
“book” — 2007/10/25 — 15:01 — page 85 — #91

10

Direct Volume Rendering

For the visualization of three-dimensional scalar fields, direct volume rendering
has emerged as a leading, and often preferred, method. In rendering volumetric
data directly, a participating medium is composed of semi-transparent material
that can emit, transmit, and absorb light, thereby allowing one to “see through” (or
see inside) the data. By changing the optical properties of the material, different
lighting effects can be achieved. In fact, isosurfacing can be considered a subset of
direct volume rendering because the same effect can be achieved by specifying a
small region around the isosurface value as opaque while everything else remains
transparent.
Direct volume rendering consists of three major components: sampling, classify-
ing, and compositing. To compute an image, the effects of the optical properties
must be continuously integrated throughout the volume. However, since the vol-
ume is represented by discrete cells, or voxels, this needs to be done in a piecewise
manner. Sampling deals with selecting the piecewise steps that are taken through
the volume, classification is the process of computing a color and opacity for
each step, and compositing is the how these classified steps are blended together
to form an image.

Consider a ray that originates from the eye and travels through the volume,
sampling it in intervals. The space in each cell that the ray passes through rep-
resents a different color and opacity that contribute to the final image. The

Opacity is the inverse of
transparency (also called
alpha).

color and opacity for a single cell boundary intersection can be classified us-
ing a transfer function, which is just a map from the interpolated scalar values
to colors and opacities. Performing this lookup before the rendering begins is
called pre-classification and performing it at the time of intersection is called
post-classification. The space inside a cell is integrated using the chosen optical
model with the colors and opacities at the entry and exit intersections. This
cell contribution is blended into a final image using alpha compositing and this
process is repeated until the ray passes through the back of the volume.

In this chapter, we describe this volume rendering process in more detail. In
§ 10.1, we describe the different optical models for classifying segements of the
volume and the compositing techniques that are used to blend these segments to-
gether. In § 10.2, we cover some of the most common sampling algorithms that
are used for volume rendering structured grids and in § 10.3 we cover unstruc-
tured grid techniques. Finally, in § 10.4 we describe transfer functions in more

85



“book” — 2007/10/25 — 15:01 — page 86 — #92

86 10. Direct Volume Rendering

Figure 10.1: Direct Volume Rendering of an MRI scan of one of the authors’ head. A cutting

plane culls away the top of the head for a better view of the brain.

detail and how they can be used to create user-defined classifications that pull out
features within the volume.

10.1 Optical Models

Direct volume rendering can use different optical models, depending on the par-
ticipating media or the structures that need to be visualized. In this section, we
summarize some of the most common techniques used for classifying steps within
the volume by determining the color and opacity and we describe how these steps
can be blended together using compositing to form a final image.

10.1.1 Maximum Intensity Projection

The simplest model for direct volume rendering is a maximum intensity pro-
jection (MIP) [Wallis and Miller 90, Wallis and Miller 91]. The basic idea is that
if you project each voxel in the volume to the image plane, the MIP would be
the maximum intensity that was projected for each pixel. In other words, the



“book” — 2007/10/25 — 15:01 — page 87 — #93

10.1. Optical Models 87

compositing operator for the opacities of each set of voxels is simply:

αi = max(αi,αi−1). (10.1)

Because the composition is commutative, the voxels can be combined in any or-
der.

Due to its simplicity, MIP rendering can be performed very quickly. Though
not as powerful as other methods, it is commonly used for detecting high inten-
sity structures (i.e., vascular structures) or low intensity structures (i.e., airways)
within volumes from medical scanners.

10.1.2 Absorption

Absorption only

The most basic participating medium absorbs light going through it without
emitting or scattering [Blinn 82, Max 95, Kajiya and Herzen 84]. An example of
this type of medium is a cloud of black smoke.

Consider a cylindrical region of the volume with base B of area E and thick-
ness ∆s that contains ρ particles per unit that have a projected area A on B. The
volume of the cylinder can be expressed as E∆s, from which the area occluded
on the base can be computed: ρAE∆s. This leads to a ratio of occluded area
ρAE∆s/E, or just ρA∆s, from which the intensity of light I can be expressed,
using the following differential equation:

dI
ds

=−ρ(s)AI(s) (10.2)

where ρ(s)A is often referred to as the extinction coefficient and denoted as τ(s).
The solution to this differential equation is

I(s) = I0e−
∫ s

0 τ(t)dt (10.3)

which represents the amount of light absorbed between 0 and s. Compositing
these regions together then just becomes an addition of the opacities:

αi = αi +αi−1 (10.4)

As with MIP, the compositing equation is commutative, and can thus occur in any
order.

