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ABSTRACT

With the ever-increasing amount of available computing resources and sensing devices, a

wide variety of high-dimensional datasets are being produced in numerous fields. The com-

plexity and increasing popularity of these data have led to new challenges and opportunities

in visualization.

Since most display devices are limited to communication through two-dimensional (2D)

images, many visualization methods rely on 2D projections to express high-dimensional

information. Such a reduction of dimension leads to an explosion in the number of 2D

representations required to visualize high-dimensional spaces, each giving a glimpse of

the high-dimensional information. As a result, one of the most important challenges in

visualizing high-dimensional datasets is the automatic filtration and summarization of the

large exploration space consisting of all 2D projections. In this dissertation, a new type

of algorithm is introduced to reduce the exploration space that identifies a small set of

projections that capture the intrinsic structure of high-dimensional data. In addition, a

general framework for summarizing the structure of quality measures in the space of all

linear 2D projections is presented.

However, identifying the representative or informative projections is only part of the

challenge. Due to the high-dimensional nature of these datasets, obtaining insights and

arriving at conclusions based solely on 2D representations are limited and prone to error.

How to interpret the inaccuracies and resolve the ambiguity in the 2D projections is the

other half of the puzzle. This dissertation introduces projection distortion error measures

and interactive manipulation schemes that allow the understanding of high-dimensional

structures via data manipulation in 2D projections.
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INTRODUCTION AND BACKGROUND



CHAPTER 1

MOTIVATION AND CONTRIBUTIONS

With the ever-increasing amount of available computing resources and sensing devices,

our ability to collect and generate a wide variety of large, complex datasets continues to

grow. From the natural sciences to social sciences, from business to engineering, numerous

applications have modeled and studied data with multiple attributes as points in high-

dimensional space. For example, in biology, the relationship among genomic microarray

have been examined and visualized [3, 4] as high-dimensional data; in air quality research

high-dimensional spectrometry data are studied via an interactive dimension reduction visu-

alization framework [5]; in nuclear safety engineering, the failed condition can be analyzed as

a high-dimensional scalar function [6, 7], where the input parameters are the domain and the

model output is the range; and similarly a high-dimensional scalar function can also be used

to study the chemical compounds mixing ratios and the corresponding burning conditions in

a combustion simulation [8]. The wide availability and abundance of high-dimensional data

and their applications make understanding high-dimensional space one of the important

aspects for analyzing complex multiparameter data. However, despite the wide usage, we

usually lack intuition and in-depth understanding about high-dimensional space. More

importantly, most statistical analysis methods that are often used for analyzing high-

dimensional data (e.g., regression analysis) focus on confirming or rejecting certain limited

aspects of the data and therefore provide little information regarding the high-dimensional

space as a whole or helping develop intuitions for the users. Visualization, as an essential

tool for exploratory data analysis, has been proven to be an intuitive and effective alternative

for exploring and studying high-dimensional data (e.g., Tukey’s early work on projection

pursuit [9]). However, there are still many unresolved challenges and new opportunities in

visualization for making sense of these high-dimensional data with ever-increasing size and

complexity. This dissertation aims to address some of the most prominent challenges when

visualizing high-dimensional data through two-dimensional (2D) projections.
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1.1 Visualization Challenges

Exploring and visualizing high-dimensional data is essential for making sense of many

complex data that have multiple interconnected parameters or properties. However, visu-

alizing such a space is an extremely challenging task.

The physical limitations of the display devices and our visual system prevent the direct

display and instantaneous recognition of structures with dimensions higher than two or

three. Currently, most effective display devices are 2D in nature. The human eye can

perceive the word around us only by the use of a “2D sensor array” (the retina), and even

the perception of 3D space is reconstructed through 2D images by the human brain. In

addition, our intuitions regarding the spatial relationship and structure are from the 3D

space we live in and many of these intuitions fail in high-dimensional space (e.g.,“the curse of

dimensionality”; refer to Section 2.1). Understanding even a simple 4D structure may prove

to be rather challenging for most people (e.g., Klein bottle). Due to these insurmountable

limitations in our ability to understand high-dimensional space, visualization techniques

that convey information about the high-dimensional dataset through intermediate visual

representations in 2D are becoming increasingly important and necessary. High-dimensional

data visualization methods help facilitate the process of transforming high-dimensional

information into digestible pieces where the user can gain intuition and understanding

of high-dimensional space and the structures within. Here an analogy can be drawn from

the famous blind men and elephant story [10]. When facing high-dimensional data, we

are essentially the blind men who can only try to understand what an elephant is (high-

dimensional space) through multiple indirect means (2D visual representations), and these

indirect representations could lead to incomplete and misleading information.

Despite many advances have been made in the past decades in both the statistic and

visualization communities (for a comprehensive summary, please refer to my survey in [11]),

many important challenges remain because of the complexity of high-dimensional datasets

and the limitations of the existing approaches

1.1.1 Handling the Enormous Exploration Space

Since both the display device and our visual input channel are limited to 2D, visual-

ization methods rely on intermediate 2D visual representations to express high-dimensional

information. As illustrated in Figure 1.1, such a reduction of dimension in a 2D visual

representation leads to an expansion of the number of 2D items required for describing the

high-dimensional information. As a result, one of the most important challenges in visual-

izing high-dimensional space is the search, selection, and filtration of the large exploration
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The dimension of the space 
of all 2D linear subspaces:  2n-4

. . .

High-Dimensional Space
Rn

Figure 1.1: The challenge of the extremely large exploration space when visualizing high-
dimensional data via 2D representations.

space that consists of all intermediate 2D visual representations. These automatic schemes

summarize the useful information, making the exploration of the high-dimensional dataset

by a human user, with limited time and energy, possible.

Attributed to the 2D projection’s simple construction and innate ability to express data

points relationships and structures, it has been one of the most fundamental yet widely

used visual representations for visualizing high-dimensional datasets. In this discussion,

2D projection is defined as a mapping from high-dimensional space to 2D space. Such

a projection can be axis-aligned projection (usually referred to as a scatterplot), linear

projection, or nonlinear projection (manifold learning).

In this dissertation, the 2D projection-based approaches are the focus of the discussion.

Let us first take the scatterplot matrix, one of the most widely used high-dimensional data

visualization methods, as an example of the challenges of handling enormous exploration

space. The scatterplot matrix, or SPLOM, is a collection of scatterplots that allows users

to view multiple bivariate relationships simultaneously. As the dimension increases, the

number of scatterplots in scatterplot matrix increases quadratically for representing all the

bivariate relationships of the dataset. As a result, even for data with dozens of dimensions,

the scatterplot matrix will end up with hundreds or even thousands of 2D scatterplots,

which will take the user a significant amount of time and energy to explore and analyze.

Such a limitation leads to the development of automatic selection and filtration approaches

for the 2D scatterplots in a scatterplot matrix. These methods find the interesting or

out-of-ordinary scatterplots, based on a given metric, for the user to explore. Scagnostics [1]

is one such attempts. It provides a set of nine measures capturing properties such as
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outliers, shape, trend, and density in scatterplot matrix for identifying “interesting” plots

(scatterplots that agree with certain patterns). These measures for identifying interesting

patterns in high-dimensional datasets are usually referred to as quality metrics. We can rank

the projections based on the quality metrics scores (e.g., Scagnostics [1], rank-by-feature

framework [12]), which provide an indication of whether a scatterplot should be closely

examined by a human user.

Although using a flat ranking allows one to discard “bad” projections, it may not be

ideal for selecting “good” ones. Firstly, there is no guarantee that the “interesting” and

“informative” projections are included in the candidate set to begin with. For the scatterplot

matrix, all the projections are axis-aligned and therefore include only a fraction of all

possible 2D linear projections of the high-dimensional dataset. Secondly, the ranking does

not give a clear indication of how the selected projections might be related. For example,

does the second “best” projection have a high ranking simply because it is very similar

to the projection ranked as number one? A more desirable situation is where the user is

presented with projections that complement each other and highlight different aspects of

the dataset. As a result, ranking based solely on the quality metric is not enough, and

the method needs to make more intelligent decisions and identify “locally” best projections

that together paint a more comprehensive picture of the dataset.

Moreover, the scatterplot matrix captured only the bivariate relationship among different

dimensions. Implicitly, it also treats all dimension as equal. However, for many datasets,

the relationships between dimensions are not uniform. The closely related dimensions can

and should be grouped into clusters, where the noise from the unrelated dimensions is

removed, for subsequent analysis. The methods that find clusters within the subset of

dimensions are usually referred to as subspace clustering methods (e.g., ENCLUS [13],

SURFING [14]), initially developed in the data mining and knowledge discovery community.

Subspace clustering can also be considered as a class of methods for reducing the large

exploration space. By focusing on individual clusters, where only a small subset of dimension

is considered, the exploration and analysis process is simplified. The subspace clustering

methods have been adopted [15, 16] for visualizing high-dimensional space. These methods

identify the intricate relationship among dimensions, introducing some very interesting

exploration strategies for high-dimensional datasets and can be particularly effective when

the dimensions are not tightly coupled.

However, some drawbacks remain. Firstly, these subspace clustering methods group

subsets of dimensions and therefore captures only the axis-aligned properties during the

clustering process. Secondly, these methods will fail when applied to data where dimensions
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are close related, such as the face images dataset where each dimension corresponds to a pixel

value. Thirdly, these methods are prone to generate a large number of candidate clusters,

where an automatic search and filtering operation is again necessary for the exploration of

the results, which defeats the initial purpose of exploration space reduction.

In this dissertation, a new type of algorithm is introduced to identify the projections

that capture the intrinsic structure of high-dimensional data, which drastically reduces the

exploration space. In addition, a general framework for summarizing the structure of quality

metrics in the space of all linear projections is presented, which provides a more intelligent

projection-selection approach compared to ranking the quality metrics scores directly.

1.1.2 Interpreting the 2D Representations

Identify the “interesting” or “informative” projections of the high-dimensional dataset is

only part of the challenge. How a user can analyze, interpret, and understand these selected

2D representations of high-dimensional data is the other half of the puzzle. As illustrated in

Figure 1.2, when 2D projections are generated for visualizing high-dimensional space, the

information loss is unavoidable. Therefore, obtaining insights and arriving at conclusions

based solely on the 2D representation are limited and prone to error.

For 2D projections, the error originates from the inability to express the complex

high-dimensional relationship in the limited 2D space (e.g., further apart points in high-

dimensional space may be projected onto the same neighborhood in 2D or vice versa). Such

error is often referred as distortion error. The objective function of dimensionality reduction

methods (e.g., principal component analysis, linear discriminate analysis) can provide some

indication regarding how well a given projection preserves the high-dimensional features

with respect to the formulation of the objectives. However, the objective functions or

other types of global measures produce only one number, which is woefully inadequate for

High-Diamensional 
Space

Intermediate representations
with unavoidable 
information loss

Visualization
User

Figure 1.2: The challenge of interpreting the intermediate 2D representation where
unavoidable information loss occurs.
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capturing the variations within each projection. For example, a projection may capture

part of the high-dimensional structure extremely well, but completely falter on the rest.

A per-point estimation regarding how well localized features are preserved is extremely

valuable for interpreting the 2D projection results. In this dissertation, the concept of

per-point quality measure is extended to the general measures that are applicable to various

types of projections, and type-specific ones that correspond to how the projections are

generated (including linear and nonlinear dimension reduction methods).

While the per-point distortion measures help to identify where the errors or inaccuracies

are, it does not aid in explaining why such errors exist. To overcome such limitations,

identifying a link between the 2D space and the original high-dimensional space is essential

for an in-depth understanding of the dataset. In this dissertation, a distortion-guided

manipulation scheme is introduced to address the “why” question by allowing the user to

manipulate high-dimensional structures in 2D while providing interactive feedback through

per-point distortion measures.

1.2 High-Dimensional Data Definition and Classification

Before further discussion, providing a definition for high-dimensional data in the context

of this dissertation is necessary. High-dimensional datasets can be defined through the

perspective of the domain and range of a function. The domain attributes correspond to

the coordinates in an abstract space; the range attributes are the function values defined

on the domain.

As illustrated in Figure 1.3, such an interpretation provides a unified view of several

related but different types of datasets. If the dimension of either the domain or range is

higher than three, this dataset is considered as high-dimensional. For example, multivariate

volumetric dataset that often seen in various scientific simulations is one type of high-

dimensional datasets, where the dimension of the domain is three and the dimension of the

range is more than three.

