
Editors: Claudio Silva, csilva@cs.utah.edu
Joel E. Tohline, tohline@rouge.phys.lsu.edu

�	 Copublished by the IEEE CS and the AIP	 1521-9615/07/$25 ©2007 IEEE� Computing in Science & Engineering

V is u a l i z a t i o n C o r n e r

Provenance for Visualizations:
Reproducibility and Beyond

By Claudio T. Silva, Juliana Freire, and Steven P. Callahan

The demand for the construction of complex visualizations is growing in many disciplines of science, as users
are faced with ever increasing volumes of data to analyze. The authors present VisTrails, an open-source
provenance management system that provides infrastructure for data exploration and visualization.

C omputing has been an enor-
mous accelerator for science,
leading to an information ex-

plosion in many different fields. Future
scientific advances depend on our abil-
ity to comprehend the vast amounts
of data currently being produced and
acquired. To analyze and understand
this data, though, we must assemble
complex computational processes and
generate insightful visualizations,
which often require combining loosely
coupled resources, specialized librar-
ies, and grid and Web services. Such
processes could generate yet more
data, adding to the information over-
flow scientists currently deal with.

Today, the scientific community
uses ad hoc approaches to data ex-
ploration, but such approaches have
serious limitations. In particular, sci-
entists and engineers must expend
substantial effort managing data (such
as scripts that encode computational
tasks, raw data, data products, images,
and notes) and recording provenance
information (that is, all the informa-
tion necessary for reproducing a cer-
tain piece of data) so that they can
answer basic questions: Who created
a data product and when? When was
it modified, and who modified it?
What process was used to create the
data product? Were two data products
derived from the same raw data? Not
only is this process time-consuming,
it’s also error-prone.

Without provenance, it’s difficult
(and sometimes impossible) to repro-
duce and share results, solve problems
collaboratively, validate results with
different input data, and understand
the process used to solve a particular
problem. In addition, data products’
longevity becomes limited—with-
out precise and sufficient informa-
tion about how the data product
was generated, its value diminishes
significantly.

The lack of adequate provenance
support in visualization systems mo-
tivated us to build VisTrails, an open
source provenance-management sys-
tem that provides infrastructure for
data exploration and visualization
through workflows. VisTrails trans-
parently records detailed provenance
of exploratory computational tasks
and leverages this information be-
yond just the ability to reproduce and
share results. In particular, it uses this
information to simplify the process of
exploring data through visualization.

Visualization Systems
Visualization systems such as MayaVi
(http://mayavi.sourceforge.net) and
ParaView (www.paraview.org)—which
are built on top of Kitware’s Visual-
ization Toolkit (VTK)1—as well as
SCIRun (http://software.sci.utah.edu/
scirun.html) enable users to interac-
tively create and manipulate complex
visualizations. Such systems are based

on the notion of data flows,2 and they
provide visual interfaces for producing
visualizations by assembling pipelines
out of modules (or functions) connect-
ed in a network. SCIRun supports an
interface that lets users directly edit
data flows. MayaVi and ParaView have
a different interaction paradigm that
implicitly builds data flows as the user
makes “task-oriented” choices (such as
selecting an isosurface value).

Although these systems let users
create complex visualizations, they
lack the ability to support data explo-
ration at a large scale. Notably, they
don’t adequately support collaborative
creation and exploration of multiple
visualizations. Because these systems
don’t distinguish between the defini-
tion of a data flow and its instances,
to execute a given data flow with dif-
ferent parameters (for example, differ-
ent input files), users must manually
set these parameters through a GUI.
Clearly, this process doesn’t scale to
more than a few visualizations at a
time. Additionally, modifications to
parameters or to a data flow’s defini-
tion are destructive—the systems don’t
maintain any change history. This re-
quires the user to first construct the
visualization and then remember the
input data sets, parameter values, and
the exact dataflow configuration that
led to a particular image.

Finally, before constructing a vi-
sualization, users must often acquire,

September/October 2007� �

generate, or transform a given data
set—for example, to calibrate a simu-
lation, they must obtain data from sen-
sors, generate data from a simulation,
and finally construct and compare the
visualizations for both data sets. Most
visualization systems, however, don’t
give users adequate support for cre-
ating complex pipelines that support
multiple libraries and services.