The absorption model is often used to show distributions of density in the
volume. One example of this is X-ray imagery, which uses a photographic film
to accumulate X-rays that pass through the body. Regions with dense tissues
(i.e., bone) block more X-rays than regions with soft tissue, which allow X-rays
through and turn the film black.



“book” — 2007/10/25 — 15:01 — page 88 — #94

88 10. Direct Volume Rendering

Figure 10.2: Optical models for direct volume rendering on a volume showing protein po-

tentials. The models displayed are maximum intensity projection (top left), absorption only

(top right), absorption and emission (bottom left), and absorption and emission with shading

(bottom right).

10.1.3 Absorption and Emission

While absorption reduces the amount of light that exits the medium, emission
increases it [Blinn 82, Max 95, Kajiya and Herzen 84, Sabella 88]. The effect is
due to physical processes that convert energy to light, such as hot soot particles in
a flame. Ignoring absorption, the differential equation can be expressed in terms
of the intensity of the glow per unit projected area C:

Emission only

dI
ds

= C(s)ρ(s)A, (10.5)

which has the solution

I(s) = Io +
∫ s

0
C(s)ρ(s)A. (10.6)

Emission without absorption may produce unrealistic imagery especially with



“book” — 2007/10/25 — 15:01 — page 89 — #95

10.1. Optical Models 89

high intensities. Thus it is common to incorporate absorption into the optical
model to simulate the look of a real medium that both occludes light and adds to
the light (such as a cloud). This optical model is generally used for direct vol-

Absorption and emission

ume rendering because it results in a high level of realism, but remains tractable
because it does not involve mutliple scattering.

The differential equation for both terms becomes

dI
ds

= C(s)ρ(s)A−ρ(s)AI(s) (10.7)

which has the solution

I(D) = I0e−
∫ D

0 ρ(t)Adt +
∫ D

0
C(s)ρ(s)Ae−

∫ D
s ρ(t)Adtds (10.8)

where s = 0 at the edge of the volume and s = D at the eye. An approximation
to this equation can be derived using a Reimann Sum. The results divides the
integral into n equal segments of size ∆x:

I(D)≈ I0

n

∏
i=1

ti +
n

∑
i=1

gi

n

∏
j=i+1

t j (10.9)

where
Volume rendering with
emission and absorption
but without multiple
scattering is also referred
to as low albedo volume
rendering. Albedo refers
to the extent in which a
surface reflects light.

ti = e−ρ(i∆x)A∆x, (10.10)
gi = C(i∆x)ρ(i∆x)A. (10.11)

This gives the back-to-front compositing algorithm that is commonly used in prac-
tice.

Alpha compositing takes a different form depending on the direction of the
traversal [Porter and Duff 84]. For back-to-front compositing, the compositing
equations are computed as a function of color and opacity:

ci = ciαi + ci+1(1−αi) (10.12)

or similarly for front-to-back compositing:

ci = ci−1 + ciαi(1−αi−1) (10.13)
αi = αi−1 +αi(1−αi−1) (10.14)

for the steps before (i− 1) or after (i + 1) the current step (i), RGB colors (c),
and transparencies (α). The resulting color is considered pre-multiplied by alpha.
Compositing in this form requires a strict ordering, such as the one imposed by
marching a ray through the volume or imposed by sorting voxels, because the
equations are not commutative.

If the emissive term C is assumed to be constant along the ray, the differential
equation can be simplified to:

I(D) = I0e−
∫ D

0 ρ(s)Ads + c(1− e−
∫ D

0 ρ(s)Ads) (10.15)

which is simply a compositing of color c using an exponential extinction term.



