acknowledge Bruno Notrosso
(Electricite de France) for the Spx data set, Neely and Batina
(NASA) for the fighter data set, and the Scientific Computing and
Imaging Institute (Utah) for the Torso. Steven P. Callahan is sup-
ported by the Department of Energy (DOE) under the VIEWS pro-
gram. The work of João L. D. Comba is supported by a CNPq
grant 478445/2004-0. Cláudio T. Silva is partially supported by the
DOE under the VIEWS program and the MICS office, the National
Science Foundation (grants CCF-0401498, EIA-0323604, OISE-
0405402, and IIS-0513692), and a University of Utah Seed Grant.
Peter Shirley is partially supported by National Science Foundation
under grant CCF-0306151.

REFERENCES

[1] S. P. Callahan, M. Ikits, J. L. Comba, and C. T. Silva. Hardware-
Assisted Visibility Ordering for Unstructured Volume Render-
ing. IEEE Transactions on Visualization and Computer Graphics,
11(3):285–295, 2005.

[2] Y.-J. Chiang and X. Lu. Progressive simplification of tetrahedral
meshes preserving all isosurface topologies. Computer Graphics Fo-
rum, 22(3):493–504, 2003.

[3] P. Chopra and J. Meyer. TetFusion: an algorithm for rapid tetrahe-
dral mesh simplification. In Proceedings of IEEE Visualization 2002,
pages 133–140, 2002.

[4] P. Cignoni, L. D. Floriani, P. Magillo, E. Puppo, and R. Scopigno. Se-
lective Refinement Queries for Volume Visualization of Unstructured
Tetrahedral Meshes. IEEE Transactions on Visualization and Com-
puter Graphics, 10(1):29–45, 2004.

[5] R. L. Cook. Stochastic Sampling in Computer Graphics. ACM Trans-
actions on Graphics, 5(1):51–72, 1986.

[6] W. T. Corrêa, J. T. Klosowski, and C. T. Silva. iWalk: Interactive Out-
Of-Core Rendering of Large Models. Technical Report TR-653-02,
Princeton University, 2002.

[7] B. Csebfalvi. Interactive Transfer Function Control for Monte Carlo
Volume Rendering. In Proceedings of IEEE Symposium on Volume
Visualization and Graphics, pages 33–38, 2004.

[8] J. Danskin and P. Hanrahan. Fast algorithms for volume ray tracing.
In Proceedings of the 1992 Workshop on Volume Visualization, pages
91–98, 1992.

[9] X. Décoret, F. Durand, F. Sillion, and J. Dorsey. Billboard Clouds for
Extreme Model Simplification. In Proceedings of SIGGRAPH, 2003.

[10] O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis. Interactive
visualization of complex plant ecosystems. In Proceedings of IEEE
Visualization, pages 219–226, Washington, DC, USA, 2002. IEEE
Computer Society.

[11] O. Devillers and P.-M. Gandoin. Geometric Compression for Interac-
tive Transmission. In Proceedings of IEEE Visualization 2000, pages
319–326, Los Alamitos, CA, USA, 2000. IEEE Computer Society
Press.

[12] M. J. Fadili, M. Melkemi, and A. ElMoataz. Non-convex onion-
peeling using a shape hull algorithm. Pattern Recognition Letters,
25(14):1577–1585, 2004.

[13] R. C. Farias, J. S. B. Mitchell, C. T. Silva, and B. Wylie. Time-Critical
Rendering of Irregular Grids. In Proceedings of the 13th Brazilian
Symposium on Computer Graphics and Image Processing, pages 243–
250, 2000.

[14] L. D. Floriani, P. Magillo, and E. Puppo. Efficient Implementation of
Multi-Triangulations. In IEEE Visualization ’98, pages 43–50, 1998.

[15] T. A. Funkhouser and C. H. Séquin. Adaptive Display Algorithm for
Interactive Frame Rates During Visualization of Complex Virtual En-
vironments. In Proceedings of ACM SIGGRAPH 1993, pages 247–
254, 1993.

[16] M. Garland and Y. Zhou. Quadric-Based Simplification in Any Di-
mension. ACM Transactions on Graphics, 24(2), Apr. 2005.

[17] M. Kraus, W. Qiao, and D. S. Ebert. Projected Tetrahedra without
Rendering Artifacts. In Proceedings of IEEE Visualization, pages 27–
34, 2004.

[18] S. Kumar, D. Manocha, W. Garrett, and M. Lin. Hierarchical back-
face computation. In Proceedings of the Eurographics Workshop on
Rendering techniques ’96, pages 235–ff., 1996.