VisTrails: Provenance
for Visualization
The VisTrails system (www.vistrails.
org) we developed at the University
of Utah is a new visualization system
that provides a comprehensive prov-
enance-management infrastructure
and can be easily combined with ex-
isting visualization libraries. Unlike
previous systems, VisTrails uses an
action-based provenance model that
uniformly captures changes to both
parameter values and pipeline defini-
tions by unobtrusively tracking all
changes that users make to pipelines
in an exploration task. We refer to
this detailed provenance of the pipe-

line evolution as a visualization trail,
or vistrail.

The stored provenance ensures
that users will be able to reproduce
the visualizations and lets them easily
navigate through the space of pipe-
lines created for a given exploration
task. The VisTrails interface lets users
query, interact with, and understand
the visualization process’s history. In
particular, they can return to previous
versions of a pipeline and change the
specification or parameters to gener-
ate a new visualization without losing
previous changes.

Another important feature of the
action-based provenance model is
that it enables a series of operations
that greatly simplify the exploration
process and could reduce the time
to insight. In particular, it allows the
flexible reuse of pipelines and provides
a scalable mechanism for creating and
comparing numerous visualizations as
well as their corresponding pipelines.
Although we originally built VisTrails
to support exploratory visualization
tasks, its extensible infrastructure lets

users integrate a wide range of librar-
ies. This makes the system suitable for
other exploratory tasks, including data
mining and integration.

Creating an Interactive
Visualization with VisTrails
To illustrate the issues involved in
creating visualizations and how prov-
enance can aid in this process, we
present the following scenario, com-
mon in medical data visualization.

Starting from a volumetric computed
tomography (CT) data set, we generate
different visualizations by exploring
the data through volume rendering,
isosurfacing (extracting a contour), and
slicing. Note that with proper modi-
fications, this example also works for
visualizing other types of data (for ex-
ample, tetrahedral meshes).

Dataflow Processing Networks
and Visual Programming.
A useful paradigm for building visu-
alization applications is the dataflow
model. A data flow is a directed graph in
which nodes represent computations,

Reproducibility and Sharing
Data and Processes for the
Visualization Corner

By Claudio Silva and Joel E. Tohline

Greetings! We’re the new co-editors for the Visualiza-
tion Corner. Claudio is a computer science professor

at the University of Utah and faculty member of the Scien-
tific Computing and Imaging (SCI) Institute, where he does
research primarily in visualization, graphics, and applied
geometry. Joel is a professor of physics and astronomy at
Louisiana State University and a faculty member in LSU’s
Center for Computation and Technology (CCT), with a
research focus on complex fluid flows in astrophysical
systems. We both have extensive experience in high-per-
formance computing. In partnership with our readers and
colleagues, we hope to bring you relevant and effective in-
formation about visualization techniques that can directly
affect the way our readers do science. We would like to use
new Web technologies (Wikis, blogs, and so on) to encour-
age the community to more actively participate in the way

we do things.
This first column discusses the benefits of provenance

and makes a case that better provenance mechanisms
are needed for visualization. In upcoming columns of the
Visualization Corner, we will attempt to inform the sci-
entific community at large about the benefits and tech-
nologies related to provenance. In particular, we want to
promote the idea of reproducible visualizations. We en-
courage authors of articles published in the department
to provide metadata for visualizations in their articles that
let readers reproduce images as well as generate related
ones (for example, using different data). Ultimately, our
hope is that this trend will spread to the point that pub-
lished articles will contain not only textual descriptions
of the techniques, but links to data, code, and the com-
plete overall process used to generate the scientific results.

As a mechanism to capture and share provenance
metadata, authors can use VisTrails to produce speci-
fications of the figures and plots presented in their ar-
ticles. We’ll archive this information at www.vistrails.org/
index.php/CiSE. The data and processes associated with
this column are already available on the Web site, so
you can reproduce them, right now, from your desktop!

V is u a l i z a t i o n C o r n e r

�� Computing in Science & Engineering

and edges represent data streams: each
node or module corresponds to a pro-
cedure that’s applied on the input data
and generates some output data as a re-
sult. The flow of data in the graph de-
termines the order in which a dataflow
system executes the processing nodes.
In visualization, we commonly refer to
a dataflow network as a visualization
pipeline. (For this article, we use the
terms workflow, data flow, and pipe-
line interchangeably.) Figure 1b shows
an example of the data flow used to
derive the images shown in Figure 1c.
The green rectangles represent mod-
ules, and the black lines represent con-
nections. Most of the modules Figure
1 shows are from VTK, and labels on
each module indicate the correspond-
ing VTK class. In this figure, we nat-
urally think of data flowing from top
to bottom, eventually being rendered
and presented for display.