“book” — 2007/10/25 — 15:01 — page 90 — #96

90 10. Direct Volume Rendering

10.1.4 Multiple Scattering

Multiple scattering

Light entering a participating medium may collide with particles and thus
change direction. This scattering can be expressed as a function of the radiance
distribution for measured particles, called a phase function [Glassner 95, Pharr
and Humphreys 04, Bohren and Huffman 83, Denman et al. 66, McCartney 76].
Multiple scattering with phase functions is generally used to model atmospheric
effects and full light simulations. However, it is less common for interactive vol-
ume rendering for visualization purposes due to the complications that reflection
may cause computationally and because it offers limited benefit for exploring and
understanding the data.

Phase functions are generally defined in terms of a = cos(θ), where θ is the
angle between the original ray direction and the scattered direction. The phase
function that expresses scattering in a medium is usually determined by character-
istics of the particles in the medium. A ratio between particle size to wavelength
of light can be used as a rule of thumb for selecting a phase function. If the radius
r of the particles is much less than the wavelength of light λ , atmospheric absorp-
tion is used. If r is slightly less than λ , Rayleigh scattering is more appropriate.
For r about the same size as λ , Mie scattering is used. Finally, for r much greater
than λ , geometric optics are required.

Rayleigh scattering is generally used to simulate scattering when the particles
are smaller than the wavelength of light. Some examples include water molecules
in the atmosphere, smoke, or dust. The Rayleigh scattering function (R) is given
by

PR(a) =
3
4
(1+a)2. (10.16)

When the particle sizes are comparable to the wavelength of light, Mie scat-
tering is often used. Some examples of this type of particles are water droplets
or fog. The two most common Mie scattering functions are for haziness (HM) or
murkiness (MM) and can be expressed as

PHM(a) = 1+9
(

1+a
2

)8

, (10.17)

PMM(a) = 1+50
(

1+a
2

)32

. (10.18)

An approximation to the Mie functions is the Heyney-Greenstein (HG) phase
function:

PHG(a) =
1−g2

(1+g2−2ga)
3
2

(10.19)



“book” — 2007/10/25 — 15:01 — page 91 — #97

10.1. Optical Models 91

where g is the assymetry parameter. Schlick’s approximation (S) to HG is widely
used in computer graphics because it avoids fractional exponentiation:

PS(a) =
1−g2

(1−ga)2 . (10.20)

Determining the appropriate phase function for scattering effects is thus a
tradeoff between speed and quality.

10.1.5 Shading and Shadows

Volume absorption and emission are optical properties that are independent of the
lighting source, and thus, do not give a good sense of depth within the volume.
By incorporating shading into the rendering, this depth can be more perceptable.
Intuitively, shading a transparent volume is similar to shading a single surfaces—
except that instead there are an infinite number of surfaces. A multiple scatter-
ing technique, such as the Heyney-Greenstein function, can be used to attenuate
the light to achieve this effect. A simpler method is to uses a method derived
from Lambert’s law for diffuse particles that are much larger than the light wave-
length [Blinn 82]:

PL(a) = (8/3π)(sinθ +(π −θ)cosθ) (10.21)

where θ in this case is the angle between the incoming ray r and the normal vector
n.

For a volume, computing the normal vector n is not as straightforward as it is
for a surface. For any point within the volume, the normal is just the gradient of
the scalar field f at that point, i.e., n = ∇ f‖∇ f‖. For discrete samples, this can
easily be computed using central differencing on a lattice defined by the neighbors
of the samples [Höhne and Bernstein 86].

More advanced techniques such as shadows can also be used to give realistic
imagery and improve depth cues. The most general form of shadows is performed
in two passes [Kajiya and Herzen 84]. The first renders the volume from the light
source using the absorption model (equation 10.3) and stores the light contribution
for each point in space. The second pass then renders from the view point as
normal using absorption and emmission (equation10.8) with shading, but using
the results from the first pass as a multiplication factor at each step. This brightens
the areas closer to the light and darkens those farther away.

10.1.6 Acceleration Techniques

The integration at each step in the volume rendering can be expensive. To mitigate
this cost, methods have been developed to approximate the integral and move
much of the computation to a pre-process [Engel et al. 01, Roettger and Ertl 02,
Weiler et al. 03,Guthe et al. 02]. This method is called pre-integration, and results
in substantial performance improvements. The basic idea is to compute a 3D table



“book” — 2007/10/25 — 15:01 — page 92 — #98

92 10. Direct Volume Rendering

of colors and opacities for a discrete number of front scalar values (x-axis), back
scalar values (y-axis) and distances between them (z-axis). During rendering, this
table is stored in a texture that can used for lookups at each step in the volume.