Multidimensional is usually used to describe the dataset with a modest dimension that is

not significantly higher than three. High-dimensional, on the other hand, suggesting a larger

dimension count than multidimensional. However, there are no obvious criteria to determine

exactly how many dimensions can be considered high-dimensional and how many dimensions

are just multidimensional. In addition, for datasets with dimensions higher than three, the

methods for visualizing them are usually fundamentally different from the methods for 2D

or 3D datasets. Moreover, for many datasets, despite having large data dimensions, the

dataset’s intrinsic dimension can be surprisingly low. For example, an image from the face
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Figure 1.3: Illustration of the range domain interpretation of a dataset. It provides a
unified view of various different but related types of data, including variations of high-
dimensional dataset.

images database (A face image may contain thousands of pixels. If each pixel describes

one dimension, each image will represent one point in a very high-dimensional space [17]).

However, the relationship between these images (high-dimensional points) can be captured

by a much lower dimensional space (its intrinsic dimension). These observations further blur

the line between the concepts of multidimensional and high-dimensional. Therefore, in this

dissertation, the terms multidimensional and high-dimensional are not strictly separated.

High-dimensional is used in a more generalized sense describing both multidimensional and

high-dimensional datasets.

1.3 Identify Informative 2D Projections

In light of the previous discussion, one of the major challenges in visualizing high-

dimensional data is handling the enormous exploration space, specifically, how to auto-

matically search for and select a set of informative 2D projections that best captures the

properties and features of the high-dimensional data.

2D projection generated by various high-dimensional visualization methods can be roughly

divided into three categories: bivariate scatterplot, linear projection, and nonlinear projec-

tion. The bivariate scatterplot (as in a scatterplot matrix) is easy to understand, since its

axes directly correspond to the original dimensions. Linear projections, where the axes of the

plots are the linear combination of existing dimensions, are more challenging to understand

but at the same time are more likely to capture important structural information (compared
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to the scatterplot’s axis-aligned projections). As for nonlinear projections, even nonlinear

manifold structures can be learned, but the axis of the resulting projection loses its meaning.

Therefore, as illustrated in Figure 1.4, delicate trade-offs exist between the interpretability

of the axis and the potential for capturing intrinsic structure in the data. To strike a balance

between capturing the intrinsic structures and generating interpretable results, the linear

projection is targeted for the proposed projection-finding techniques.

Many existing projection-finding algorithms [1, 18, 19, 20] rely on various quality mea-

sures to rank the potentially important projections from a set of candidate samples. There

are several issues with these approaches when samples are filtered by quality measures. First,

the initial candidate set heavily influences the outcome of the result. If the candidate set

includes only axis-aligned projections, only bivariate relationships can be discovered. As a

result, potentially important projections may not be selected simply due to small or limited

candidates. Second, most quality measures are designed to highlight the out-of-ordinary

configurations (e.g., deviate from a Gaussian distribution for the project pursuit index [9])

without considering the underlying data’s intrinsic structure. Such a process indicates that

the identified projections may not correspond to the important structural information, but

instead highlight the less significant structure that happens to fit the patterns that the par-

ticular quality measures are seeking, thereby leading to potentially misleading representative

projections. Approaches based on subspace clustering methods [15, 4, 21] that find clusters

in the subsets of dimensions introduce interesting alternatives for identifying informative 2D

projections. However, the axis-aligned constraint and nonuniform assumption among the

dimensions limited their use. Instead of focusing on the subset of dimensions, identifying

linear subspaces (non-axis-aligned) provides a more flexible alternative.

Recently, advances have been made in the machine learning community for performing

non-axis-aligned subspace clustering [22]. Instead of grouping dimensions, the points are

Interpretable Axis

Linear ProjectionManifold Learning Axis Align Projection

Intrinsic Structure

Figure 1.4: Interpretable axis vs. intrinsic structure; the trade-off between different types
of 2D projections.
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grouped together for sharing similar linear subspaces (as illustrated in Figure 1.5). These

methods help to decompose the high-dimensional space into multiple smaller but simpler

regions, where a lower dimension space is sufficient to capture the interpoint relationship.

In this dissertation, these non-axis-aligned subspace clustering methods [22, 23, 24] are

introduced as the basis for the new class of projection selection methods for identifying the

informative linear projection of a high-dimensional dataset.

However, finding the 2D representations alone does not necessarily help the user under-

stand the dataset as a whole. A clear understanding of the relationships among these 2D

representations is the key. In this research, by introducing a view navigation graph that

provides flexible navigations among these selected 2D projections from subspace analysis,

intuitive exploration of the informative projections and their relationships in the high-

dimensional space is achieved.

1.4 Summarize the Space of 2D Projections

As discussed in the previous section, one of the fundamental challenges of visualizing

high-dimensional space is to identify informative 2D projections that capture the intrinsic

structure of the data. However, even for datasets with moderate dimensions, exploring all

possible axis-aligned projections, let alone all linear ones, becomes impractical. Therefore,

as discussed earlier, a common strategy is to search through a large number of potentially

interesting projections and select a small set based on a ranking of quality measures com-

puted from the projections.

However, few techniques explicitly consider diversity when choosing representative pro-

jections. As a result, multiple highly ranked but redundant (similar) projections may be

Figure 1.5: The intuition behind subspace analysis. A given high-dimensional space can
be decomposed into multiple lower dimensional linear subspaces.
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selected. At the same time, lower ranked ones are discarded even though they may contain

complementary information. Simply increasing the number of selected projections does not

mitigate the diversity issue, but on the contrary, may increase the likelihood of selecting

multiple similar projections with large quality measure values.

On the other hand, each quality measure is designed to capture some aspects of the data,

yet little is known regarding the properties of the measure. For example, understanding the

smoothness of a measure and the distribution of its local maxima are crucial in choosing

the right representative projections. In particular, through the experiments carried out in

this dissertation, many quality measures have been found containing only a single maxima

globally that may not be suitable for finding multiple projections.

In this dissertation, the Grassmannian Atlas, a new framework to analyze, compare, and

explore the space of all linear projections based on different quality measures, is introduced.

Rather than working with a few selected projections, the space of linear projections is

modeled by the so-called Grassmannian [25], which abstracts the space of linear subspaces

in a data-independent manner and compensates for affine transformations of the projections.

The Grassmannian is approximated by connecting a set of sampled points (each corre-

sponding to a subspace) on the manifold with a neighborhood graph based on well-defined

geodesics. Then, a given quality measure is analyzed as a scalar function defined on the

Grassmannian and the notion of locally optimal projections is introduced: the local maxima

of the quality measure that are robust to small perturbations of the function. Consequently,

using tools from scalar field topology, a topological skeleton can be extracted that describes

the number, locations, and relationships among optimal projections. Such a skeleton can

be simplified and visualized via the topological spines [26]. The topological spines provide a

2D multiresolution representation of the otherwise high-dimensional structure, which leads

to a visual map for exploring the space of projections in an intuitive manner.

In addition, by introducing the concept of the Grassmannian (the space of all n-dimensional

linear subspaces), this dissertation establishes a unified framework for exploring linear pro-

jection of high-dimensional datasets and providing the theoretical foundation for studying

the relationships (e.g., distances) among linear projections and linear subspaces.

1.5 Interpret 2D Projections via Manipulation

Despite the enormous efforts put into methods generating informative 2D projections,

limited state-of-the-art works have been dedicated to the endeavor of interpreting and

making sense of these 2D projections. Obtaining insights and arriving at conclusions based

solely on the 2D projections are limited and prone to error. Therefore, how to make sense
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and interpret these 2D representations in the context of high-dimensional space is as crucial

as finding the projections.

To address the problem of misleading information in a 2D projection, effectively con-

veying the inaccuracies is essential. The inaccuracies in the projection can be evaluated

from two perspectives: first, a global measure of the absolute magnitude of the error,

which addresses the question: Is the projection totally misleading? Second is a per-point

estimation of the error, which addresses the question: Should I trust a given point in the

projection? Here the per-point error is particular interesting, as it provides the user with

adequate information to determine whether the inconsistency in the projection is likely

to have been introduced by the dimension reduction process. This dissertation derives

both the global and per-point error measures for linear projections and various nonlinear

dimensionality reduction methods, which addresses the challenges of identifying misleading

projections and the misleading areas within a projection.

For a given projection, the per-point error measures answer the question of where

the inaccurate areas are. However, relying on the measure alone, we still cannot answer

the question of why some of the highly distorted areas exist. Interactivity plays an ex-

tremely important role in visualization. For example, Brown et al. [27] introduce the

distance-function-learning concept, where a new distance metric can be calculated from

the manipulation of point layouts by an expert user. Such an interactive manipulation

scheme allows users’ knowledge to be incorporated into the algorithm. In this research,

a projection manipulation scheme is introduced. It extrapolates the manipulation applied

in the 2D space to the original high-dimensional dataset and reflects the changes in 2D

via the on-the-fly update of per-point error measures. By utilizing interactive exploration

and manipulation of projection results, a deeper understanding of these projections is made

possible, which leads to new intuition and insights of the high-dimensional dataset.

One fundamental challenge when manipulating projected points in 2D is the lack of

high-dimensional structure information. Due to the constraints and limitations of 2D space,

common interaction tools such as lasso or box selection may select points that belong to

far away high-dimensional neighborhoods, which introduce more inaccuracies rather than

helping resolve the ambiguity. A meaningful data manipulations (e.g., data movement and

data deletion) in the visual space should be structure-driven, that is, the selected points

should respect certain structures of the original high-dimensional data. In order to overcome

this obstacle, structural context, computed from hierarchical clusterings, is imposed onto

the embeddings as a multiresolution skeleton, which serves as a structural abstraction of

the data at multiple scales and handles for manipulation.
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1.6 Dissertation Contributions

In summary, the research done as part of this dissertation has led to the development

of a self-contained framework for visualizing high-dimensional space. The framework not

only helps users identify 2D projections that reveal intrinsic structures of the dataset and

summarize the space of all linear projections, but also provides the tools that aid in the

interpretation of the 2D projections in connection with the original high-dimensional space.

In addition, all the proposed techniques are readily available as components that work

together in a unified software system.

The key contributions are itemized as follows:

• Identify Informative 2D Projections (PART II, Chapters 4, 5, 6)

First, a new type of algorithm [28] is introduced for identifying the linear projections

that capture the intrinsic structure of high-dimensional data, which drastically reduces

the exploration space. The method identifies the informative linear projections by

utilizing subspace analysis, reveal and summarize the relationship among these pro-

jections through a view navigation graph. In addition, since the proposed technique

provides an intuitive interface for exploring high-dimensional space from multiple

perspectives (2D projections), the technique is extended to multivariate volume visu-

alization [29] for designing multivariate transfer functions. Finally, subspace analysis

is also utilized for making sense of analogy relationships in the word embedding space.

• Summarize the Space of 2D Projections (PART III, Chapter 7)

Second, a general framework [30] for summarizing the space of all linear projections

of high-dimensional data is presented. Chapter 7 introduces a unified framework for

working with linear subspaces and understanding their relationships (with well-defined

distance metrics). The proposed work, the Grassmannian Atlas, captures the global

structures of quality measures via topological data analysis in the space of all 2D

subspaces, which enables a systematic exploration of many complementary projections

(local maxima) and also provides new insights into the properties of existing quality

measures.

• Interpret 2D Projections Via Manipulation (PART IV, Chapters 8, 9)

Finally, a projection manipulation scheme [31] is introduced to facilitates the un-

derstanding of high-dimensional data via manipulation of its 2D projections (linear

and nonlinear). The structural abstractions obtained through hierarchical clusterings

allow multiscale data manipulations, even with hidden or occluded data points in
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2D. Combining interactive data manipulations in the 2D projection with on-the-fly

updates of distortion measures provides new insights regarding structural relations

among different parts of the data.

Novel visualization techniques, without a proper delivery mechanism, can not reach

their intended audience. The design and implementation of the visualization system have

a profound impact on the usability of the proposed method. In this dissertation, conscious

efforts have been made into producing a complete, self-contained, and usable software frame-

work, namely DataExplorerHD (http://goo.gl/FnnOKs). The DataExplorerHD includes

all the above-mentioned techniques and designs to be flexible and extensible to meet future

demands.

1.7 Dissertation Structure

The structure of the remaining chapters in this dissertation is outlined below:

• Chapter 2: discusses the background and definitions that are the foundation of this

dissertation.

• Chapter 3: covers the related works in the field of high-dimensional data visualiza-

tion relevant to the discussion in this dissertation.

• Chapter 4: introduces the subspace analysis for identifying informative linear 2D

projections, summarizing their relationship and navigating among these projections.

• Chapter 5: introduces the application of subspace analysis approach for designing

transfer function and visualizing multivariate volume data.

• Chapter 6: finding informative 2D projections for making sense of the analogy

relationships in the high-dimensional word embedding space.

• Chapter 7: discusses a unified framework, the Grassmannian Atlas, for exploring

the space of all linear subspaces.

• Chapter 8: explores the distortion error measures for highlighting inaccuracies in

2D projections.

• Chapter 9: presents a distortion measures guided interactive manipulation scheme

that aid in the interpretation of projection results.