We can use different mechanisms
for creating visualization pipelines—

for example, “scripting” in a modern
dynamic language, such as Python.
Consider Figure 1a, which defines the
workflow via a script written in Py-
thon that uses VTK to read a volume
data set from a file, extract an isosur-
face, map the isosurface to renderable
geometry, and then finally render it in
an interactive window.

Visual programming interfaces for
designing data flows have become
popular and several systems, such as
SCIRun, have adopted them. These
interfaces give users a more intuitive
view of the pipeline. They also dy-
namically perform type checking and
guide the connection between mod-
ules’ input and output ports—once the
user selects a module’s output, con-
nections are allowed only to the target
module’s appropriate input. VisTrails
automatically pulls edges toward the
correct input port. As we discuss later,
another benefit of having a high-level,
structured workflow description is

that we can use expressive languages
for querying and updating workflows.

Comparing and Exploring
Multiple Visualizations
Regardless of the specific mechanism
we use to define a pipeline, the visu-
alization process’s end goal is to gain
insight from the data. To obtain such
insight, users must often generate and
compare multiple visualizations. Go-
ing back to our scenario, several al-
ternatives exist for rendering our CT
data. Isosurfacing is a commonly used
technique. Given a function f: Rn → R
and a value a, an isosurface consists of
the set of points in a domain that map
to a—that is, Sa = {x ∈ Rn: f(x) = a}.

The range of a values determines
all possible isosurfaces that the user
can generate. To identify “good” a
values that represent a data set’s im-
portant features, we can look at the
range of values taken by a, and their
frequency, in the form of a histogram.

(a) (b) (c)

Figure 1. Dataflow programming for visualization. (a) We commonly use a script to describe a pipeline from existing
libraries such as the Visualization Toolkit (VTK). (b) Visual programming interfaces, such as the one VisTrails provides,
facilitate the creation and maintenance of these dataflow pipelines. The green rectangles represent modules, and
the black lines represent connections. (c) The end result of the script or the VisTrails pipeline is a set of interactive
visualizations.

September/October 2007� �

Using VisTrails, we can straightfor-
wardly extend the isosurface pipeline
to also display a histogram of the data.
VisTrails provides a very simple plu-
gin functionality that you can use to
add packages and libraries, including
your own. For our example, we used
matplotlib’s 2D plotting functional-
ity (http://matplotlib.sourceforge.net)
to generate the histogram at the top
of Figure 1c. This histogram helps
in data exploration by suggesting re-
gions of interest in the volume. The
plot shows that the highest frequency
features lie between the ranges [0,25]
and [58,68]. To identify the features
that correspond to these ranges, we
must explore these regions directly
through visualization.

Scalable exploration of parameter spaces.
VisTrails provides an interface for
parameter exploration that lets users
specify a set of parameters to explore,
as well as how to explore, group, and
display them. As a simple 1D example,
Figure 2 shows an exploration of the
isosurface value as four steps between
50 and 70, displayed horizontally in
the VisTrails spreadsheet.

The VisTrails spreadsheet lets us
compare visualizations in different
dimensions (row, column, sheet, and
time), and we can link the spreadsheet’s
cells to synchronize the interactions
between visualizations. Note that Vis-
Trails leverages the dataflow specifica-
tions to identify and avoid redundant
operations. By using the same cache
for different cells in the spreadsheet,
VisTrails lets users efficiently explore
numerous related visualizations.

Comparing different visualization tech-
niques. Volume rendering is a pow-
erful computer graphics technique
for visualizing 3D data. While many
visualization algorithms focus on
creating a rendering of surfaces—al-
though they might be surfaces of 3D
objects—volume rendering lets us see
“inside” the volume. This technique
models the volume as cloud-like cells
of semitransparent material. Although
a surface rendering of the human
body might show only the skin, for
example, a complete volume render-
ing might also show the bones and
internal organs.

Volume rendering and isosurfacing

are complementary techniques, and
they can generate very similar imag-
ery depending on parameters. In fact,
distinguishing between them can be
difficult. The VisTrails system lets us
compare workflows using a visual dif-
ference interface. To demonstrate this
capability, we compute the difference
between the original isosurface gen-
eration pipeline and the new volume
rendering pipeline. Figure 3 shows
the visual difference of the workflows
that we can inspect, along with their
resulting visualizations. In Figure 3a,
we use volume rendering to create the
image, in which we can see the skin
on top of the bone structure; Figure
3b shows only the bone structure ren-
dered with our standard isosurface
technique. This ability to (efficiently)
compare workflows and visualizations
is one of the benefits of the VisTrails
action-based provenance model and
becomes increasingly important as a
workflow becomes more complex and
is shared among collaborators.