The main drawback to pre-integration as described is that it can be costly to
compute the lookup table each time the mapping from scalar to color and opacity
(transfer function) changes. To solve this problem, partial pre-integration can be
used to store the static, computationally expensive components of the integration
(i.e., the exponentiation of distances) separately from the dynamic components
(i.e., color and opacity) [Moreland and Angel 04]. This allows interactive changes
to the optical properties of the volume with virtually no overhead.

10.2 Structured Grids

Many techniques have been developed to volume render structured grids. These
generally fall into three classifications: image-space, object-space, and hybrid
techniques. Object-space algorithms are considered to be a forward mapping be-
cause they start with the volume and map it onto the image plane. Conversely,
image-space algorithms are considered to be a backward mapping because they
cast rays from the image plane into the volume. A complete coverage of all the
techniques that have been is not in the scope of this book. Instead, we focus on the
four most popular techniques and summarize some of the acceleration structures
that have been used to improve their efficiency.

10.2.1 Image-Space Techniques

Ray-casting is perhaps the most conceptually simple sampling technique for vol-
ume rendering because it occurs completely in image-space [Drebin et al. 88,Up-
son and Keeler 88]. Ray-casting is similar to ray-tracing, but has no need for
intersection testing, reflection, or refraction. The idea is to cast a ray, originating
from the eye, through a pixel in the image plane and into the volume. As the ray
passes through the volume, it samples the data incrementally to find the pixel’s
contribution to the final image.

At discrete steps within the volume, the sample of a point within the volume
can be determined using trilinear interpolation within the voxel that contains it.
For pre-classified data, this means interpolating between the colors and opacities
of the voxel corners and for post-classified data it is an interpolating of the scalars
before a transfer function lookup. An obvious choice for sample locations are the
voxel boundaries. However, depending on the view, this may result in artifacts due
to insufficient samples. Therefore, an intermediate step is generally used within a
voxel, which satisfies the constraints given by sampling theory.

Once a sample is obtained, the integral can be computed using the current
sample, previous sample, and distance between them. After the integral is com-
puted for the step, lighting can be applied using the computed gradient. Finally,



“book” — 2007/10/25 — 15:01 — page 93 — #99

10.2. Structured Grids 93

Figure 10.3: Direct volume rendering for structured grids. The rendering emphasizes the

skin and bone inside the volume obtained from a CT scan.

the results are composited with the previous steps. This process is repeated for
each pixel in the image plane.

Figure 10.4 shows some examples of ray-casting for a portion of an MRI scan
of a head. The Figure shows the difference between sampling at one step per
voxel and sampling at two steps per voxel.

The advantage of ray-casting over other approaches is that it is easily imple-
mented in parallel, it can be readily extended to a full ray-tracing for advanced
effects, and it does not require any specialized hardware. For these reasons, ray-
casting is still a common method for volume visualization even though it may be
much slower techniques that take advantage of graphics hardware.

10.2.2 Object-Space Techniques

There are two common techniques for volume rendering unstructured grids in
object-space: splatting and texture slicing. Both these methods project the volume
in some form onto the image plane to get a rendering.

Splatting. Splatting is a method for volume rendering that operates on the voxels
witin the volume [Westover 89,Westover 90]. Each scalar value within the volume
is represented by a semi-transperent kernel, or footprint, that is projected onto the
image plane and composited with other splats to create a final image. Depending



“book” — 2007/10/25 — 15:01 — page 94 — #100

94 10. Direct Volume Rendering

Figure 10.4: Ray-casting of an MRI of the top of a head using two samples per voxel (left),

one sample per voxel (right). The right image suffers from ringing artifacts in the center

and stair-casing artifacts near the bottom that are a consequence from undersampling.

on the optical model, these kernels need to be splatted in front-to-back or back-
to-front order for correct compositing. The issues with splatting involve kernel
selection, representation, and ordering.