• Chapter 10: concludes the dissertation and discusses potential future directions.

http://goo.gl/FnnOKs


CHAPTER 2

BACKGROUND AND DEFINITIONS

In this section, some important properties of high-dimensional data are discussed. Math-

ematical definitions that provides foundations for understanding the rest of the dissertation

are covered.

2.1 Properties of High-Dimensional Space

Naturally, for data with multiple attributes, each entry (record) can be associated

with a point in the high-dimensional space spanned by the attributes. Despite the simple

construction, high-dimensional space can contradict intuitions obtained through our daily

lives. To get a sense of the behavior of high-dimensional space, the properties of simple high-

dimensional geometries are studied first. Then, the distance metrics in high-dimensional

space are discussed. Finally, the curse of dimensionality and its implications regarding

high-dimensional data visualization are examined.

2.1.1 Simple High-Dimensional Geometry

As a first step for understanding high-dimensional space, let us take a look at some

simple geometry, namely cube and sphere, and how they behave in high-dimensional space.

A hypercube is one of the simplest geometries in high-dimensional Euclidean space. In

the following discussion Euclidean space is assumed. it is a generalization of the cube to

n-dimensional space. The volume of the hypercube in n-dimensional space is Vcube = rn,

where r is the edge of the cube. For a unit hypercube (hypercube where the length of

the side is 1), the relationship between its properties (e.g., diagonal length, vertex/corner

count) and dimension is illustrated in Table 2.1. Since the edge of the unit cube is always

1, as the dimension increases the volume of the unit cube stays at 1. However, the diagonal

of the cube is ddiag =
√
n, which lead to an interesting observation about the cube in

high-dimensional space. Based on the definition of ddiag, we can conclude that as n → ∞

the diagonal ddiag will also approach infinity.
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Table 2.1: Unit hypercube properties as the dimension increases.

dimension Vcube vertex/corner count diagonal length

1 1 2 1

2 1 4
√

2

3 1 8
√

3

4 1 16
√

4

5 1 32
√

5

6 1 64
√

6
n 1 2n

√
n

∞ 1 ∞ ∞

Intuitively, we can imagine the unit hypercube in high-dimensional space is somewhat

“spiky”, where the tip of the “spike” is
√
n

2 away from the center of the hypercube (illustrated

in Figure 2.1).

Next, let us take a look at the hypersphere (the generalization of the sphere in n-

dimensional space), which has a very different behavior compared to the hypercube. The vol-

ume of a hypersphere in n-dimensional space can be defined as follows: Vsphere = πn/2rn

nΓ(n/2+1) ,

where r is the radius of the sphere, and Γ is the Gamma function Γ(n) = (n − 1)!. The

formulation of the hypersphere volume can be derived by direct integration in the spherical

coordinate. By examining the variation of the volume of the unit hypersphere as the

dimension increases (see Table 2.2), we can see that the volume first increases and then

decreases. The volume reaches a maximum at around the dimension number 5. However,

the number 5 does not hold any particular meaning as the peak of volume will vary according

1/2

n1/2

Figure 2.1: Illustration of the ratio between a unit hypercube and a hypersphere with
a radius of 1

2 in different dimensions. As dimension n increases, the diagonal of the

cube dv = n
1
2 also increases, while the volume of unit cube remains 1. The concept of

a high-dimensional unit hypercube is illustrated in the right image, where the diagonals
of the hypercube become much larger than 1 and form “spike”-like structure. Finally,

limn→∞
Vsphere(r=1/2)

Vcube
= 0, where Vcube is the volume of the unit hypercube and Vsphere(r=1/2)

is the volume of the hypersphere with a radius of 1
2 .
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Table 2.2: Hypersphere properties as the dimension increases.

dimension unit sphere Vsphere(r=1) Vsphere(r=1/2)
Vsphere(r=1/2)

Vcube
2 3.14159 0.78540 0.78540
3 4.18879 0.52360 0.52360
4 4.93480 0.30843 0.30843
5 5.26379 0.16449 0.16449
6 5.16771 0.080746 0.080746

n πn/2

nΓ(n/2+1)
1/2nπn/2

nΓ(n/2+1)
1/2nπn/2

nΓ(n/2+1)

∞ 0 0 0

to the radius, as illustrated by changing the radius to 1
2 (see Table 2.2). As the dimension

approaching infinity, the volume of the hypersphere will also approach zero. As a result, as

illustrated in Figure 2.1 and Table 2.2, the ratio between Vsphere(r=1/2) and Vcube approaches

zero as the dimension approaches infinity: limn→∞
Vsphere(r=1/2)

Vcube
= 0, where Vcube is the

volume of the unit hypercube and Vsphere(r=1/2) is the volume of the hypersphere with a

radius of 1
2 .

These bizarre behaviors of the simplest geometric structure signify the vast difference

between the high-dimensional structures and their low-dimensional counterparts. As a re-

sult, when studying high-dimensional space, we need to reevaluation our intuition regarding

common measures, even the simplest ones, such as distance and volume. In the following

section, the behavior of the distance metric, which has a profound impact on understanding

high-dimensional space, is investigated.

2.1.2 Distance Metric

When studying a geometric space, understanding the distance metrics (defined in such

a space) and their behavior is essential. In our daily lives, we have developed intuition

regarding distance in 2D or 3D space. However, in high-dimensional space, as indicated by

the discussion in Section 2.1.1, the distance will very likely not behave as we expect.

Considering an n-dimensional dataset, in which each dimension has uniformly dis-

tributed values between [-1, 1]. If a value is between [-0.2, 0.2], it can be considered as

close to zero in this example. For an nD data point, the probability of it being close to

origin is (0.4
2 )n = (1

5)n. As the dimension increases, the probability of a given point close to

the origin ((1
5)n) will decrease exponentially. Now, consider two data points following the

same setup. We consider the attribute values to be similar only if their difference is less

than 0.4. For these two points to be close, each dimension needs to have similar values.

As a result, the probability of two given nD points to be considered nearby is (2
5)n. Such
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observations indicate all points in a high-dimensional space will likely be far away from each

other and also far away from the origin, provided the values in each dimension are uniformly

distributed. The sparsity of the high-dimensional space can also be understood by a space

filling metaphor. For a 1D domain [0, 10], the number of unit 1D hypercube needed to fill

the space is 10. As dimension increases, the number of unit hypercubes required to fill the

domain increases exponentially (for an nD domain, the number is 10n). As a result, in

many high-dimensional datasets, the data points appear to be far away from each other. In

addition, the relative values of the standard distance measure, such as Euclidean distance

(dL2 =
√
‖p− q‖2, where p and q are nD vectors), become less meaningful as dimension

increases.

Since most high-dimensional points will be far away from each other while pointing to

different directions from the origin, one possible alternative to alleviate the distance metric

problem is to view distance as the angle between the direction defined by each point and

the origin. Essentially, instead of viewing the space spanned by the data attribute as a

Cartesian coordinate, we can view it as a vector space. The distance defined by such an

interpretation is referred to as the cosine distance, is computed as follows:

dcosine = cosθ =
p · q
|p| · |q|

where p and q are nD vectors.

2.1.3 Curse of Dimensionality

From the previous discussion regarding the distance measure in high-dimensional space,

we learned as the data dimension increases, for uniformly distributed data points the

inter-point distances become less meaningful. In addition, for the same amount of data

points, as the dimension increases, space will become more and more sparse. These funda-

mental properties make designing effective algorithms in high-dimensional space extremely

challenging. Often these algorithms have an exponential time complexity in respect to the

dimension. For example, spatial index methods such as KD-tree, which work extremely

well for 3D data, cannot easily scale to high-dimensional space. In machine learning, most

classifiers, such as the k-nearest neighbor, will also become less effective as the dimension

increases. This phenomenon is usually referred to as the curse of dimensionality.

The curse of dimensionality directly impacts most high-dimensional data visualization

methods. Many visualization techniques rely on multiple low-dimensional representations

that can grow from quadric to exponential with respect to dimension. The implications of

the curse of dimensionality for high-dimensional data visualization are multifold. On one
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hand, the visualization algorithm that focuses on subspace (linear subspace or axis-aligned

subspace), where the high-dimensional space is decomposed into distinct subsets, can greatly

mitigate the impact of dimension in terms of the complexity of visual representations. On

the other hand, the input data dimension is put under additional scrutiny. Since the cost

of large dimension is high, we may ask ourselves: Do we really need all these dimensions to

capture the information presented in the data? For some data, the interpoint relationship

can be captured with a much lower-dimensional space (e.g., an image data where each pixel

corresponding to a dimension contains a large amount of redundant information). Therefore,

identifying the intrinsic dimension of the data, and reducing its dimension before visualizing

may produce a more desirable result.

2.2 Linear Projection and Linear Subspace

Projection, in general, defines a mapping of a set into a subset. In the context of this

dissertation, projection refer to the process by which high-dimensional data are mapped

onto a lower-dimensional space. More specifically, a linear projection, defined as an n×m

linear transformation matrix F = (w1, ...,wm), maps a nD vector space into a mD vector

space. The mD vector space is spanned by the orthonormal basis w1, ... ,wm. Here, n is

the input data dimension and m is the target dimension (n > m). Linear projection is one

of the most widely used methods for generating a 2D representation of high-dimensional

data. It provides a good tradeoff between the expressiveness and the ease of interpretation.

For a given nD data, a linear projection defines an orthonormal basis and produces one

projected image with explicit coordinates. Linear subspace, on the other hand, does not

explicitly define the basis, as long as the given projection basis spans the same subspace. As

illustrated in Figure 2.2, the projected images (a) and (b) are produced from different linear

projections. However, for visualization purposes, the projected image contains the exact

same pattern. In other words, linear projections are not rotation and direction invariant, i.e.,

different projections can essentially produce the same projected image albeit with a different

orientation. Therefore, the notion of linear subspaces can be used to more accurately capture

the different projected image configurations.

2.3 Grassmannian as a Unified Framework

In the previous section, the distinction between linear projection and linear subspace was

discussed. For visualization purposes, linear subspace is more suitable to capture the dif-

ference among projected image configurations. In this section, the space of linear subspace,

formally defined as the Grassmannian, is examined. By adopting the Grassmannian as the
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Figure 2.2: An illustration of different linear projections that capture the same linear
subspace.

theoretical foundation, the relationship between linear subspaces can be studied under a

unified framework.

2.3.1 The Space of all Linear Subspaces

The geometry of non-Euclidean spaces gives rise to the notion of manifolds, and in

particular the space of linear subspaces can be effectively described by a Grassmann man-

ifold (or Grassmannian). The Grassmannian, Gr(k, n), is a set of k−dimensional linear

subspaces of Rn, where each subspace maps to a unique point on the manifold [25]. An

important characteristic of the Grassmannian is that there is no unique order or choice

of basis (invariant to rotation) for an element on the manifold. Furthermore, it inherits

a Riemannian metric from the Euclidean metric on Rn×k, and hence induces a geodesic

distance for comparing different subspaces. For a k−dimensional subspace W , let {bi}ki=1

denote a set of orthonormal basis vectors that span W . The basis matrix B ∈ Rn×k

represents a linear projection to the subspace. By column-reducing the first k × k block to

an identity matrix, the last (n− k)× k block specifies the coordinates of a given subspace

W on Gr(k, n). As a result, the dimension of a smooth Grassmannian Gr(n, k) is given as

k×(n−k). Since we are interested only in the case of 2D subspaces, the resulting dimension

is 2× (n− 2).

2.3.2 Distance Between Linear Subspaces

By introducing the concept of the Grassmannian, the distance between linear subspaces

can be described by a set of clearly defined metrics.

Given two points on a Grassmannian, represented by their orthonormal bases, A and

B of size n × k, the distance measured along the geodesic is the Grassmann distance.



21

The geodesic distance can be computed by decomposing ATB using its SVD (Singular

Value Decomposition) and obtaining
∑k

i=1

(
θ2
i

) 1
2 . Here, θi denotes a principal angle and is

obtained as cos−1 σi, where σi is the corresponding singular value.

Other commonly used distance metrics defined on the Grassmannian beside the Grass-

mann distance include:

• Asimov distance: θk = cos−1 ‖ATB‖

• Binet-Cauchy distance: (1−
∏k
i=1 cos2 θi)

1/2 = (1− det(ATA)2)1/2

• Cordinal distance: (
∑k

i=1 sin2 θi)
1/2 = 1√

2
‖ATA−BTB‖F

• Projection distance: sin θk = ‖ATA−BTB‖2

For computation efficiency, the Chordal distance [32]((
∑k

i=1 sin2 θi)
1/2) is widely adopted

in lieu of the true geodesic distance, which can be computed directly from a pair of

orthonormal bases as 1√
2

∥∥AAT −BBT
∥∥
F

.



