
Editors: Claudio Silva, csilva@cs.utah.edu
Joel E. Tohline, tohline@rouge.phys.lsu.edu

�	 Copublished by the IEEE CS and the AIP	 1521-9615/07/$25 ©2007 IEEE� Computing in Science & Engineering

V is  u a l i z a t i o n  C o r n e r

Provenance for Visualizations: 
Reproducibility and Beyond

By Claudio T. Silva, Juliana Freire, and Steven P. Callahan

The demand for the construction of complex visualizations is growing in many disciplines of science, as users 
are faced with ever increasing volumes of data to analyze. The authors present VisTrails, an open-source 
provenance management system that provides infrastructure for data exploration and visualization.

C omputing has been an enor-
mous accelerator for science, 
leading to an information ex-

plosion in many different fields. Future 
scientific advances depend on our abil-
ity to comprehend the vast amounts 
of data currently being produced and 
acquired. To analyze and understand 
this data, though, we must assemble 
complex computational processes and 
generate insightful visualizations, 
which often require combining loosely 
coupled resources, specialized librar-
ies, and grid and Web services. Such 
processes could generate yet more 
data, adding to the information over-
flow scientists currently deal with.

Today, the scientific community 
uses ad hoc approaches to data ex-
ploration, but such approaches have 
serious limitations. In particular, sci-
entists and engineers must expend 
substantial effort managing data (such 
as scripts that encode computational 
tasks, raw data, data products, images, 
and notes) and recording provenance 
information (that is, all the informa-
tion necessary for reproducing a cer-
tain piece of data) so that they can 
answer basic questions: Who created 
a data product and when? When was 
it modified, and who modified it? 
What process was used to create the 
data product? Were two data products 
derived from the same raw data? Not 
only is this process time-consuming, 
it’s also error-prone.

Without provenance, it’s difficult 
(and sometimes impossible) to repro-
duce and share results, solve problems 
collaboratively, validate results with 
different input data, and understand 
the process used to solve a particular 
problem. In addition, data products’ 
longevity becomes limited—with-
out precise and sufficient informa-
tion about how the data product 
was generated, its value diminishes 
significantly.

The lack of adequate provenance 
support in visualization systems mo-
tivated us to build VisTrails, an open 
source provenance-management sys-
tem that provides infrastructure for 
data exploration and visualization 
through workflows. VisTrails trans-
parently records detailed provenance 
of exploratory computational tasks 
and leverages this information be-
yond just the ability to reproduce and 
share results. In particular, it uses this 
information to simplify the process of 
exploring data through visualization.

Visualization Systems
Visualization systems such as MayaVi 
(http://mayavi.sourceforge.net) and 
ParaView (www.paraview.org)—which 
are built on top of Kitware’s Visual-
ization Toolkit (VTK)1—as well as 
SCIRun (http://software.sci.utah.edu/
scirun.html) enable users to interac-
tively create and manipulate complex 
visualizations. Such systems are based 

on the notion of data flows,2 and they 
provide visual interfaces for producing 
visualizations by assembling pipelines 
out of modules (or functions) connect-
ed in a network. SCIRun supports an 
interface that lets users directly edit 
data flows. MayaVi and ParaView have 
a different interaction paradigm that 
implicitly builds data flows as the user 
makes “task-oriented” choices (such as 
selecting an isosurface value).

Although these systems let users 
create complex visualizations, they 
lack the ability to support data explo-
ration at a large scale. Notably, they 
don’t adequately support collaborative 
creation and exploration of multiple 
visualizations. Because these systems 
don’t distinguish between the defini-
tion of a data flow and its instances, 
to execute a given data flow with dif-
ferent parameters (for example, differ-
ent input files), users must manually 
set these parameters through a GUI. 
Clearly, this process doesn’t scale to 
more than a few visualizations at a 
time. Additionally, modifications to 
parameters or to a data flow’s defini-
tion are destructive—the systems don’t 
maintain any change history. This re-
quires the user to first construct the 
visualization and then remember the 
input data sets, parameter values, and 
the exact dataflow configuration that 
led to a particular image.