With other workflow systems, these
comparisons are challenging because
they require module-by-module (vi-
sual programming) or line-by-line

Figure 2. VisTrails’ parameter exploration interface. The system computes the results efficiently by avoiding
redundant computation and displays them in the spreadsheet for interactive comparative visualization.

V is u a l i z a t i o n C o r n e r

�� Computing in Science & Engineering

(scripting) comparisons. Although the
former can be computationally intrac-
table (the related decision problem of
subgraph isomorphism is NP-complete),

the latter could lead to results that are
hard to interpret.

Interacting with visualizations. The

images we generated so far corre-
spond to simple, static workflows.
To perform a more dynamic com-
parison between volume rendering

(a) (b)

(c)

Figure 4. Multiple rendering techniques. (a) VisTrails renders the visualizations by combining volume rendering and
isosurfacing and updates them with user interactions. (b) The corresponding pipeline represents the data flow for
creating interactive visualizations. (c) VisTrails provides a fully browseable history of the exploration process that led
to this final set of visualizations.

(a)

(b) (c)

Figure 3. A visual difference between different pipelines in VisTrails. We show the difference between pipelines that
generated (a) volume rendering and (b) isosurface visualizations. (c) The interface distinguishes shared modules in
dark gray, the modules unique to isosurfacing in blue, those unique to direct volume rendering in orange, and those
with parameter changes in light gray.

September/October 2007� �

and isosurfacing, we add a feedback
loop into the workflow to let users
adjust the visualization interactively.
We build a new workflow that uses
the isosurfacing and volume render-
ing algorithms simultaneously. We
add a clipping plane into the volume
visualization to assign the volume
regions used for each algorithm. In
addition, we use a point on the plane
to define axis-aligned slices of the
volume that we display in distinct
spreadsheet cells. The pipeline in-
teractively updates these slices along
with the plane during user interac-
tions. Figure 4 shows the resulting
visualizations along with the com-
plex dynamic workflow required to
produce them.

Provenance and
Exploratory Visualization
The combination of multiple visual-
ization algorithms, different librar-
ies, and the interactions between
them considerably complicates the
workflow specification. In addition,
creating a set of visualizations from
data is not always a linear process
and often involves several itera-
tions as a user formulates and tests
hypotheses. Whereas for simple
experiments, manual approaches
to provenance management might
be feasible, complex computational
tasks involving large volumes of data
or multiple researchers require au-
tomated approaches. As these tasks’
complexity and scale increases, data

organization becomes a major com-
ponent of the process.

VisTrails manages the data ma-
nipulated and metadata created in the
course of an exploratory task.3 As a user
(or group of users) generates a series of
visualizations, VisTrails transparently
tracks all the steps this exploration fol-
lowed—that is, the modules and con-
nections added and deleted, parameter
value changes, and so on. Figure 4c
shows a history tree of the different
pipelines created in the course of our
running example. The nodes in this
tree correspond to pipelines, and an
edge between two pipelines corre-
sponds to changes performed on the
parent pipeline to obtain its child. For
readability, by default, only the nodes

The VisTrails System

In this article, we focused on using VisTrails as a tool for
exploratory visualization. Additional features that might

be relevant for CiSE readers include

Flexible provenance architecture. VisTrails transparently
tracks changes made to workflows. It maintains a
detailed record of all the steps followed in the explora-
tion. The system can optionally track runtime informa-
tion about workflow execution (such as who executed
a module, on which machine, and how much time
elapsed). VisTrails also provides a flexible annotation
framework whereby users can specify application-
specific provenance information.
Querying and re-using history. The provenance informa-
tion is stored in a structured way. Users have the choice
of using a relational database (such as MySQL and IBM
DB2) or XML files in the file system. The system provides
flexible and intuitive query interfaces through which
users can explore and reuse provenance information.
Users can formulate simple keyword-based and selection
queries (find a visualization that a given user created, for
example) as well as structured queries (find visualizations
that apply simplification before an isosurface computa-
tion for irregular grid data sets).
Support for collaborative exploration. Users can configure
the system with a database backend that can act as a
shared repository. It also provides a synchronization
facility that lets users collaborate asynchronously and in
a disconnected fashion—they can check changes in and
out, akin to a version control system (such as subversion