CHAPTER 3

RELATED WORK

Numerous techniques have been proposed for visualizing high-dimensional space in

both the visualization and statistics community in the past decades. In order to gain a

deeper understanding of the topic, I have conducted, in collaboration with Dan Maljovec

and colleagues, an extensive survey (published in [33]) of the literature that focuses on

high-dimensional data visualization techniques. In addition, I maintain a website hosting

an up-to-date online library (Figure 3.1, http://goo.gl/hN7G7x) of related references for

visualizing high-dimensional data (more than 200 papers), which allows easy querying and

filtering of existing works. In this chapter, a small subset of all survey works is included to

provide context and background for the dissertation.

3.1 Scatterplot Matrix

A scatterplot matrix (see Figure 3.2), or SPLOM, is a collection of bivariate scatter-

plots that allows users to view multiple bivariate relationships simultaneously. One of the

Figure 3.1: Online library for the high-dimensional data visualization survey.

http://goo.gl/hN7G7x
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Figure 3.2: Scatterplot Matrix and Parallel Coordinate Plots.

primary drawbacks of SPLOMs is the scalability. The number of bivariate scatterplots

increases quadratically with respect to the dataset’s dimensionality. Numerous studies

have introduced methods for improving the scalability of SPLOMs by automatically or

semiautomatically identifying more interesting plots.

Originally introduced by John W. Tukey, Scagnostics are a set of measures designed

for identifying interesting plots in a SPLOM. The recent works of Wilkinson et al. [1, 18]

extend the concept to include nine measures (illustrated in Fig .3.3) capturing properties

such as outliers, shape, trend, and density. In addition, they improve the computational

efficiency by using graph-theoretic measures. Scagnostics have also been extended to handle

time series data [34]. Guo [35] introduces an interactive feature selection method for finding

interesting plots by evaluating the maximum conditional entropy of all possible axis-parallel

scatterplots. The rank-by-feature framework [12, 20] allows users to choose a ranking

criterion, such as histogram distribution properties and correlation coefficients between

axes, for scatterplots in SPLOMs.

Data class labels can play an important role in identifying interesting plots and selecting

a meaningful ranking order. Sips et al. utilize class consistency [36] as a quality metric for

2D scatterplots. The class consistency measure is defined by the distance to the center of the

class or entropies of the spatial distributions of classes. Tatu et al. [19] introduce different

metrics for ranking the “interestingness” of scatterplots and PCPs for both classified and

unclassified datasets. For data with labels, a class density measure and a histogram density

measure are adopted as ranking functions for the scatterplots.

The ranking order provides only an indirect way to assess the scatterplots. Lehmann et

al. [37] introduce a system for visually exploring all the plots as a whole. By reordering the

rows and columns in the SPLOMs, this method groups relevant plots in the spatial vicinity
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Figure 3.3: Graph-Theoretic Scagnostics introduced by Wilkinson et al. [1]

of one another. In addition, an abstraction can be obtained from the reordered SPLOM to

provide a global view.

3.2 Parallel Coordinates

Compared to a SPLOM, for which only bivariate relationships can be directly expressed,

the parallel coordinate plot (PCP) [38, 39, 40] allows patterns that highlight multivariate

relations to be revealed by showing all the axes at once. For a given n-dimensional dataset,

theoretically, there are n! permutations of the ordering of the axes. With different axes

order, vastly different information may be presented. Therefore, one of the fundamental

challenges when dealing with PCPs is determining the appropriate orders of the axes [40].

Since a user typically can only interpret the visual patterns among nearby axes, the search

space can be drastically reduced by focusing on localized axes orders, such as consecutive

dimension triples (an axes and its immediate neighbors) or pairwise dimensions. For these

scenarios, finding the minimum number of permutations needed to display all dimension

triples or pairwise dimension combinations is the goal. Hurley et al. [41] adopt Eulerian

tours and Hamiltonian decompositions of complete graphs to generate axis order permuta-

tions ( O(n/2) ) covering all bivariate patterns between dimensions. Inselberg has posed

the problem of finding permutations that display all adjacent triples [39], which may be

considered as a visualization challenge in PCPs.

A few other methods utilize quality metrics and subspace finding methods to automat-

ically identify interesting axes orders. The PCP ranking methods developed by Tatu et
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al. [19] work for both classified and unclassified datasets. For unlabeled data, the Hough

space measure is used, and for labeled data, a similarity measure and overlap measures are

adopted. Ferdosi et al. introduce a dimension ordering method [42] that is applicable for

both PCPs and SPLOMs utilizing the subspace analysis method from their earlier work [21]

discussed in Section 3.4. Johansson and Johansson [43] propose an interactive system

adopting a weighted combination of quality metrics for dimension selection and automatic

ordering of the axes to enhance visual patterns such as clustering and correlation.

In addition, as the number of data points increases, the line density in the PCP increases

dramatically, which can lead to visual clutter [40] thus hindering the discovery of patterns

(e.g., density variation, dimension correlation). As a result, clutter reduction through

filtering, aggregation, visual encoding, and dimension reordering, is another important

challenge for PCPs. Interactive filtering of data, such as brushing linked axes, is essential

for alleviating visual clutter. Chapter 10 of Inselberg’s book [39] provides a great discussion

on how to exploit interactivity in PCPs to understand large and complex data. A set of

query operations, which can be combined to construct more complex queries, is identified

as the basis for the exploration.

Aggregation and visual encoding can also be used in combination with interactive explo-

ration to reduce visual clutter. In the work by Novotny and Hauser [44], a focus+context

visualization scheme is adopted for reducing the clutter by aggregation. In this approach,

the outliers are indicated by single lines and the trends that capture the overall relationship

between axes are approximated by polygon strips. Zhou et al. introduce a line bundling

scheme [45] for enhancing the visual clusters. The authors exploit the curved edges and

arrange the edges by minimizing the curvature while maximizing the parallelism of the

adjacent ones. The progressive parallel coordinate (PPC) [46] work introduces several

LOD-hierarchy based visual encoding approaches to address the challenges of large datasets

and overplotting. In the work introduced by Dang et al. [47], density is expressed by stacking

overlapping elements. For the PCP case, a 3D visualization is presented, where either the

edges are stacked as curves or the points on the axes are stacked vertically as dots to alleviate

the clutter with an additional dimension. Finally, as dimension ordering can greatly affect

the PCPs’ expressiveness, Peng et al. [48] introduce a clutter reduction method for PCPs

by reordering the axes.

3.3 Dimension Reduction

One of the fundamental techniques for analyzing high-dimensional datasets is dimension

reduction. Dimension reduction techniques can be roughly divided into two major classes:
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linear projection and manifold learning. The projection methods try to approximate the

high-dimensional space through a linear subspace of lower dimensionality. If the data lie

within such a space, they can be re-expressed by a linear basis transformation without

loss of information. However, if the data are non-linear and lie on a manifold of lower

dimensionality, then the linear subspace may not be able to capture the structure of the

data faithfully. Instead, the distance relationships along this manifold can be learned in

an unsupervised manner and generate a non-linear data mapping. These techniques are

abstracted from Euclidean distance relationships and capture distances along a manifold.

easily expressed as a matrix multiplication. Therefore, out of sample points can be pro-

jected into the same space without any additional effort. However, for manifold learning

methods, examining the relationship between existing embedding and the out-of-sample

points is a challenging task. Secondly, each axis in the linear projection results is a linear

combination of the original dimensions. The linear relationship allows interpretation of the

projection results. On the contrary, the manifold learning results are extremely difficult

to interpret in respect to the original dimensions. Finally, the manifold learning methods

are usually more computationally expensive compared to their linear counterparts, such as

PCA (principal component analysis). Dimension reduction techniques are key components

for many visualization tasks. Existing work either extends the state-of-the-art techniques,

or improves upon their capabilities with additional visual aid.

Linear Projection. Linear projection uses linear transformation to project the data from

a high-dimensional space to a low-dimensional one. It includes many classical methods,

such as Principal component analysis (PCA), Multidimensional scaling (MDS), Linear

discriminate analysis (LDA), and various factor analysis methods.

PCA [49] is designed to find an orthogonal linear transformation that maximizes the

variance of the resulting embedding. PCA can be calculated by an eigendecomposition of

the data’s covariance matrix or a singular value decomposition of the data matrix. The

interactive PCA (iPCA) [50] introduces a system that visualizes the results of PCA using

multiple coordinated views. The system allows synchronized exploration and manipulations

among the original data space, the eigenspace, and the projected space, which aids the user

in understanding both the PCA process and the dataset. When visualizing labeled data,

class separation is usually desired. Methods such as LDA aim to provide a linear projection

that maximizes the class separation. The recent work by Koren et al. [51] generalizes PCA

and LDA by providing a family of flexible linear projections to cope with different kinds of

data.
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Non-linear Dimension Reduction. There are two distinct groups of techniques in non-

linear dimension reduction, under either the metric or non-metric setting. The graph-

based techniques are designed to handle metric inputs, such as Isomap [52], Local Linear

Embedding (LLE) [53], and Laplacian Eigenmap (LE) [54], where a neighborhood graph is

used to capture local distance proximities and to build a data-driven model of the space.

The other group of techniques address non-metric problems commonly referred to as

non-metric MDS or stress-based MDS by capturing non-metric dissimilarities. The fun-

damental idea behind the non-metric MDS is to minimize the mapping error directly

through iterative optimizations. The well-known Shepard-Kruskal algorithm [55] begins

by finding a monotonic transformation that maps the non-metric dissimilarities to the

metric distances, which preserves the rank-order of dissimilarity. Then, the resulting

embedding is iteratively improved based on stress. The progressive and iterative nature

of these methods has been exploited recently by Williams et al. [56], where the user is

presented with a coarse approximation from partial data. The refinement is on-demand

based on user inputs. Others rely on hybrid methods [57, 58] based upon stochastic

sampling and interpolation to approximate the solution. t-SNE [59] has gained a lot of

attention recently due to its effectiveness for visualizing high dimensional data in 2D. t-SNE

utilizes a probability distribution to encode the inter-point neighborhood information, and

a mismatched probability distribution is used between high- and low-dimensional spaces to

eliminate the unwanted attractive forces, therefore, resolving the crowding problem [59].

Control Points Based Projection. For handling large and complex datasets, the

traditional linear or non-linear dimension reductions are limited by their computational

efficiency. Some recent developments (e.g., [60, 61, 62, 63, 64]), utilize a two-phase approach,

where the control points (anchor points) are projected first, followed by the projection of

the rest of the points based on the control points location and local features preservation.

The general paradigm is illustrated in Figure 3.4. Such designs lead to a much more scalable

system. Furthermore, the control points allow the user to easily manipulate and modify the

outcome of the dimension reduction computation to achieve desirable results.

Distance Metric. For a given dimension reduction algorithm, a suitable distance metric

is essential for the computation outcome as it is more likely to reveal important structural

information. Brown et al. [27] introduce the distance function learning concept, where a

new distance metric is calculated from the manipulation of point layouts by an expert user.

In [65], the author attempts to associate a linear basis with a certain meaningful concept

constructed based on user-defined examples. Machine learning techniques can then be

employed to find a set of simple linear bases that achieve an accurate projection according
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Figure 3.4: Control points based projection. The representative points (control points) are
selected for initial projection, and the subsequent projection of all the dataset is accelerated
by utilizing the information from the initial projection.

to the prior examples. The structure-based analysis method [66] introduces a data-driven

distance metric inspired by the perceptual processes of identifying distance relationships in

parallel coordinates using polylines.

Dimension Reduction Precision Measure. One of the fundamental challenges in

dimension reduction is assessing and measuring the quality of the resulting embeddings. Lee

et al. introduce the ranking-based metric [67] that assesses the ranking discrepancy before

and after applying dimension reduction. This technique is then generalized [68] and used

for visualizing dimension reduction quality. A projection precision measure is introduced

in [69], where a local precision score is calculated for each point with a certain neighborhood

size. In the distortion-guided exploration work [31], several distortion measures are proposed

for different dimension reduction techniques, where these measures aid in understanding the

cause of highly distorted areas during interactive manipulation and exploration. For MDS,

the stress can be used as a precision measure. Seifert et al. [70] further develop this idea by

incorporating the analysis and visualization for better understanding of the localized stress

phenomena.

3.4 Subspace Clustering

Dimension reduction aims to compute one single embedding that best describes the

structure of the data. However, this could become ineffective due to the increasing com-

plexity of the data. Alternatively, one could perform subspace clustering, where multiple

embeddings can be generated through clustering either the dimensions or the data points,

for capturing various aspects of the data.

Dimension Space Exploration. Guided by the user, dimension space exploration meth-

ods interactively group relevant dimensions into subsets. Such exploration allows us to

better understand their relationships and to identify shared patterns among the dimensions.