Finally, before constructing a vi-
sualization, users must often acquire, 
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generate, or transform a given data 
set—for example, to calibrate a simu-
lation, they must obtain data from sen-
sors, generate data from a simulation, 
and finally construct and compare the 
visualizations for both data sets. Most 
visualization systems, however, don’t 
give users adequate support for cre-
ating complex pipelines that support 
multiple libraries and services.

VisTrails: Provenance 
for Visualization
The VisTrails system (www.vistrails.
org) we developed at the University 
of Utah is a new visualization system 
that provides a comprehensive prov-
enance-management infrastructure 
and can be easily combined with ex-
isting visualization libraries. Unlike 
previous systems, VisTrails uses an 
action-based provenance model that 
uniformly captures changes to both 
parameter values and pipeline defini-
tions by unobtrusively tracking all 
changes that users make to pipelines 
in an exploration task. We refer to 
this detailed provenance of the pipe-

line evolution as a visualization trail, 
or vistrail.

The stored provenance ensures 
that users will be able to reproduce 
the visualizations and lets them easily 
navigate through the space of pipe-
lines created for a given exploration 
task. The VisTrails interface lets users 
query, interact with, and understand 
the visualization process’s history. In 
particular, they can return to previous 
versions of a pipeline and change the 
specification or parameters to gener-
ate a new visualization without losing 
previous changes.

Another important feature of the 
action-based provenance model is 
that it enables a series of operations 
that greatly simplify the exploration 
process and could reduce the time 
to insight. In particular, it allows the 
flexible reuse of pipelines and provides 
a scalable mechanism for creating and 
comparing numerous visualizations as 
well as their corresponding pipelines. 
Although we originally built VisTrails 
to support exploratory visualization 
tasks, its extensible infrastructure lets 

users integrate a wide range of librar-
ies. This makes the system suitable for 
other exploratory tasks, including data 
mining and integration.

Creating an Interactive 
Visualization with VisTrails
To illustrate the issues involved in 
creating visualizations and how prov-
enance can aid in this process, we 
present the following scenario, com-
mon in medical data visualization.

Starting from a volumetric computed 
tomography (CT) data set, we generate 
different visualizations by exploring 
the data through volume rendering, 
isosurfacing (extracting a contour), and 
slicing. Note that with proper modi-
fications, this example also works for 
visualizing other types of data (for ex-
ample, tetrahedral meshes).

Dataflow Processing Networks 
and Visual Programming.
A useful paradigm for building visu-
alization applications is the dataflow 
model. A data flow is a directed graph in 
which nodes represent computations, 

Reproducibility and Sharing 
Data and Processes for the 
Visualization Corner

By Claudio Silva and Joel E. Tohline

Greetings! We’re the new co-editors for the Visualiza-
tion Corner. Claudio is a computer science professor 

at the University of Utah and faculty member of the Scien-
tific Computing and Imaging (SCI) Institute, where he does 
research primarily in visualization, graphics, and applied 
geometry. Joel is a professor of physics and astronomy at 
Louisiana State University and a faculty member in LSU’s 
Center for Computation and Technology (CCT), with a 
research focus on complex fluid flows in astrophysical 
systems. We both have extensive experience in high-per-
formance computing. In partnership with our readers and 
colleagues, we hope to bring you relevant and effective in-
formation about visualization techniques that can directly 
affect the way our readers do science. We would like to use 
new Web technologies (Wikis, blogs, and so on) to encour-
age the community to more actively participate in the way 

we do things.
This first column discusses the benefits of provenance 

and makes a case that better provenance mechanisms 
are needed for visualization. In upcoming columns of the 
Visualization Corner, we will attempt to inform the sci-
entific community at large about the benefits and tech-
nologies related to provenance. In particular, we want to 
promote the idea of reproducible visualizations. We en-
courage authors of articles published in the department 
to provide metadata for visualizations in their articles that 
let readers reproduce images as well as generate related 
ones (for example, using different data). Ultimately, our 
hope is that this trend will spread to the point that pub-
lished articles will contain not only textual descriptions 
of the techniques, but links to data, code, and the com-
plete overall process used to generate the scientific results.