•

•

•

(SVN); http://subversion.tigris.org).
Extensibility. VisTrails provides a very simple plugin
functionality that can help dynamically add packages
and libraries. Neither changes to the user interface nor
system recompilation are necessary. Because VisTrails is
written in Python, integrating Python-wrapped libraries
is straightforward.
Scalable derivation of data products and parameter explora-
tion. VisTrails supports a series of operations for simulta-
neously generating multiple data products, including an
interface that lets users specify sets of values for different
parameters in a workflow. Users can display the results
of a parameter exploration side by side in the VisTrails
spreadsheet for easy comparison.
Task creation by analogy. VisTrails supports analogies as
first-class operations to guide semi-automated changes
to multiple workflows, without requiring users to di-
rectly manipulate or edit the workflow specifications.

Please visit www.vistrails.org to access the VisTrails com-
munity Web site. You’ll find information including instruc-
tions for obtaining the software, online documentation,
video tutorials, and pointers to papers and presentations.

VisTrails is written in Python and uses the multiplatform
Qt library for its user interface. The system is available as
open source, released under the GPL 2.0 license. The pre-
compiled versions for Windows, Mac OS X, and Linux come
with an installer and include several packages, including
VTK, matplotlib, and Image Magick. Additional packages,
including ones users have written, are also available, but you
can easily add new packages using the VisTrails plugin infra-
structure. Detailed instructions are available at our Web site.

•

•

•

V is u a l i z a t i o n C o r n e r

�� Computing in Science & Engineering

in the tree that the user tags as impor-
tant are displayed.

By tracking all the changes made to a
workflow ensemble, VisTrails properly
captures each step, leaving a complete
trail of the work. Having access to the
different pipelines’ specifications lets
others reproduce and share the results
of each step in the exploratory process.
To demonstrate this, we made the vis-
trail associated with this example avail-
able for download with the VisTrails
system (see the “VisTrails System”
sidebar). You can recreate each figure
shown in this article by executing the
different nodes in the history tree.
Note that by using the action-based
provenance model, we obtain a very
concise representation of the history,
which uses substantially less space than

the alternative of explicitly storing
multiple versions of a pipeline.3

The exploration trail VisTrails cap-
tures also supports various activities
that are crucial for performing reflec-
tive reasoning and obtaining insights,
such as following chains of reasoning
backward and forward and comparing
different results.4 The tree-based view
lets users

seamlessly navigate over the history
tree and return to previous pipeline
versions after reaching a dead end;
undo bad changes;
reuse pipelines and pipeline frag-
ments from previous versions;
compare different pipelines and
their results; and
be reminded, in an intuitive way,

•

•
•

•

•

of the actions that led to a particu-
lar result.

Thus, users can efficiently explore
several related visualizations.

The issue of reproducibility for
visualization has been considered
before,5 we should note that whereas
some visualization and workflow sys-
tems provide support for provenance
tracking, their focus has been on data
provenance—that is, information
about how the system derived a given
data product, including the param-
eter values used6—and on interaction
provenance (such as capturing a visu-
alization’s viewing manipulations).7
VisTrails is the first system to capture
information about how workflows
evolve over time.

For instance, to generate the com-
posite visualization in our final exam-
ple, we extended our pipeline labeled
“Volume Rendering” to include mod-
ules from the pipeline labeled “Isosur-
facing.” Having two pipelines lets us
further explore the visualization—by
trying different isosurface values, for
example (see Figure 2). In addition,
we can compare the pipelines by drag-
ging one node on top of the other (see
Figure 3). These computed differences

Figure 5. The VisTrails query by example interface. (a) Users can define a set of modules and parameters in the visual
programming interface to create a query template. (b) The query results are shown in the history tree, which users
can browse for specific instances of the match (inset).

Table 1. Query examples.

Query Result

volume Highlights all nodes in the history tree where
the string “volume” appears (for example, in a
module name, parameter name, annotation)

user:juliana Highlights all nodes in the history tree created
by the user “juliana”

before: March 30, 2007 Highlights all nodes in the history tree created
before “March 30, 2007”

September/October 2007� �

are useful for understanding the visu-
alization process, and the user can also
reuse them. In this case, we applied the
modules unique to “Isosurfacing” to
“Volume Rendering” to create a new
pipeline called “Combined Rendering”
that uses a cutting plane to define re-
gions for the rendering methods. Vis-
Trails can automatically apply pipeline
differences (like a patch) to derive new
pipelines in a process we call visualiza-
tion creation by analogy.8

Another benefit to having a high-
level specification of the visualiza-
tion process is that users can query
the pipelines and their execution in-
stances. Scientists can query a vistrail
to find anomalies in previously gen-
erated visualizations and locate data
products and visualizations based on
operations applied in the visualiza-
tion process. VisTrails supports sim-
ple, keyword-based queries as well as
structured queries. In addition to pro-
viding information about the results
(for example, workflow identifiers and
attributes), VisTrails can visually dis-
play query results by highlighting the
workflows and modules that satisfy
the query. Table 1 shows an example.