Turkay et al. introduce a dual visual analysis model [4] where both the dimension embedding
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and point embedding can be explored simultaneously. Their later improvement [71] allows

for the grouping of a collection of dimensions as a factor, which permits effective exploration

of the heterogeneous relationships among them. The Projection Matrix/Tree work [72]

extends a similar concept to allow a recursive exploration of both the dimension space and

data space. Several visual encoding methods also rely on the concept of dimension space

exploration.

Subsets of Dimensions. Compared to the dimension space exploration, where the user is

responsible for identifying patterns and relationships, subspace clustering/finding methods

automatically group related dimensions for identifying clusters in these subspaces. Subspace

clustering filters out the interferences introduced by irrelevant dimensions, allowing lower-

dimensional structures to be discovered. These methods, such as ENCLUS [13], originate

from the data mining and knowledge discovery community. They introduce some very

interesting exploration strategies for high-dimensional datasets, and can be particularly

effective when the dimensions are not tightly coupled. The TripAdvisorND [16] system

employs a sightseeing metaphor for high-dimensional space navigation and exploration. It

utilizes subspace clustering to identify the sights for the exploration. The subspace search

and visualization work [15] utilizes the SURFING (subspaces relevant for clustering) [14] al-

gorithm to search the high-dimensional space and automatically identifies a large candidate

set of interesting subspaces. For the work presented by Ferdosi et al. [21], morphological

operators are applied on the density field generated from the (3D) PCA projection of the

high-dimensional data for identifying subspace clusters.

Non-Axis-Aligned Subspaces. Instead of grouping the dimensions, which essentially

creates axis-aligned linear subspaces, identifying non-axis-aligned subspaces is a more flex-

ible alternative. Projection Pursuit [9] is one of the earliest works aimed at automatically

identifying the interesting non-axis-aligned subspaces, where the projections are considered

to be more interesting when they deviate more from a normal distribution. Recently, some

advances have been made in the machine learning community to perform non-axis-aligned

subspace clustering [22]. Instead of finding (possibly overlapping) clusters in axis-aligned

subspaces defined by different dimensions combinations, the points are directly clustered

together for sharing similar linear subspaces. In particular, this approach assumes the

complex structure of the data can be approximated by a mixture of linear subspaces (of

varying dimensions), and each of the linear subspaces corresponds to a set of points where

their relationships can be approximately captured by the same linear subspace. Lehmann

et al. [73] have recently introduced an interesting and different approach for identifying a

set of distinct linear projections. By adopting a dissimilarity measure, they aim to remove
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duplicated data patterns by optimizing the dissimilarity among the selected projections.

By utilizing random projection [74], Anand et al. [75] introduce an efficient subspace

finding algorithm for data with thousands of dimensions. The algorithm generates a set of

candidate subspaces through random projections and presents the top-scoring subspaces in

an exploration tool.

3.5 Topological Data Analysis

A crucial step in gaining insights from large, complex, high-dimensional data involves

feature abstraction, extraction, and evaluation in the spatiotemporal domain for effective

exploration and visualization. Topological data analysis (TDA), a new field of study (see [76,

77, 78, 79, 80, 81] for seminal works and surveys), has provided efficient and reliable feature-

driven analysis and visualization capabilities. Specifically, the construction of topological

structures [82, 83] from scalar functions on point clouds (e.g., Morse-Smale complexes,

contour trees, and Reeb graphs) as “summaries” over data is at the core of such TDA

methods. Reeb graphs/contour trees capture very different structural information of a

real-valued function compared to the Morse-Smale complexes as the former is contour-based

and the latter is gradient-based (Figure 3.5). They both provide meaningful abstractions

of the high-dimensional data, which reduces the amount of data needed to be processed

or stored; and they utilize sophisticated hierarchical representations capturing features at

multiple scales, which enables progressive simplifications of features differentiating small

and large scale structures in the data.

Morse-Smale Complexes. The Morse-Smale complex (MSC) [84, 85] describes the

topology of a function by clustering the points in the domain into regions of monotonic

2D Scalar function 

Reeb Graph/Contour Tree/Merge Tree 

Morse-Smale Complex 

Figure 3.5: Contour- and gradient-based topological structure of a 2D scalar function.
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gradient flow, where each region is associated with a sink-source pair defined by local minima

and maxima of the function. The MSC can be represented using a graph where the vertices

are critical points and the edges are the boundaries of areas of similar gradient behavior. The

simplification of the MSC is obtained by removing pairs of vertices in the graph and updating

connectivities among their neighboring vertices, merging nearby clusters by redirecting the

gradient flow. MSCs have been shown to be effective in identifying, ordering, and selectively

removing features of large-scale data in scientific visualizations (e.g., [86, 87, 88]).

HDViz [8] employs an approximation of the MSC (in high dimensions) to analyze

scalar functions on point cloud data. It creates a hierarchical segmentation of the data by

clustering points based on their monotonic flow behavior, and designs new visual metaphors

based on such a segmentation. Correa et al. [89] suggest that by considering a different type

of neighborhood structure, we can improve the accuracy in the extracted topology compared

to those obtained within HDViz.

Reeb Graphs and Contour Trees. The Reeb graph of a real-valued function describes

the connectivity of its level sets. A contour tree is a special case of Reeb graph that

arises in simply-connected domains. The Reeb graph stores information regarding the

number of components at any function value as well as how these components split and

merge as the function value changes. Such an abstraction offers a global summary of the

topology of the level sets and enables the development of compact and effective methods

for modeling and visualizing scientific data, especially in high dimensions (i.e., [90, 91]).

Mapper [91] decomposes data into a simplicial complex resembling a generalized Reeb graph,

and visualizes the data using a graph structure with varying node sizes. The work has

developed into a startup company AYASDI. Their software is shown to extract salient

features in a study of diabetes by correctly classifying normal patients and patients with

two causes of diabetes [92] and various other applications [93, 94].

Efficient algorithms for computing the contour tree [95] and Reeb graph [96] in arbitrary

dimensions have been developed. A generalization of the contour tree has been introduced

by Carr et al. [97, 98] called the joint contour net (JCN), which allows for the analysis of

multi-field data.

Other Topological Features. Ghrist [81] and Carlsson [80] both offer several applications

of TDA and in particular highlight the topological theory used in a study of statistics of

natural images [99]. Wang et al. [100] utilize TDA techniques developed by Silva et al. [101]

to recover important structures in high-dimensional data containing non-trivial topology.

Specifically, they are interested in high-dimensional branching and circular structures. The

circle-valued coordinate functions are constructed to represent such features. Subsequently,
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they perform dimension reduction on the data while ensuring such structures are visually

preserved.

3.6 Model Manipulation

User interactivity is an integral part of many high-dimensional data visualization tech-

niques. Based on the amount of user interaction, we can classify all high-dimensional data

visualization methods into three categories: computation-centric, interactive exploration,

and model manipulation. The distinction between interactive exploration and model ma-

nipulation is made to emphasize a particular manipulation paradigm, where the underlying

data model is modified based on interaction to reflect user intention. The difference

among these paradigms are illustrated in Figure 3.6. Computation-centric approaches

require only limited user input such as setting initial parameters. Interactive exploration

approaches navigate, query, and filter the existing model interactively for more effective

visual communication. Model manipulation techniques represent a class of methods that

integrate user manipulation as part of the algorithm, and update the underlying model to

reflect the user input to obtain new insights.

Take the distance function learning work [27] for example. The initial embedding is

created using a default distance measure. Through interaction, the initial point layout is

modified based on the expert user’s domain knowledge. The system then adjusts the under-

lying distance model to reflect the user input. Hu et al. present a method [102] for improving

the translation of user interaction to algorithm input (visual to parameter interaction) for

distance learning scenarios. The explainers [65] are projection functions created from a set

of user-defined annotations. The control point based projection methods [60, 61, 62, 63, 64]

update the overall projection result based on user manipulation of the control points. In

the iLAMP method [103], inverse projection extrapolation is used for generating synthetic

multidimensional data out of existing projections for parameter space exploration. In the

Local Clustering Operation work [104], the visual structure is modified in PCPs through

user-guided deformation operators. Finally, Liu et al. [31] allow for direct manipulation

of the dimension reduction embedding to resolve structural ambiguities. The interactively

updated distortion measure is used for feedback during manipulation.

3.7 Animation Enhancement

As stated in Heer et al.’s work [105], animation, when used appropriately, can signif-

icantly improve graphical perception. Many techniques for visualizing high-dimensional
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Figure 3.6: The different user interaction paradigms: computation-centric, interactive
exploration, model manipulation.

data utilize animated transitions to enhance the perception of point and structure corre-

spondences among multiple relevant plots (views of the data).

The GGobi system [106] provides a mechanism for calculating a continuous linear

projection transition between any pair of linear projections based on the principal angles

between them. In the Rolling the Dice work [107], a transition between any pair of

scatterplots in a SPLOM is made possible by connecting a series of 3D transitions between

scatterplots that share an axis. RnavGraph [108] constructs a graph connecting a number

of interesting scatterplots. A smooth animation is generated between all scatterplots that

are connected by an edge. The TripAdvisorND [16] system allows users to explore the
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neighborhood of a subspace by tilting the projection plane using a polygonal touchpad

interface.



PART II

SUBSPACE ANALYSIS FOR IDENTIFY

INFORMATIVE 2D PROJECTIONS



CHAPTER 4

SUBSPACE ANALYSIS AND DYNAMIC

PROJECTION

One of the fundamental challenges of visualizing high-dimensional data through 2D

projections is how to reduce the enormous exploration space, so that human users are

not overwhelmed by the number of visual representations. To strike a balance between

capturing the intrinsic structures and generating interpretable results, 2D linear projections

are selected as the focus of this research. For a given dataset, there are infinite ways a 2D

linear projection can be generated; how to identify the informative ones that capture the

intrinsic structure and aid in the understanding of the data is the goal of this study.

The fundamental idea behind this work (illustrated in Figure 1.5) is that high-dimensional

data can be decomposed into multiple subsets, each part of which is representable in

a lower-dimensional space. Such a strategy provides a “divide and conquer” approach

for addressing the complexity of high-dimensional space. In this research, the subspace

clustering algorithm [22, 24] that originated in the machine learning community is adopted

for capturing the low-dimensional subset of the data. Once the data are clustered into

subspaces based on their intrinsic low-dimensional structures, the linear basis that supports

each subspace naturally defines a number of interesting 2D projections (views), without

the need to rank their interestingness explicitly [109, 1]. On the other hand, when there

are outliers or the subspaces intersect, subspace clusters may not be perfect. To estimate

the dimension and basis of each subspace, applying traditional dimension estimation (e.g.,

PCA) to the subspace clusters may produce suboptimal results (see Section 4.1.2). In

this research, a novel dimension and basis estimation algorithm tailored for visualization is

introduced for identifying 2D projections in these subspaces. Compared to PCA (Section

4.1.2), this algorithm is less susceptible to outliers or intersecting subspaces, and can better

discriminate the different subspaces. The combined effort of subspace clustering and the

novel dimension and basis estimation algorithm is referred to as subspace analysis.

Despite each 2D projection providing valuable localized information, without under-

standing their relationships the user may still not be able to obtain global insights regarding
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the data. To best utilize these informative 2D projections identified via subspace analysis, a

navigation graph is constructed in this research to visualize the distance between 2D linear

projections. In addition, animated transitions (dynamic projection [110]) are provided

among these projections to aid in the understanding of their relationships, especially in

terms of point correspondence and structure similarity.

The combination of subspace analysis with dynamic projection transition also addresses

some visualization challenges in dynamic projection. Since the promotion of exploratory

data analysis by John W. Tukey, a few methods have been introduced that utilize the

dynamic projection to aid in the understanding of the high-dimensional datasets. Grand

tour [111] generates a continuous projection (i.e., a tour) that attempts to cover the entire

high-dimensional space. Even though the use of animated transitions is proven to be

effective in conveying structural information, the complexity of the high-dimensional space

requires a lengthy tour that prevents effective exploration. A more recent work [110] tries

to address such issues by making projection pursuit results [112] the targets along the tour’s

path. However, the projection pursuit is optimized for the entire space, which may fail to

capture even very simple linear structures in the subsets of the data. In addition, organizing

data analysis as a sequential tour limits the user’s involvement in the exploratory process.

In this research, the issues that potentially prevent effective use of dynamic projections

are addressed by utilizing subspace analysis to identify a set of projections that capture

the intrinsic structure of the data. By introducing a navigation graph that aids flexible

navigation among these projections, intuitive exploration of the high-dimensional space is

achieved.