As a mechanism to capture and share provenance 
metadata, authors can use VisTrails to produce speci-
fications of the figures and plots presented in their ar-
ticles. We’ll archive this information at www.vistrails.org/ 
index.php/CiSE. The data and processes associated with 
this column are already available on the Web site, so 
you can reproduce them, right now, from your desktop!
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and edges represent data streams: each 
node or module corresponds to a pro-
cedure that’s applied on the input data 
and generates some output data as a re-
sult. The flow of data in the graph de-
termines the order in which a dataflow 
system executes the processing nodes. 
In visualization, we commonly refer to 
a dataflow network as a visualization 
pipeline. (For this article, we use the 
terms workflow, data flow, and pipe-
line interchangeably.) Figure 1b shows 
an example of the data flow used to 
derive the images shown in Figure 1c. 
The green rectangles represent mod-
ules, and the black lines represent con-
nections. Most of the modules Figure 
1 shows are from VTK, and labels on 
each module indicate the correspond-
ing VTK class. In this figure, we nat-
urally think of data flowing from top 
to bottom, eventually being rendered 
and presented for display.

We can use different mechanisms 
for creating visualization pipelines—

for example, “scripting” in a modern 
dynamic language, such as Python. 
Consider Figure 1a, which defines the 
workflow via a script written in Py-
thon that uses VTK to read a volume 
data set from a file, extract an isosur-
face, map the isosurface to renderable 
geometry, and then finally render it in 
an interactive window.

Visual programming interfaces for 
designing data flows have become 
popular and several systems, such as 
SCIRun, have adopted them. These 
interfaces give users a more intuitive 
view of the pipeline. They also dy-
namically perform type checking and 
guide the connection between mod-
ules’ input and output ports—once the 
user selects a module’s output, con-
nections are allowed only to the target 
module’s appropriate input. VisTrails 
automatically pulls edges toward the 
correct input port. As we discuss later, 
another benefit of having a high-level, 
structured workflow description is 

that we can use expressive languages 
for querying and updating workflows.

Comparing and Exploring 
Multiple Visualizations
Regardless of the specific mechanism 
we use to define a pipeline, the visu-
alization process’s end goal is to gain 
insight from the data. To obtain such 
insight, users must often generate and 
compare multiple visualizations. Go-
ing back to our scenario, several al-
ternatives exist for rendering our CT 
data. Isosurfacing is a commonly used 
technique. Given a function f: Rn → R 
and a value a, an isosurface consists of 
the set of points in a domain that map 
to a—that is, Sa = {x ∈ Rn: f(x) = a}.

The range of a values determines 
all possible isosurfaces that the user 
can generate. To identify “good” a 
values that represent a data set’s im-
portant features, we can look at the 
range of values taken by a, and their 
frequency, in the form of a histogram. 

(a) (b) (c)

Figure 1. Dataflow programming for visualization. (a) We commonly use a script to describe a pipeline from existing 
libraries such as the Visualization Toolkit (VTK). (b) Visual programming interfaces, such as the one VisTrails provides, 
facilitate the creation and maintenance of these dataflow pipelines. The green rectangles represent modules, and 
the black lines represent connections. (c) The end result of the script or the VisTrails pipeline is a set of interactive 
visualizations.
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Using VisTrails, we can straightfor-
wardly extend the isosurface pipeline 
to also display a histogram of the data. 
VisTrails provides a very simple plu-
gin functionality that you can use to 
add packages and libraries, including 
your own. For our example, we used 
matplotlib’s 2D plotting functional-
ity (http://matplotlib.sourceforge.net) 
to generate the histogram at the top 
of Figure 1c. This histogram helps 
in data exploration by suggesting re-
gions of interest in the volume. The 
plot shows that the highest frequency 
features lie between the ranges [0,25] 
and [58,68]. To identify the features 
that correspond to these ranges, we 
must explore these regions directly 
through visualization.