[19] E. LaMar, B. Hamann, and K. Joy. Multiresolution Techniques for In-
terative Texture-based Volume Visualization. In Proceedings of IEEE
Visualization 1999, 1999.

[20] J. Leven, J. Corso, J. D. Cohen, and S. Kumar. Interactive Visualiza-
tion of Unstructured Grids Using Hierarchical 3D Textures. In Pro-
ceedings of IEEE Symposium on Volume Visualization and Graphics,
pages 37–44, 2002.

[21] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Reso-
lution 3D Surface Construction Algorithm. In Proceedings of ACM
SIGGRAPH 1987, pages 163–169, 1987.

[22] D. Luebke and C. Erikson. View-Dependent Simplification of Arbi-
trary Polygonal Environments. In Proceedings of SIGGRAPH 1997,
pages 199–208, 1997.

[23] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and
R. Huebner. Level of Detail for 3D Graphics. Morgan-Kaufmann
Publishers, 2002.

[24] P. W. C. Maciel and P. Shirley. Visual Navigation of Large Envi-
ronments Using Textured Clusters. In Symposium on Interactive 3D
Graphics, pages 95–102, 1995.

[25] N. Max, P. Hanrahan, and R. Crawfis. Area and volume coherence
for efficient visualization of 3D scalar functions. ACM SIGGRAPH
Comput. Graph., 24(5):27–33, 1990.

[26] N. L. Max. Optical Models for Direct Volume Rendering. IEEE Trans-
actions on Visualization and Computer Graphics, 1(2):99–108, 1995.

[27] D. P. Mitchell. Consequences of Stratified Sampling in Graphics. In
Proceedings of SIGGRAPH, pages 277–280, 1996.

[28] K. Museth and S. Lombeyda. TetSplat: Real-time Rendering and Vol-
ume Clipping of Large Unstructured Tetrahedral Meshes. In Proceed-
ings of IEEE Visualization 2004, pages 433–440, 2004.

[29] K. Myszkowski. The Visible Differences Predictor: Applications to
Global Illumination Problems. In Eurographics Rendering Workshop,
pages 223–236, 1998.

[30] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley.
Interactive Ray Tracing for Volume Visualization. IEEE Transactions
on Visualization and Computer Graphics, 5(3):238–250, 1999.

[31] P. Shirley and A. Tuchman. A Polygonal Approximation to Direct
Scalar Volume Rendering. Proc. San Diego Workshop on Volume Vi-
sualization, 24(5):63–70, Nov. 1990.

[32] P. S. Shirley. Time Complexity of Monte Carlo Radiosity. In Euro-
graphics ’91, pages 459–465, 1991.

[33] O. G. Staadt and M. H. Gross. Progressive Tetrahedralizations. In
Proceedings of IEEE Visualization 1998, pages 397–402, 1998.

[34] C. Stein, B. Becker, and N. Max. Sorting and Hardware Assisted
Rendering for Volume Visualization. In Proc. IEEE Symposium on
Volume Visualization, pages 83–89, Oct. 1994.

[35] D. Uesu, L. Bavoil, S. Fleishman, J. Shepherd, and C. T. Silva. Sim-
plification of Unstructured Tetrahedral Meshes by Point-Sampling. In
Proceedings of IEEE/EG International Workshop on Volume Graphics
2005, pages 157–165, 2005.

[36] M. Wand, M. Fischer, I. Peter, F. M. auf der Heide, and W. Straßer. The
Randomized Z-Buffer Algorithm: Interactive Rendering of Highly
Complex Scenes. In Proceedings of ACM SIGGRAPH 2001, pages
361–370, 2001.

[37] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-Based Ray
Casting for Tetrahedral Meshes. In Proc. IEEE Visualization, pages
333–340, Oct. 2003.

[38] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl.
Level-Of-Detail Volume Rendering view 3D Textures. In Proceedings
of IEEE Volume Visualization 2000, 2000.

[39] J. Wilhelms and A. V. Gelder. A coherent projection approach for
direct volume rendering. In Proceedings of SIGGRAPH, pages 275–
284, 1991.

[40] P. L. Williams. Visibility-Ordering Meshed Polyhedra. ACM Trans-
actions on Graphics, 11(2):103–126, 1992.

[41] H. Zhang and I. Kenneth E. Hoff. Fast backface culling using nor-
mal masks. In Proceedings of the 1997 Symposium on Interactive 3D
Graphics, pages 103–106, 1997.