As illustrated in Figure 4.1, the proposed framework [28] contains two major compo-

nents: subspace analysis and interactive exploration. The subspace analysis (highlighted

in the blue box) is responsible for subspace identification and basis estimation. The visual

exploration (highlighted in the orange box) enables users to visualize and interact with the

subspace analysis results. It generates subspace views (2D projections marked by colored

rectangular boxes) from the corresponding basis, creates the navigation infrastructure (the

view navigation graph), and produces animated transitions between 2D projections gener-

ated from subspaces (the subspace views). The transition from the black subspace view

to the yellow 2D subspace view is illustrated in the figure. The interactive exploration

communicates with the subspace analysis when a clustering or model estimation parameter

is modified, triggering a recomputation of the subspace information.
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Figure 4.1: An overview of the visualization workflow.

4.1 Subspace Analysis

The underlying assumption of fitting a single linear subspace makes PCA ineffective in

modeling complex, high-dimensional data. In this work, a more general assumption of fitting

a union of subspaces is considered. An existing subspace clustering approach is adopted

to partition data into multiple subspaces. For visualization purpose, 2D linear projections

need to be generated from these subspaces. As a result, a novel technique is proposed to

estimate the parameters of each subspace (dimension and basis).

4.1.1 Subspace Clustering

Let us assume that the set of samples {xi ∈ RD}Ti=1 is drawn from an unknown union

of n ≥ 1 linear subspaces {Sj}nj=1. The dimensions of the subspaces, 0 < dj < D (j =

1, · · · , n), are unknown and each subspace is described as Sj = {x ∈ RD : x = Ujy}, where

Uj ∈ RD×dj is a basis for the subspace Sj and y ∈ Rdj is the low-dimensional representation

of a sample x. When n = 1, this problem reduces to PCA. A wide variety of algorithms have

been proposed in the machine learning literature to determine the multiple subspaces [22],

and in particular methods based on spectral clustering [113] have been very effective.

Spectral clustering requires an affinity matrix A ∈ RT×T , where Aij measures the

similarity between samples i and j [113]. Subspace clustering is a special case where A

captures the subspace relationships, i.e., samples belonging to the same subspace have a

strong affinity between them. In particular, the affinity matrix is constructed by represent-

ing each sample as a linear combination of other samples, i.e., X ≈ XW, s.t. Wii =

0 (i = 1 · · ·T ). Here, W = [wi]
T
i=1 is the affinity matrix and the condition Wii = 0 ensures

that a sample is not used for its own reconstruction. Since this problem is highly ill-posed,

different forms of regularization (e.g., sparsity, low-rank) can be considered [24]. In addition

to allowing the user to specify the number of clusters, I also integrate the spectral clustering

auto-tuning method [114] to aid the selection. To provide some intuition, a simple synthetic
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dataset is used to help illustrate the process. The dataset contains two intersecting 2D planes

embedded in 3D. As shown in Figure 4.2 the subspace clustering identifies two subspace

clusters that correspond to the two planes, respectively.

4.1.2 Subspace Construction

Basis Estimation. Given the subspace associations, using PCA on samples belonging to

each cluster can provide the basis spanning that subspace. However, since PCA attempts

to determine directions of maximal variance, outliers that might arise due to subspace

clustering can significantly affect this process. Instead, a more general graph embedding

approach is proposed that allows the exploitation of the relationships between the different

subspaces (encoded in the affinity matrix) to discriminate the different subspaces and

improve the resilience to outliers.

The affinity matrix constructed during subspace clustering will contain strong edges

between samples within a subspace and weak edges across subspaces. A block-diagonal

matrix is extracted from the affinity matrix W, corresponding to only the samples in that

subspace to compute the basis vectors. For a subspace Sj , the set of indices of samples

belonging to the respective cluster is denoted by Λj . I solve the following optimization

problem to estimate the basis:

Uj = argmin
U

∑
i∈Λj

∥∥∥∥∥∥UTxi −
∑

k 6=i,k∈Λj

WikU
Txk

∥∥∥∥∥∥
2

2

s.t. UTU = I.

Here the matrix I is the identity matrix, Uj ∈ RD×dj contains the set of basis functions,

and dj is the dimension of the subspace. The solution to this problem can be obtained using

generalized eigenvalue decomposition.

Figure 4.2: An intuitive explanation of the subspace clustering. Left: The PCA view
shows the projection from the side of the two 2D planes. By subspace clustering, two 2D
subspaces are obtained (middle and right), each corresponds to a plane.
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Dimension Estimation. The basis estimation process assumes the knowledge of the sub-

space dimension, dj . The proposed dimension estimation technique relies on the assumption

that the basis set estimated for a cluster must be ineffective in describing samples from other

clusters. This is achieved by picking the dimension that results in the maximal separation

of a subspace from the subspace estimated using all samples not belonging to the cluster

considered. For a subspace Sj , the set of samples {x ∈ Sj} is used to estimate the basis Uj ,

whereas the out-of-sample basis Ūj is obtained using the samples {x /∈ Sj}. The dimension

dj is varied between 2 and D − 1, measure the distance between the Uj ∈ RD×dj and Ūj

in each case, and pick the dimension where sufficient separation is achieved. The subspace

separation is measured using the Grassmannian distance (see Section 2.3).

Comparison to PCA. By using the USPS digits dataset as an example, the superior

performance of the proposed basis and dimension estimation approach is demonstrated.

The USPS handwritten digits dataset contains 2500 images belonging to 10 classes [115].

Here three different analysis strategies are compared: (i) A global PCA subspace for the

entire data, (ii) Estimate a PCA subspace for each class independently, and (iii) Estimate

a subspace for each class using the proposed approach. In the first case, all samples are

projected onto the single PCA subspace and with a fixed neighborhood size (k = 10), for

each sample, I measure the number of samples in the neighborhood that share its class

label. For cases (ii) and (iii), I measure the neighborhood recovery performance for each

class by projecting all samples onto its corresponding subspace. Figure 4.3 shows the

average accuracy for each of the classes, obtained using the three approaches, along with

their corresponding subspace dimensions.

As expected, the single linear PCA subspace is insufficient for describing the complex

relationships in the dataset and has the least accuracy in all cases. Even with the union of

subspace assumption, using PCA to estimate the basis can erroneously project samples from

different classes close to each other and hence its performance is only marginally better.

Finally, by considering the relationships between the different subspaces, the proposed

method faithfully recovers the neighborhood.

4.2 Visual Exploration of the Subspaces

Through the subspace analysis, a simplified representation of the high-dimensional space

in the form of low-dimensional linear subspaces is acquired. For each subspace, a set of 2D

views (projections) can be generated in a similar fashion as the scatterplot matrix, i.e., by

choosing all pairs of vectors from the basis. To better understand these views and their

relationships, I organize them in a multi-level View Navigation Graph. The exploration of
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Figure 4.3: For the subspace corresponding to each class, the average accuracy of samples
in finding neighbors sharing their class label is shown, using different subspace analysis
strategies. The subspace dimension is also showed in each case.

the subspaces focuses on the manipulation of the graph and the seamless transitions between

individual 2D projections (views). However, a direct linear interpolation between the point

locations leads to non-linear and uninterpretable frames in the animation. In the proposed

framework, the dynamic projection approach [116, 117] is adopted, where the animation

is defined by a set of intermediate linear subspaces that smoothly transition from one 2D

subspace to another. The pipeline of the interactive exploration is illustrated in Figure 4.1.

4.2.1 The Grassmann Distance

Understanding the distance between subspaces or 2D projections is crucial for the explo-

ration. As discussed in Section 2.3, by introducing the concept of Grassmannian, distance

between subspaces can be defined easily. Given two subspaces on a Grassmannian manifold,

represented by their orthonormal bases, A and B of size D × d, the distance measured

along the geodesic is the Grassmann distance. The geodesic distance can be computed by

decomposing ATB using its SVD and obtaining
∑d

i=1

(
θ2
i

) 1
2 . Here, θi denotes a principal

angle and is obtained as cos−1 σi, where σi is the corresponding singular value. When

considering two subspaces of different dimensions [32], A ∈ Gr(d1, D) and B ∈ Gr(d2, D)

(with d1 < d2), the distance can be calculated by finding a d2-dimensional plane C contained

in B that is closest to A, and measuring the distance between A and C. Given two
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projections, the intermediate subspaces created through dynamic projection [116, 117] are

points along the shortest geodesic path between the two. Importantly, each frame in the

animation is indeed a linear projection. Hence, comparing two subspaces is equivalent

to comparing their basis sets that span the subspaces. Note that the commonly adopted

Euclidean distance is not an appropriate metric for comparing subspace basis sets. Linear

subspaces are known to lie on a Grassmannian manifold, and hence the geodesic distance on

this manifold allows accurate comparison of subspaces. In contrast to to existing subspace

comparison approaches [16], the Grassmann distance is invariant to the ordering of the

basis vectors and axis rotations within a subspace (for example, the rotation of the 2D

projection orientation within the 2D plane). Estimating the Grassmann distance involves

SVD evaluation, making it computationally more expensive. Hence, in this work I resort

to using a computationally efficient distance metric on the Grassmannian, the Chordal

distance [32].

4.2.2 View Navigation Graph

The subspace views (i.e., 2D linear projections), defined by all pairs of vectors in the ba-

sis, are generated for each subspace. Compared to the scatterplot matrix or other subspace

clustering methods that try to find axis-aligned features, the proposed technique produces

a much smaller number of views. However, without proper organization, navigating among

these views can still be daunting. The view navigation graph (Figure 4.4) is introduced

to help manage the views and guide the exploration. Instead of displaying all the views

together, I organize the views into groups corresponding to their respective subspaces.

Each group (a subspace) has a representative view (i.e., projection), defined by the two

most dominant basis directions.

The user can start the initial exploration with only the representatives of each subspace.

In the view navigation graph (Figure 4.4), each subspace representative is denoted by

a square glyph marked with the subspace dimension at its lower right corner. All the

representative nodes are connected via a k-nearest neighborhood (kNN) graph constructed

from the Grassmann distance between subspaces. Such a graph provides a global overview

of the subspaces and captures the inter-subspace relationships. The user can then expand

each three or higher dimensional subspace for a more focused study. During the expansion,

the selected representative is replaced by a subgraph formed by all individual 2D views

generated from the subspace basis. Such a dynamic graph construction ensures interactive,

multi-scale exploration of the space of subspace views. Although the choice of k can be

important for the kNN graph, Figure 4.5 demonstrates that regarding the usage in this
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(a) (b) (c)

Figure 4.4: The views navigation graph. (a) The square glyph indexed by subspace ID
corresponds to the representative view of a given subspace. The circle glyph corresponds to
a non-representative view or the PCA projection. For each subspace with dimension three
or higher, we can dynamically expand its representative into multiple 2D views generated
from its basis (e.g., (b) & (c)).

(a) (c)(b)

Figure 4.5: kNN graphs with varying k. (a) k = 1. (b) k = 2. (c) k = 3. From all of the
graphs (a)-(c), we can infer two groups of subspaces with strong intra-cluster relationships:
the orange and black subspaces; and the PCA, brown, purple, and cyan subspaces.

research, a small variation in the choice of k does not have a great impact on understanding

the inter-cluster relationships. Other alternative neighborhood graphs can be considered for

future study, such as the Gabriel graph [118] or β-skeletons [119]. It would be interesting

to define these graphs beyond the Euclidean metrics, that is, in the setting of Grassmann

distance.

4.3 System Implementation

Software Architecture. As part of the DataExplorerHD software framework, the pro-

posed system architecture (Figure 4.6) is designed to be easily configurable and extentable.
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Figure 4.6: The software architecture.

It provides infrastructures for combining different components to create an environment

adaptable for future demands.

The core functionalities are implemented in C++, and Qt is used for all the GUI and

drawing tasks. The architecture consists of several major modules. The Core module

includes the essential algorithms and abstract data models and operations. The IO module

handles all the tasks related to the file IO. I design an XML-based binary file format and

its accompanying library, where new types of data can be easily integrated. The UI module

includes individual GUI components (view navigation graph panel, dynamic projection

panel, parallel coordinates, data operation panel, etc.), which can be customized for different

tasks. To provide the utmost flexibility, the tool integrates an embedded Python interpreter

in the Core Module, which enables the seamless integration of Python script and C++

code. Such a design allows us to implement the subspace clustering code in Python, taking

advantages of fast prototyping, quick iterations, and readily available machine learning

libraries. Since the Python implementation contains mostly matrix computation, which

indirectly invokes the C library, the speed of the implementation is comparable to an

optimized C/C++ implementation (the performance and scalability issues are discussed

in Section 7.6).

User Interface and Interaction. Figure 4.7 shows the interface of the system when it is

configured for interactive exploration tasks. (A) is the main display panel demonstrating the

dynamic projections (A-1) at its center. Each projection is augmented with a bi-plot (which

consists of axes that correspond to basis vectors scaled by their coefficients). Alongside the

projection view (A-1), two small insets are included: (A-2) shows both the source and the
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(B) (A)

(A-1)

(A-3)

(A-2)

Figure 4.7: User interface. (A) The dynamic projection panel that includes (A-1) the linear
projection display, (A-2) the source and target views of the current animated transition with
slider. (A-3) links to meta-information (e.g. images) of the original data if applicable. (B)
The subspace view navigation panel.

target projections, where the slider between the thumbnails allows the user to play the

animation back and forth; (A-3) presents the meta-information of the data (e.g., images)

when available. (B) is the view navigation panel that contains the view navigation graph,

which provides an interface for guiding the exploration process.