Scalable exploration of parameter spaces. 
VisTrails provides an interface for 
parameter exploration that lets users 
specify a set of parameters to explore, 
as well as how to explore, group, and 
display them. As a simple 1D example, 
Figure 2 shows an exploration of the 
isosurface value as four steps between 
50 and 70, displayed horizontally in 
the VisTrails spreadsheet. 

The VisTrails spreadsheet lets us 
compare visualizations in different 
dimensions (row, column, sheet, and 
time), and we can link the spreadsheet’s 
cells to synchronize the interactions 
between visualizations. Note that Vis-
Trails leverages the dataflow specifica-
tions to identify and avoid redundant 
operations. By using the same cache 
for different cells in the spreadsheet, 
VisTrails lets users efficiently explore 
numerous related visualizations.

Comparing different visualization tech-
niques. Volume rendering is a pow-
erful computer graphics technique 
for visualizing 3D data. While many 
visualization algorithms focus on 
creating a rendering of surfaces—al-
though they might be surfaces of 3D 
objects—volume rendering lets us see 
“inside” the volume. This technique 
models the volume as cloud-like cells 
of semitransparent material. Although 
a surface rendering of the human 
body might show only the skin, for 
example, a complete volume render-
ing might also show the bones and 
internal organs.

Volume rendering and isosurfacing 

are complementary techniques, and 
they can generate very similar imag-
ery depending on parameters. In fact, 
distinguishing between them can be 
difficult. The VisTrails system lets us 
compare workflows using a visual dif-
ference interface. To demonstrate this 
capability, we compute the difference 
between the original isosurface gen-
eration pipeline and the new volume 
rendering pipeline. Figure 3 shows 
the visual difference of the workflows 
that we can inspect, along with their 
resulting visualizations. In Figure 3a, 
we use volume rendering to create the 
image, in which we can see the skin 
on top of the bone structure; Figure 
3b shows only the bone structure ren-
dered with our standard isosurface 
technique. This ability to (efficiently) 
compare workflows and visualizations 
is one of the benefits of the VisTrails 
action-based provenance model and 
becomes increasingly important as a 
workflow becomes more complex and 
is shared among collaborators.

With other workflow systems, these 
comparisons are challenging because 
they require module-by-module (vi-
sual programming) or line-by-line 

Figure 2. VisTrails’ parameter exploration interface. The system computes the results efficiently by avoiding 
redundant computation and displays them in the spreadsheet for interactive comparative visualization.
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(scripting) comparisons. Although the 
former can be computationally intrac-
table (the related decision problem of 
subgraph isomorphism is NP-complete), 

the latter could lead to results that are 
hard to interpret.

Interacting with visualizations. The 

images we generated so far corre-
spond to simple, static workflows. 
To perform a more dynamic com-
parison between volume rendering 

(a) (b)

(c)

Figure 4. Multiple rendering techniques. (a) VisTrails renders the visualizations by combining volume rendering and 
isosurfacing and updates them with user interactions. (b) The corresponding pipeline represents the data flow for 
creating interactive visualizations. (c) VisTrails provides a fully browseable history of the exploration process that led 
to this final set of visualizations.

(a)

(b) (c)

Figure 3. A visual difference between different pipelines in VisTrails. We show the difference between pipelines that 
generated (a) volume rendering and (b) isosurface visualizations. (c) The interface distinguishes shared modules in 
dark gray, the modules unique to isosurfacing in blue, those unique to direct volume rendering in orange, and those 
with parameter changes in light gray.
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and isosurfacing, we add a feedback 
loop into the workflow to let users 
adjust the visualization interactively. 
We build a new workflow that uses 
the isosurfacing and volume render-
ing algorithms simultaneously. We 
add a clipping plane into the volume 
visualization to assign the volume 
regions used for each algorithm. In 
addition, we use a point on the plane 
to define axis-aligned slices of the 
volume that we display in distinct 
spreadsheet cells. The pipeline in-
teractively updates these slices along 
with the plane during user interac-
tions. Figure 4 shows the resulting 
visualizations along with the com-
plex dynamic workflow required to 
produce them.