Users might also define queries by
example.8 As Figure 5 illustrates, us-
ers can construct (or copy and paste)
a pipeline fragment into the VisTrails
query tab to identify in the history
tree all nodes that contain that frag-
ment. They can then browse through
the highlighted nodes and click on one
to display the workflow and highlight
the modules that match the query.
Users can then click on the individual
modules to view execution log records
associated with them.

The VisTrails project has focused
on creating an infrastructure to

address the need to manage the prov-

enance data of exploratory tasks. With
this infrastructure in place, our re-
search focus is now on what we can do
with all the provenance that is accumu-
lated. By mining this information, we
hope to learn useful patterns that can
help guide users in assembling and re-
fining complex computational tasks.�

Acknowledgments
This article summarizes work being
done in the VisTrails project. It’s only
possible through the work of all team
members: Erik Anderson, Jason Cal-
lahan, David Koop, Emanuele San-
tos, Carlos E. Scheidegger, and Huy
T. Vo. The data used in this article
is available courtesy of the National
Library of Medicine’s Visible Hu-
man Project. The US National Sci-
ence Foundation partially supported
this work under grants IIS-0513692,
CCF-0401498, EIA-0323604, CNS-
0541560, OCE-0424602, and OISE-
0405402. The US Department of
Energy, an IBM Faculty Award, and
a University of Utah Seed Grant
also partially supported this work.

References
W. Schroeder, K. Martin, and B. Lorensen,
The Visualization Toolkit An Object-Oriented
Approach To 3D Graphics, Kitware, 2003.

E.A. Lee and T.M. Parks, “Dataflow Process
Networks,” Proc. IEEE, vol. 83, no. 5, 1995,
pp. 773–801.

S. Callahan et al., “Managing the Evolu-
tion of Dataflows with VisTrails (extended
abstract),” IEEE Workshop on Workflow and
Data Flow for Scientific Applications (SciFlow),
IEEE CS Press, 2006.

D.A. Norman, Things That Make Us Smart:
Defending Human Attributes in the Age of the
Machine, Addison-Wesley, 1994.

G. Kindlmann, “Lack of Reproducibility Hin-
ders Visualization Science,” IEEE Visualization
Compendium, 2006; IEEE CS Press, p. 69.

T. Jankun-Kelly, K.-L. Ma, and M. Gertz,
“A Model and Framework for Visualization
Exploration,” IEEE Trans. Visualization and
Computer Graphics, vol. 13, no. 2, 2007, pp.
357–369.

1.

2.

3.

4.

5.

6.

D.P. Groth and K. Streefkerk, “Provenance
and Annotation for Visual Exploration
Systems,” IEEE Trans. Visualization and
Computer Graphics, vol. 12, no. 6, 2006, pp.
1500–1510.

C. Scheidegger et al., Querying and Creat-
ing Visualizations by Analogy,” IEEE Trans.
Visualization and Computer Graphics, to be
published, 2007.

Claudio T. Silva is an associate professor at
the University of Utah. His research inter-
ests include visualization, geometry pro-
cessing, graphics, and high-performance
computing. Silva has a PhD in computer
science from SUNY at Stony Brook. He is a
member of the IEEE, the ACM, Eurograph-
ics, and Sociedade Brasileira de Matemati-
ca. Contact him at csilva@cs.utah.edu.

Juliana Freire is an assistant professor at
the University of Utah. Her research inter-
ests include scientific data management,
Web information systems, and information
integration. Freire has a PhD in computer
science from SUNY at Stony Brook. She is a
member of the ACM and the IEEE. Contact
her at juliana@cs.utah.edu.

Steven P. Callahan is a research assistant
and PhD candidate at the University of
Utah. His research interests include scientif-
ic visualization, visualization systems, and
computer graphics. He has an MS in compu-
tational engineering and science from the
University of Utah. Contact him at stevec@
sci.utah.edu.

7.

8.