4.4 Application Examples

4.4.1 Combustion Simulation Dataset.

This dataset contains a collection of 2.8K samples from a large-scale combustion simu-

lation [120]. Each sample is drawn from a 10D input parameter space that corresponds to

the concentrations of 10 chemical compounds (e.g., H2, O2) involved in the simulation, with

the temperature as the observed variable (the spatial information is not modeled here as

the focus is the parameter space of the chemical concentrations). Scientists are interested in

understanding how input parameters affect the local minimum temperature observed under

the extinction and re-ignition phenomenon.

As shown in the view navigation graph (Figure 4.8(a)), the subspace analysis of this

dataset gives three 2D subspaces (#0-black, #4-brown, and #3-cyan) and two 3D subspaces

(#1-purple and #2-orange). The subspace views belong to two well-separated clusters in

the view navigation graph: The cyan, purple, and brown subspace views are positioned in
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(a) (b)

Figure 4.8: Combustion dataset. (a) View navigation graph. (b) From left to right, top
to bottom: transition from the PCA view, to the cyan, purple, and brown subspace views;
then to the orange, and finally to the black subspace view. Two snapshots of the dynamic
transition between the orange and the black subspace views connected by black arrows are
included.

proximity to each other; and similarly for the black and orange subspace views. A PCA

view is also added to the view navigation graph.

Via dynamic projections, exploration is started from the PCA view to the cyan, purple,

and brown subspace views sequentially, as illustrated in Figure 4.8(b). These views are close

to one another in the view navigation graph. A small amount of tilting is observed during

such transitions, indicating small rotational angles among basis vectors of these subspaces.

Such observation likely indicates that these three subspaces are approximations of a gently

curved, non-linear structure in the data. When transitioning from the brown subspace view

to the orange one, a drastic expansion of the orange cluster and a compression of the brown,

purple, and cyan clusters are observed. This animation indicates that the orientation of the

orange subspace is very different from the previous three subspaces. Finally, the transition

from the orange to the black subspace view demonstrates their similarities in terms of

the small rotational angle. These observations give user an intuitive understanding of the

structure in the data, namely, the cyan, purple, and brown subspaces share structural
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similarities; the orange and black subspaces are closely related; yet both sets of subspaces

are structurally very different.

Further insights regarding the data could be obtained by close examination of the

dynamic transitions between the PCA view and the orange subspace view. The PCA finds

the best single linear subspace to represent the data but fails to capture the structure of

each subspace with equal accuracy.

As shown in Figure 4.9(a), relatively high inaccuracy is observed in the circled region

(that corresponds to the orange subspace) based on projection distortion measures [31, 68].

This is due to the fact that PCA maximizes variance across all dimensions while the orange

subspace contains only two dominant dimensions (i.e., O2 and HO2 in its bi-plot in Figure

4.9(c)) with large variance.

On the other hand, when transitioning from the PCA view to the orange subspace

view, intrinsic structure of the orange subspace is better preserved while the high distortion

region is shifted elsewhere (Figure 4.9(b)). In addition, through the orange subspace view,

additional understanding of the extinction pheonomina is obtained. As highlighted in Figure

4.9(c)-(d), temperature profile (c) indicates two distinct local minima (pointed by two

red arrows) in the data, while the HO2 concentrations (d) exhibit significant variations

surrounding these minima (pointed by two red arrows). According to the domain experts,

the differences in the HO2 concentration correspond to two distinct types of extinction

conditions, one of which is not readily visible in the PCA view.

4.4.2 Yale Face Dataset.

The Yale face dataset is a subsample from the original database[17]. It consists of 439

face images from seven people, which can be roughly labeled as (in no particular order):

one African female, one Asian female, two Asian males, one Caucasian male, one Indian

male, and one Middle Eastern male. During the visual analysis, I assume the true labels

(d)(a) (b) (c)

Figure 4.9: Combustion dataset. (a) PCA view colored by pointwise distortion measure.
(b) Yellow subspace view colored by pointwise distortion measure. (c) Yellow subspace view
colored by temperature. (d) Yellow subspace view colored by HO2 concentration.
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are unknown at the moment and later use these labels to validate the observations. The

original images have a resolution of 32 × 32. Random projection is used to reduce their

resolution to 10 × 10; therefore, the points are embedded in 100D space. As shown in

the view navigation graph (Figure4.10(a)), the subspace analysis gives four 2D subspaces

(#2-orange, #3-cyan, #4-brown, #6-red) and three 3D subspaces (#0-black, #1-purple,

#5-green). Let’s start the exploration of the data from the PCA view (Figure 4.10(b)).

Although the PCA view gives poor separations among different subspace clusters, points

from each cluster are arranged in a circular fashion according to the continuously varying

lighting directions. This observation helps us examine the shifts in lighting conditions within

target subspace views during dynamic projections.

Now let’s transition from the PCA view to the orange subspace view (Figure 4.11(a)).

A rotational motion around a horizontal axis is observed, and the transition end with a side

angle view of the data. In the orange subspace view (Figure 4.11(b)), the green, purple, and

orange clusters form three stratified sets. By validating with the face images, these three

clusters contains mostly images from an Asian female and two Asian males, respectively.

Furthermore, the amount of shadow in the images increases along the dominating direction

of each cluster towards its overlapping region. In addition, as illustrated in Figure 4.11(c),

the misclassified points (highlighted in the dotted circle) appear at the top of the embedding

that correspond to the face images where most facial features are in deep shadows. Similarly,

when transitioning from the PCA view to the brown and cyan subspace views, respectively,

clear class separations among the target subspace views can be observed. That is, the

brown and the cyan clusters (mostly contains images of an Indian male and a Caucasian

(a) (b) (c) (d)

Figure 4.10: Yale face dataset. (a) View navigation graph. (b) illustrates the correlation
between the points distribution and the lighting directions in the PCA view. (c) The cyan
subspace view. (d) The brown subspace view.
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(b) (c) 

(a) 

Figure 4.11: Yale face dataset. (a)-(b) Dynamic transition from the PCA to the orange
subspace view; two snapshots of the animations are included. (b) Shows the three stratified
sets and highlights the image variation (the amount of shadow) along their dominant
directions. (c) highlights the mis-classification (circled area) caused by poor lighting
conditions.

male, respectively) are shown to be well-separated from the rest of the data points (see

Figure 4.10(c)-(d)).

Finally, when transitioning from the PCA view to the red subspace view (which contains

mostly images of an African woman), a slightly different rotation is observed. The resulting

embedding does not exhibit clear class separation between the red cluster and the remaining

points (Figure 4.12 (a)-(b)). Further exploration (Figure 4.12 (c)) reveals that along the

dominant direction, the images in the red cluster vary according to the directions of lighting.

This trend is very different from that the one green, purple, and orange subspace clusters

(which all contain images of people of Asian origin) share, where images vary along the

dominating direction according to the amount of shadow. Such a distinction between the

two groups is likely caused by the differences in facial features and skin tone.

4.4.3 MNIST Dataset

The MNIST dataset is sampled from the MNIST handwritten digits database. The

original images have a resolution of 28× 28. I down-sample the images into 12× 12 and use
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(b) (c) 

(a) 

Figure 4.12: Yale face dataset. (a)-(b) Dynamic transition from the PCA to the red
subspace view; two snapshots of the animation are included. (c) Shows the red points in
the red space view where their corresponding images vary along the cluster’s dominating
direction according to the differences in lighting direction.

500 samples for better interactive performance (in terms of generating smooth animations).

Four 3D subspaces (#1-purple, #5-green, #8-dark red, #9-pink) and six 2D subspaces

(#0-black, #2-orange, #3-cyan, #4-brow, #6-red, #7-blue) is obtained from the subspace

analysis. During the visual analysis, the true labels are assumed unknown and later are

used to validate the observations.

As demonstrated in the combustion dataset, the compression and expansion types of

motions during the dynamic projection likely indicate substantial structural differences

between source and target subspaces. Here I give a few more examples. When applying

dynamic transitions between the black and the purple subspaces (Figure 4.13), the black

cluster drastically expands while the purple clusters compresses into a very small cluster.

Such motions is illustrated using the motion trails.

Referring back to the original handwritten images, it turns out that the purple cluster

contains the handwritten digit “1” while the black subspace contains the digit “0”. There-

fore it is not surprising that these two subspaces appear to lie on the opposite sides of the

high-dimensional space. Further observation of the black subspace view indicates that points

in the black subspace are distributed according to the width of the digits, that is, points on

the left correspond to “fat” handwritings while the ones on the right are “skinny”. When
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(a)

(b) (c) (d)

(e)(f)

Figure 4.13: MNIST. (a) View navigation graph. Dynamic projections from the purple
(b) to the black (d) subspace view, and then to the PCA view (f). Motion trails (c & e)
are used to highlight such transitions in the static images.

continuing the transition from the black subspace view to the PCA view, black points from

both sides of the projection moves towards a central vertical line, therefore the obtained

PCA embedding no longer preserves local structure (i.e., distribution of digits according

to their widths) compared to the black subspace view. Similar behavior exists during the

dynamic transition between the red and the blue subspace views (Figure 4.14). Referring

back to the original images, the distinct shapes of “6” (mostly red) and “7” (mostly blue)

contribute to the very different subspaces these points define.

In addition, the images of the digit “1” is split into three overlapping clusters (cyan,

dark red, and purple) in the PCA view (Figure 4.15). They correspond to the different

(a) (b) (c)

Figure 4.14: MNIST. Dynamic projection from the red (a) to the blue (c) subspace view.
A motion trail (b) is used to highlight the transitions in the static image.
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(a) (b) (c)
Figure 4.15: MNIST. (a) PCA view, where the difference in orientation of the digit “1”
is captured by the overlapping cyan, dark red and purple cluster. (b)-(c) Two of the three
red subspace views where digits “1” become separated based on their orientations.

orientations of the digit. When transitioning to two of the dark red subspace views, the

tilted digits “1” and the straight ones become well-separated onto the opposite sides of

the embeddings. This example again demonstrates the subspace’s ability to preserve local

features. The transitions from the PCA to the subspace views help the user study the

relationships between the global and local structures.

4.5 Evaluation and Discussion

4.5.1 Comparisons with Existing Systems.

In order to better understand the difference between the proposed framework and

existing techniques, a comparison among three relevant systems: GGobi [116], Scatterplot

dice [107], and TripAdvisorND [16] is presented below. These systems either utilize some

forms of subspace-finding algorithms or use animated transitions between a pair of 2D views

for data exploration.

The GGobi [116] system utilizes the dynamic projection by defining a series of transition

target projections, either by random generation [111] or by switching among different

projection pursuit indices (e.g., holes, central mass). Due to the random nature of such

transitions, it may take significantly longer time for a user to identify the informative

views representing meaningful structures. Meanwhile, the projection pursuit indices try to

capture a pre-defined set of properties, which may not be meaningful for a given dataset.

Such limitation is illustrated in Figure 4.16, in which the GGobi system is applied to the

example datasets based on the holes index (a few frames are captured within the dynamic

projection results). A “hole”-like structure is detected by the projection pursuit index

within the face dataset, but such a structure does not exist for the combustion dataset.

In the proposed framework, the source and target views are obtained through subspace

analysis, which naturally captures the intrinsic structure of the data. With the help of the
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(a) (b) (c) (d) 

Figure 4.16: GGobi results using the grand tour and projection pursuit holes index;
example frames for the combustion (a)-(b) and face datasets (c)-(d).

view navigation graph that captures the relationships among individual projections, the

proposed system provides a more structured approach in exploring the space of projections

and revealing important structures.

The Scatterplot dice [107] approach is built on top of the scatterplot matrix. A 3D

transition between a pair of plots in the scatterplot matrix can be obtained when they

share one axis (i.e., shared dimension). The system automatically generates a series of 3D

animations to connect any two plots. The system is easy to understand, and the animations

provide valuable information. However, one of the fundamental limitations of such a system

is the lack of scalability as the number of dimensions goes up. One of the examples in this

work contains a 100D dataset. Using the scatterplot matrix, the user will end up with a

large number of unique projections that are almost impossible to be explored interactively.

The TripAdvisorND [16] system provides a Focus+Context approach, where a number

of “tourist sites”, each corresponding to the best view of each subspace (the subset of

dimensions), is given as an overview of the data. The user can delve into each of these tourist

sites for a more focused study by tilting the projection plane around a local neighborhood.