Provenance and 
Exploratory Visualization
The combination of multiple visual-
ization algorithms, different librar-
ies, and the interactions between 
them considerably complicates the 
workflow specification. In addition, 
creating a set of visualizations from 
data is not always a linear process 
and often involves several itera-
tions as a user formulates and tests 
hypotheses. Whereas for simple 
experiments, manual approaches 
to provenance management might 
be feasible, complex computational 
tasks involving large volumes of data 
or multiple researchers require au-
tomated approaches. As these tasks’ 
complexity and scale increases, data 

organization becomes a major com-
ponent of the process.

VisTrails manages the data ma-
nipulated and metadata created in the 
course of an exploratory task.3 As a user 
(or group of users) generates a series of 
visualizations, VisTrails transparently 
tracks all the steps this exploration fol-
lowed—that is, the modules and con-
nections added and deleted, parameter 
value changes, and so on. Figure 4c 
shows a history tree of the different 
pipelines created in the course of our 
running example. The nodes in this 
tree correspond to pipelines, and an 
edge between two pipelines corre-
sponds to changes performed on the 
parent pipeline to obtain its child. For 
readability, by default, only the nodes 

The VisTrails System

In this article, we focused on using VisTrails as a tool for 
exploratory visualization. Additional features that might 

be relevant for CiSE readers include

Flexible provenance architecture. VisTrails transparently 
tracks changes made to workflows. It maintains a 
detailed record of all the steps followed in the explora-
tion. The system can optionally track runtime informa-
tion about workflow execution (such as who executed 
a module, on which machine, and how much time 
elapsed). VisTrails also provides a flexible annotation 
framework whereby users can specify application-
specific provenance information.
Querying and re-using history. The provenance informa-
tion is stored in a structured way. Users have the choice 
of using a relational database (such as MySQL and IBM 
DB2) or XML files in the file system. The system provides 
flexible and intuitive query interfaces through which 
users can explore and reuse provenance information. 
Users can formulate simple keyword-based and selection 
queries (find a visualization that a given user created, for 
example) as well as structured queries (find visualizations 
that apply simplification before an isosurface computa-
tion for irregular grid data sets).
Support for collaborative exploration. Users can configure 
the system with a database backend that can act as a 
shared repository. It also provides a synchronization 
facility that lets users collaborate asynchronously and in 
a disconnected fashion—they can check changes in and 
out, akin to a version control system (such as subversion 

•

•

•

(SVN); http://subversion.tigris.org).
Extensibility. VisTrails provides a very simple plugin 
functionality that can help dynamically add packages 
and libraries. Neither changes to the user interface nor 
system recompilation are necessary. Because VisTrails is 
written in Python, integrating Python-wrapped libraries 
is straightforward.
Scalable derivation of data products and parameter explora-
tion. VisTrails supports a series of operations for simulta-
neously generating multiple data products, including an 
interface that lets users specify sets of values for different 
parameters in a workflow. Users can display the results 
of a parameter exploration side by side in the VisTrails 
spreadsheet for easy comparison.
Task creation by analogy. VisTrails supports analogies as 
first-class operations to guide semi-automated changes 
to multiple workflows, without requiring users to di-
rectly manipulate or edit the workflow specifications.

Please visit www.vistrails.org to access the VisTrails com-
munity Web site. You’ll find information including instruc-
tions for obtaining the software, online documentation, 
video tutorials, and pointers to papers and presentations.

VisTrails is written in Python and uses the multiplatform 
Qt library for its user interface. The system is available as 
open source, released under the GPL 2.0 license. The pre-
compiled versions for Windows, Mac OS X, and Linux come 
with an installer and include several packages, including 
VTK, matplotlib, and Image Magick. Additional packages, 
including ones users have written, are also available, but you 
can easily add new packages using the VisTrails plugin infra-
structure. Detailed instructions are available at our Web site.

•

•

•
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in the tree that the user tags as impor-
tant are displayed.