For a grid, the choice of footprints is generally a circle, which is invariant
to rotations and thus can be used for all view directions. To avoid aliasing, the
opacity of the splat needs to be convolved with a smoothing kernel, typically a
Gaussian function. The size of the splat is chosen to avoid holes in the volume.
This requires a small overlap between neighboring splats. If this overlap is too
large, the projections will be blurred. A diameter of 1.6 times the space between
values has been found to be sufficient to avoid aliasing from splats while still pre-
venting blurring [Crawfis and Max 93]. However, for perspective projections, this
size needs to be adjusted according to the samples’ distance from the viewpoint.

There are several ways to represent a footprint for splatting. The most efficient
is to use a screen-aligned quadrilateral to represent each footprint [Crawfis and
Max 93]. The quadrilateral is texture mapped using an opacity weighted texture
that represents the classification of the scalar and rendered directly using graphics
hardware.

To ensure that the splats are rendered in the correct order, an axis aligned
sheet plane is used [Westover 90]. The idea is to choose the axis that is most



“book” — 2007/10/25 — 15:01 — page 95 — #101

10.2. Structured Grids 95

Figure 10.5: Direct volume rendering of a CT of a torso using texture slices.

aligned to the current viewpoint and render the data in layers along that axis. This
traversal can be performed efficiently because of the regular access patterns of
the data. However, it may result in artifacts while changing viewpoints. These
include incorrect volume integration due to varying distances between splats and
popping when switching between axes. To mitigate this problem, the sheet planes
can be aligned to the image plane instead of an axis [Mueller and Crawfis 98].
This results is a less efficient but more correct rendering.

Texture Slicing. An object-space method that has become the most common due
to modern graphics processors is texture slicing [Cullip and Neumann 93, Cabral
et al. 94, Guan and Lipes 94, Wilson et al. 94]. This method maps the volume to
2D or 3D textures in graphics hardware. Parallel planes, or proxy geometry, are
then used to slice the volume into discrete steps and sample the textures. These
slices are finally rendered in front-to-back or back-to-front order and composited
into a the resulting image.



“book” — 2007/10/25 — 15:01 — page 96 — #102

96 10. Direct Volume Rendering

Early graphics boards only supported 2D textures in hardware, which makes
volume rendering only possible by representing volumetric data as stacks of 2D
images. The proxy geometry to sample these textures can then be performed

Axis aligned texture
slices

using axis-aligned quadrilaterals. To improve efficiency, the data can be repli-
cated in the three axis directions, which increases memory usage but allows the
geoemtry for the axis most aligned with the viewpoint to be quickly constructed.
Avoiding this extra storage requires on-the-fly slice reconstruction at the expense
of performance overhead [Lefohn et al. 04]. Another problem that arises here is
the dependency on the sampling rate used to produce the regular grid, which can
be avoided by using extra slices and trilinear filtering between textures [Rezk-
Salama et al. 00].

The advent of 3D texturing capabilities even further improved the ways that
the graphics hardware can be used to perform volume rendering. Since the volume
data is naturally stored as a 3D texture, it suffices to use proxy geometry consisting
of a set of parallel polygons orthogonal to the viewing direction (aligned with
the image-plane). The scalar values stored in 3D textures are processed in

Image-plane aligned tex-
ture slices

pairs of successive slices. For each pair of scalar values, the color and opacity
contribution can be computed using the volume rendering integral. These results
are then composited into the final image.

The advantage of object-space approaches are that they are fast. They repre-
sent the volume in ways that are efficient for modern graphics processors. Be-
cause of this, they are often the choice when interactivity is important. How-
ever, performing more advanced effects, such as shadows, may not be as easily
achieved as with a ray-caster.

Figure 10.2.2 shows an example of a volume rendering using texture slices.
The volume is ??x??x?? yet can still rendered interactively.

10.2.3 Hybrid Techniques

A popular method for structured grids that operates in both object- and image-
space is shear-warp volume rendering [Cameron and Undrill 92,Yagel and Kauf-
man 92, Schröder and Stoll 92, Lacroute and Levoy 94]. Shear-warp is a highly
optimized ray-casting approach that gets its speedup from a clever object-space
shearing and warping of the volume.

Standard ray-casting

The sampling step of a ray-caster is most efficient when the viewpoint is
aligned with an axis orthogonal to the grid of the volume. This is because number
of sampling steps required is less than at other viewpoints, the sample locations
are easily determined, and the distances between samples is uniform. The idea be-
hind shear-warp volume rendering is to use only send rays through the volume at
axis aligned slices, but to shear and warp the volume depending on the viewpoint.

