CS 5630/6630
Scientific Visualization

Volume Rendering II: Structured Grid Techniques
Structured Grids

- Image-space techniques (backwards mapping)
 - Ray-Casting
- Object-space techniques (forwards mapping)
 - Splatting
 - Texture Slicing
- Hybrid
 - Shear-Warp
Ray-Casting

- Image-space technique
- Starts from image plane and goes into volume (backwards mapping)
- Render the image one pixel at a time
- More limited than of ray-tracing

For each pixel:
- Cast a ray from pixel to volume
- Find sample via interpolation
- For each sample:
 - Classify using transfer function
 - Compute volume rendering integral
 - Composite

[Drebin et al 88, Upson and Keeler 88]
Ray-casting

- Sampling
 - Where do you sample?
 - Cell boundaries
 - Internally to avoid artifacts
 - Use trilinear interpolation
 - Pre-classification vs. post-classification
Ray-Casting

- Advantages?

- Disadvantages?
Ray-Casting

- Advantages?
 - It’s simple!
 - No hardware constraints
 - Easily parallelized
 - Easily extended for multiple scattering

- Disadvantages?
 - It’s slow!
 - Must sample densely for high quality
Ray-casting

• VisTrails Example
Splatting

- Object-space technique
- Starts from the volume and goes to the image plane
- Render the image one voxel at a time
- Front-to-back or back-to-front

For each voxel in order:
 - Classify using transfer function
 - Generate a semi-transparent footprint
 - Project footprint to image plane
 - Composite

[Westover 89, Westover 90]
Splatting

• Footprint selection
 • Projected area on image plane
 • Needs to be simple and fast
 • Use a circle!
 • Rotationally invariant
 • Opacity convolved with a Gaussian function
 • How big should the circle be?
 • Diameter of 1.6 times voxel size
 • How should it be represented?
 • Textured, screen-aligned quadrilateral

[Crawfis and Max 93]
Splatting

- Visibility ordering
 - Sheet-aligned splatting
 - Choose the closest axis aligned slices
 - Traverse slices front-to-back

[Westover 90]
Splatting

- Sheet-aligned splatting
Splatting

- Sheet-aligned splatting
 - Add voxel kernels within first sheet
Splatting

• Sheet-aligned splatting
 • Add voxel kernels within first sheet
 • Transfer to compositing buffer
Splatting

- Sheet-aligned splatting
 - Add voxel kernels within first sheet
 - Transfer to compositing buffer
 - Add voxel kernels within second sheet
Splatting

• Sheet-aligned splatting
 • Add voxel kernels within first sheet
 • Transfer to compositing buffer
 • Add voxel kernels within second sheet
Splatting

• Advantages

• Disadvantages
Splatting

- **Advantages**
 - Fast! The voxel interpolation is in 2D
 - Footprints can be preintegrated
 - Only relevant voxels need projecting, can be performed out-of-core

- **Disadvantages**
 - Blurry when zoomed
 - Slows when zoomed
 - Compositing can be incorrect in overlap
Texture Slicing

- Object-space technique
- Store volume in texture memory of GPU
- Slices volume using proxy geometry

Store volume in 3D texture or 2D textures
For each viewpoint:
 - Create proxy geometry parallel to image plane
 - Render proxy geometry
 - Sample textures for classification
 - Composite

[Cullip and Neumann 93, Cabral et al. 94, Guan and Lipes 94, Wilson et al. 94]
Texture Slicing

• Similar to ray-casting but with simultaneous rays
Texture Slicing

- 2D textures
 - Axis aligned slicing
- 3D textures
 - View aligned slicing
Texture Slicing

- Sampling

1 Slice
5 Slices
20 Slices
45 Slices
85 Slices
170 Slices
Texture Slicing

- VisTrails demo
Texture Slicing

- Advantages

- Disadvantages
Texture Slicing

• Advantages
 • Really fast!

• Disadvantages
 • Correct illumination and shadowing is hard
 • Requires a lot of texture memory
Shear-warp

- Hybrid object-space and image-space technique
- Axis aligned slices are fast
- Shear and warp volume such that the rays are parallel to each other and perpendicular to the image

For each viewpoint:
- Pick axis aligned slices
- Shear along volume slices
- Transform to align with image plane
- Project to image plane
- Composite

[Cameron and Undrill 92, Yagel and Kaufman 92, Schroeder and Stoll 92, Lacroute and Levoy 94]
Shear-warp

- Advantages

- Disadvantages
Shear-warp

• Advantages
 • All voxels in a slice are scaled uniformly
 • Sampling rate is uniform
 • Cache-efficient
 • Can be performed out-of-core

• Disadvantages
 • Starts to break down near 45°
Acceleration Techniques

- Early ray termination [Levoy 90]
 - Stop compositing if high opacity has been reached (front-to-back)
- Empty space skipping [Levoy 90]
 - Skip regions in mesh deemed unimportant by transfer function
- Adaptive sampling [Roettger 98]
 - Vary the size of sample by importance of the region
- Level-of-detail [Levoy 90]
 - Use less samples
- GPU programming
 - Ray-casting on the GPU [Roettger 98]
 - Lookup tables [Engel 01]
 - Texturing [Cabral 94, Crawfis and Max 93]
Acceleration Techniques

- VisTrails demo
Summary

• Structured Grids
 • Ray-casting is most flexible
 • Texture slicing is fastest
 • Splatting and shear-warp can be done out-of-core