By tracking all the changes made to a 
workflow ensemble, VisTrails properly 
captures each step, leaving a complete 
trail of the work. Having access to the 
different pipelines’ specifications lets 
others reproduce and share the results 
of each step in the exploratory process. 
To demonstrate this, we made the vis-
trail associated with this example avail-
able for download with the VisTrails 
system (see the “VisTrails System” 
sidebar). You can recreate each figure 
shown in this article by executing the 
different nodes in the history tree. 
Note that by using the action-based 
provenance model, we obtain a very 
concise representation of the history, 
which uses substantially less space than 

the alternative of explicitly storing 
multiple versions of a pipeline.3

The exploration trail VisTrails cap-
tures also supports various activities 
that are crucial for performing reflec-
tive reasoning and obtaining insights, 
such as following chains of reasoning 
backward and forward and comparing 
different results.4 The tree-based view 
lets users

seamlessly navigate over the history 
tree and return to previous pipeline 
versions after reaching a dead end;
undo bad changes;
reuse pipelines and pipeline frag-
ments from previous versions; 
compare different pipelines and 
their results; and
be reminded, in an intuitive way, 

•

•
•

•

•

of the actions that led to a particu-
lar result.

Thus, users can efficiently explore 
several related visualizations.

The issue of reproducibility for 
visualization has been considered 
before,5 we should note that whereas 
some visualization and workflow sys-
tems provide support for provenance 
tracking, their focus has been on data 
provenance—that is, information 
about how the system derived a given 
data product, including the param-
eter values used6—and on interaction 
provenance (such as capturing a visu-
alization’s viewing manipulations).7 
VisTrails is the first system to capture 
information about how workflows 
evolve over time.

For instance, to generate the com-
posite visualization in our final exam-
ple, we extended our pipeline labeled 
“Volume Rendering” to include mod-
ules from the pipeline labeled “Isosur-
facing.” Having two pipelines lets us 
further explore the visualization—by 
trying different isosurface values, for 
example (see Figure 2). In addition, 
we can compare the pipelines by drag-
ging one node on top of the other (see 
Figure 3). These computed differences 

Figure 5. The VisTrails query by example interface. (a) Users can define a set of modules and parameters in the visual 
programming interface to create a query template. (b) The query results are shown in the history tree, which users 
can browse for specific instances of the match (inset).

Table 1. Query examples.

Query Result

volume Highlights all nodes in the history tree where 
the string “volume” appears (for example, in a 
module name, parameter name, annotation)

user:juliana Highlights all nodes in the history tree created 
by the user “juliana”

before: March 30, 2007 Highlights all nodes in the history tree created 
before “March 30, 2007”
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are useful for understanding the visu-
alization process, and the user can also 
reuse them. In this case, we applied the 
modules unique to “Isosurfacing” to 
“Volume Rendering” to create a new 
pipeline called “Combined Rendering” 
that uses a cutting plane to define re-
gions for the rendering methods. Vis-
Trails can automatically apply pipeline 
differences (like a patch) to derive new 
pipelines in a process we call visualiza-
tion creation by analogy.8

Another benefit to having a high-
level specification of the visualiza-
tion process is that users can query 
the pipelines and their execution in-
stances. Scientists can query a vistrail 
to find anomalies in previously gen-
erated visualizations and locate data 
products and visualizations based on 
operations applied in the visualiza-
tion process. VisTrails supports sim-
ple, keyword-based queries as well as 
structured queries. In addition to pro-
viding information about the results 
(for example, workflow identifiers and 
attributes), VisTrails can visually dis-
play query results by highlighting the 
workflows and modules that satisfy 
the query. Table 1 shows an example.

Users might also define queries by 
example.8 As Figure 5 illustrates, us-
ers can construct (or copy and paste) 
a pipeline fragment into the VisTrails 
query tab to identify in the history 
tree all nodes that contain that frag-
ment. They can then browse through 
the highlighted nodes and click on one 
to display the workflow and highlight 
the modules that match the query. 
Users can then click on the individual 
modules to view execution log records 
associated with them.

The VisTrails project has focused 
on creating an infrastructure to 

address the need to manage the prov-

enance data of exploratory tasks. With 
this infrastructure in place, our re-
search focus is now on what we can do 
with all the provenance that is accumu-
lated. By mining this information, we 
hope to learn useful patterns that can 
help guide users in assembling and re-
fining complex computational tasks.�
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