The view transformation V at any position can be factorized as follows:

V = P ·S ·W (10.22)

where P is a permuation matrix which transposes the coordinate system to the



“book” — 2007/10/25 — 15:01 — page 97 — #103

10.2. Structured Grids 97

principle axis, S is a shearing matrix, and W is a matrix that transforms the sheard
object into image coordinates. For a perspective projection, an extra scaling of S
is required. The volume is traversed in slice order, but the slices are warped

Shear-warp ray-casting
for an orthogonal projec-
tion

to project correctly on the image plane. As a ray steps from slice to slice, the
shearing ensures that the same warp can be used.

As with the other object-space methods that use an axis-aligned traversal, the
data access for the three axes can be pre-computed and stored for efficiency. In
addition, the computation can be preformed in parallel based on slices, instead of
rays. The result is a substantial speedup over basic ray-casting. The disadvantage
is that artifacts may occur from the sampling as the viewpoint approaches a 45◦

angle from any axis.

Shear-warp ray-casting
for a perspective projec-
tion

10.2.4 Acceleration Techniques

The majority of work in the area of volume rendering has been to improve upon
these volume rendering approaches. Many of these are targeted at improving
performance.

One obvious acceleration method is to avoid unnecessary computation within
the volume. The two methods for doing this are early ray termination and empty
space skipping. Early ray termination recognizes that if the data is being com-
posited from front-to-back, and the resulting image is already opaque, there is
no need to continue compositing. In the case of ray-casting, the ray can be
terminated before it passes through the volume if the pixel it corresponds to is
opaque [Levoy 90a]. A similar, though slightly more complex, test can be per-
formed for splatting algorithms as well to end the splatting early if the region of
the splat is opaque [Mueller et al. 99]. Generally a threshold like 95% opacity
(5% transparency) is used because additional contributions are not noticeable.

Another method for avoiding unnecessary computation is empty-space skip-
ping [Levoy 90a]. This acceleration technique is targeted towards avoiding the
regions in the volume that are completely transparent. This can be done by com-
puting a hierarchical representation of the volume that is more coarse in homoge-
nous regions. The coarse regions can then be traversed with larger steps than
the rest of the volume. A similar effect can be achieved by using distance field
around objects of interest that adapt the step size [Zuiderveld et al. 92]. Isosur-
facing can also be used as a pre-computation to determine the first hit location of
the important regions in the mesh [Avila et al. 92] Similarly, methods have been
established that send out scattered rays or use frame-to-frame coherence to find
first hit locations before the full rendering pass occurs.

Interactivity can also be improved substantially using level-of-detail (LOD)
methods. These methods change the resolution of the rendering during viewpoint
interaction to maintain responsive frame rates. The most common LOD strategy
is to use a coarser sampling of the volume. For ray-casting, this could mean using
larger step sizes or using less rays [Levoy 90b]. For object-space techniques,
fewer slices through the data can be used. A hierarchical representation of the



“book” — 2007/10/25 — 15:01 — page 98 — #104

98 10. Direct Volume Rendering

Figure 10.6: Direct volume rendering of an MRI of a head using texture slicing with 2D

textures. The left image shows a full quality rendering using correct sampling and the right

image shows a level-of-detail rendering using every fourth slice.

data, such as an octree, could also be used [Danskin and Hanrahan 92] that can be
easily traversed for higher or lower resolutions of the data. The result is similar
for both techniques. Figure 10.6 shows an example of texture slicing with 2D
texture at full quality and with a reduced number of slices.

Probably the most substantial improvement to interactivity in volume render-
ing of unstructured grids has come with advances in graphics hardware. Graphics
processing unit (GPU) speeds have been increasing at a rate faster than Moore’s
Law. They are very efficient for rendering large scenes of polygons. With the
increasing amount of programmability, they have also become efficient for other
types of parallel computation. Ray-casting techniques have been developed [Roettger
et al. 02] and texture-based approaches have been improved substantially [Krüger
and Westermann 03] due this programmability. This trend is likely to continue
and interactivity will continue to increase for larger and larger volumes.