The proposed framework differs from the TripAdvisorND in three ways. First, instead

of finding related subsets of dimensions, the proposed approach decomposes the data into

clusters, each represented by a simple (not necessarily axis-aligned) linear subspace. Second,

compared to an ad-hoc similarity measure, a distance measure between a pair of views is

defined rigorously through the Grassmann distance. Third, while TripAdvisorND allows

local neighborhood exploration around one projection, the proposed framework allows

full transitions among multiple structural-revealing projections, and helps the user obtain

insights via both local and global exploration.
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4.5.2 Interviews with the Experts.

To better evaluate the usability of the proposed tool, and in particular, the effectiveness

of dynamic projections, I conduct in-depth interviews with two computer science faculties,

one in machine learning (Expert A) and one in information visualization (Expert B). I

obtain their opinions and suggestions on various aspects of the system.

Expert A finds the tool to be useful in ”providing an alternative, interesting way to

visualize high-dimensional data”, compared to the traditional dimensionality reduction

methods. The subspaces captured by the algorithm reveal local linear relationships that

may otherwise be hidden by a projection optimized for global properties (such as PCA).

Local views are linked by the navigation graph to form a global picture. To evaluate the

effectiveness of dynamic projections, Expert A first inspects individual subspace views,

and then he enables and explores animated transitions between them. He states that

“the animated transition is very useful in tracking changes between two projections, and

the transitions are easy to follow.” In addition, each frame is computed from a linear

projection, thereby making it easy to interpret the animation. Expert A also suggests

I include other linear projections methods (e.g., Linear Discriminate Analysis for labeled

data) in the tool to obtain additional insights. Since high-dimensional data visualization

techniques are indispensable for better understanding machine learning algorithms, Expert

A is interested in using the tool for visualizing certain natural language processing (NLP)

word vector datasets; such a collaboration yields the work discussed in Chapter 6.

Expert B points out that the most significant advantage of using dynamic projection

in the tool is the ability to track the correspondences among individual points between

the starting and ending projections; such correspondences could be further highlighted by

enabling motion trails (an optional visual component implemented in the current system).

Combining the dynamic transitions with cluster labels, the user can infer the overall changes

easily in cluster configurations. Expert B emphasizes that extra caution is needed when

inferring high-dimensional structures based on the intuitions obtained from the 2D space.

He suggests that a slider be added to allow the user to play the animated transitions back

and forth, which could facilitate the understanding of dynamic projection. I have integrated

this functionality in the tool.

4.5.3 System Scalability and Flexibility.

The usability of the tool depends greatly on its scalability and flexibility. The subspace

clustering (O(n2k)) and basis estimation (O(k2) ) algorithm have a combined time complex-

ity of O(n2k+k2) (where the n is the number of points, and k is the number of dimensions).



55

For the example datasets, the subspace analysis computation takes between 15-120 seconds

on an Intel Core i5 2.8GHz desktop computer. The system allows both runtime turning

of model parameters and pre-computation with multiple parameter configurations. The

n2 factor limits the subspace clustering algorithm for processing extremely large datasets

directly. However, by utilizing smart sampling and summarization, I have been able to

scale the system to handle very large datasets that contains several million points [29]. To

handle a large data dimension (e.g., the face dataset), random projection can be applied to

reduce the dimension to a manageable size. With a volume rendering extension, the core

functionality of the system can be adopted for designing multi-dimensional transfer function

for visualizing multivariate volume dataset [29] (discussed in Chapter 5), which exemplifies

the flexibility of the proposed framework.



CHAPTER 5

DESIGN MULTIVARIATE TRANSFER

FUNCTION VIA SUBSPACE

ANALYSIS

Multivariate volumetric datasets arise naturally from many scientific applications, such

as fluid dynamics, combustion, and climate simulations, where various physical measure-

ments (e.g., temperature, pressure, and velocity) or multiple chemical species in the pa-

rameter space are used to define complex features in the volumetric space. With the

explosive growth of such datasets, providing fast and effective tools for their analysis

and visualization becomes increasingly challenging. For example, how do we interactively

visualize large volumes, and how do we intuitively explore high-dimensional parameter space

for volume visualization? The latter problem is particularly challenging, as it does not

benefit substantially from powerful hardware and instead requires fundamental algorithmic

advances.

One possible solution is to understand the interdependencies and joint effects of multiple

variables and use this information to design a transfer function (TF) that links the parameter

space to the volumetric space. Direct volume rendering with scalar volume data assigns

colors and opacities to every voxel in the volume through a 1D TF. Kniss et al. [121]

extend the TF design space from 1D to 3D by adding the gradient information. However,

designing high-dimensional TFs is especially challenging, since no direct representation of

high-dimensional space is possible. Some recent approaches utilize brushing operated on 2D

embeddings of the data points in the parameter space obtained by dimension reduction [122]

or graph drawing [123], with the assumption that such embeddings provide relatively good

structural approximations to the data. In practice, many datasets often contain complex

structures that are not easily unraveled by a single 2D embedding.

In this research, by utilizing the subspace analysis (introduced in the Chapter 4),

multiple informative representations of the multivariate parameter space are captured.

Instead of designing the transfer function in a single static canvas as in the traditional

2D transfer function, the subspace analysis and dynamic projections approach provides a
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flexible interface to explore the high-dimensional design space of the TF. The system [29]

provides users with a variety of 2D projections that are designed to highlight intrinsic

low-dimensional structures of the parameter space. One can infer relationships among these

projections by exploiting the dynamic transitions between them, which provides an intuitive

way for the user to explore the parameter space by creating a multifaceted, dynamic mental

map of the data. A set of TF design paradigms specifically tailored to the dynamic design

space is also introduced. The automatic TF design assigns colors based on subspace labels

and provides a default visualization of the volumetric data. The semiautomatic TF design

is guided by subspace labels and allows more refined TF design by exploiting relations

among different parts of the data via animated transitions between viewing angles. The

manual TF design treats subspace labels as latent information and exercises more freedom

and flexibility in the design process. In order to scale the subspace analysis based approach

to large volumetric datasets, intelligent subsampling and clustering strategies are employed

to acquire a compact and meaningful representation of the data. The summarization of raw

volume data greatly reduces the computation time, which enables interactivity during the

TF design process. In summary, the proposed system not only provides a more intuitive

understanding of the parameter space but also allows TF design on a dynamic canvas,

thereby eliminating typical drawbacks of a single static 2D design space. A number of

interactive techniques are also included as part of the TF design tools in the dynamic

canvas, including dynamic subspace highlighting, multiple view sculpting, and neighborhood

selection. By utilizing multivariate volumetric datasets from real-world applications, the

effectiveness of the proposed approach is demonstrated.

5.1 Overview of the Computation Pipeline

Figure 5.1 gives an overview of the proposed visualization pipeline. The subspace

analysis work discussed in Section 4 is used to explore the high-dimensional parameter

space for visualizing multivariate volumetric data. Dynamic projections, together with

subspace analysis, provide a multi-view canvas for effective TF design. Although I build

upon infrastructure developed previously for high-dimensional data exploration, substantial

extensions have been made to provide TF design and volume rendering capabilities, as well

as address the scalability issue when handling large volumetric data.

The multivariate volume visualization interface consists of several interlinked panels,

as illustrated in Figure 5.2. The dynamic projection panel (A) allows manipulation of

2D views of the data and enables TF design. Each subspace view in (A-1) is augmented

with a biplot (i.e. where each attribute variable is displayed as a vector and the lengths
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Figure 5.1: Overview of the visualization pipeline. There are three stages: 1) data
reduction via sampling and k-means++ clustering; 2) subspace clustering of the reduced
data; 3) TF design through parameter space exploration based on dynamic projections.

of the vector represents the coefficient with respect to the basis vector of the subspace)

that provides a reference to the attribute dimensions. The volume visualization panel (B)

displays the rendering result. The subspace navigation panel (C) allows the user to navigate

among different views and control the animated transitions between them, where each node

(draw as colored squares) represents a subspace view and views from the same subspace

are grouped together with the same color (the only exception is the PCA view drawn as a

colored circle). As showed in the figure, the nodes marked (a) and (b) correspond to the

source and target views displayed in (A-2) and (A-3), respectively. The data panel (D)

serves as the portal for data-centric operations such as applying dimension reduction and

displaying meta information.

5.2 Data Reduction and Subspace Clustering

A volumetric dataset is typically large in scale compare to other dataset, but many of

its data points may share similar feature vectors in the parameter space (e.g., data points

in the empty space have feature vectors close to a constant). I exploit such feature redun-

dancy to reduce the data size and preserve its structure through intelligent sampling and

scalable clustering. Such data reduction is also necessary to ensure real-time interactivity

and smooth animations during dynamic projections due to the memory and computation

constraints.

I represent the volumetric dataset with a set of carefully selected points in the parameter

space. First, a histogram of the data points is constructed in the parameter space based on

their `2-norm, and sample a fixed percentage (e.g., 30%) of points within each discrete

interval of the histogram to ensure good coverage of the parameter space. Second, I

perform k-means++ clustering on the sampled points, obtain the cluster centers during

convergence and approximate these cluster centers with their nearest neighbors within the
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(a)

(b)

(a)

(b)

Figure 5.2: Overview of the multivariate volume visualization interface: (A) dynamic
projection panel; (B) volume visualization panel; (C) subspace navigation panel; (D) data
operation panel. (A-1) displays a chosen subspace view of the parameter space. (A-2) and
(A-3) display the source view and target view during animated transitions between them.

initial volumetric dataset. These approximated cluster centers serve as the representatives

of the entire volume and are explored and manipulated during the TF design process. The

sampling operation is optional as it ensures reasonable efficiency of the clustering algorithm,

in the case of a large volumetric data. The clustering is essential in bridging the gap between

processing large number of points in the volume and maintaining interactivity with a small

number of points using dynamic projections.

Given a reduced dataset, subspace clustering [29] is applied to represent the high-

dimensional parameter space as a collection of low-dimensional linear subspaces. The

dimension and basis of each subspace are estimated. I then use these bases to define different

viewpoints, that is, I create different projections onto pairs of basis vectors and generate

a set of 2D views from each subspace. I further explore these subspace views through

dynamic projections in the next stage of the pipeline. During subspace clustering, subspace

labels are assigned to the representatives (i.e., approximated cluster centers), and associate

points in the entire volume with their corresponding (approximated) cluster centers. Color

assignments to the cluster centers then translate directly to color assignments to all points

in the volume during the TF design process.

To demonstrate the robustness of the data reduction techniques, I compare the PCA

projections of the representative points for different sampling rates and clustering config-

urations. As illustrated in Figure 5.3, I show the PCA results of a hurricane simulation
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(b)(a) (c) (d)

Figure 5.3: Hurricane dataset: comparing PCA results with 1500 ((a) & (c)) and 3000
clusters ((b) & (d)). (a)-(b) PCA projections of the representative points, colored by
temperature using the Spectral colormap where red indicates low and blue indicates high
values. (c)-(d) PCA projections colored by subspace labels.

dataset (see Section 9.4 for details) using a 10% sampling rate and 1500 clusters (a)-(b) vs.

a 40% sampling rate and 3000 clusters (c)-(d). The PCA projections are consistent in terms

of point distributions and the subspace clustering results closely resemble one another. This

result also shows that 1500 clusters with 10% is sufficient in approximating the structure of

the parameter space and its subspaces.

5.3 Transfer Function Design

In this work, a dynamic canvas is utilized as the TF design space. Following data

reduction, subspace clustering is applied to identify clusters that shared the same intrinsic

low-dimensional subspace in order to capture the structure of the data. In particular, for

visualization purposes, each subspace produces several 2D views of the data by creating

projections onto pairs of its basic vectors (e.g. a 3D subspace produces three 2D views).

These views are then organized in the view navigation panel as illustrated in Figure 5.2(C).

Then, dynamic projections are utilized to smoothly transition between different views for

parameter space exploration. The animated transitions between these subspace views (and

between subspace views and the PCA view) allow the user to gain an intuitive understanding

of the structure of the parameter space, for effective TF design.

I provide an illustrative example that contains a few snapshots of such an animated

transition in Figure 5.4 from a PCA view to another subspace view, for the hurricane

dataset. The points from the blue subspace gradually separate from the rest of the points

in the other highlighted subspaces during the animated transitions, which reveals the insight

that seemingly connected points in the PCA view may in fact form separate structures.

Based on the information learned from exploring the parameter space, the user can

design the colormap by interacting with the points in the dynamic projection panel in

multiple subspace views to shape the final TF. The major advantage of designing in multiple
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(b)(a) (c) (d)

Figure 5.4: Hurricane dataset: animated transitions between its PCA view (a) and a
subspace view (d) reveal unseen structures of the parameter space compared to a single
static PCA view.

dynamic views over a single static view is the ability to reduce errors caused by structural

illusions in a single projection. Due to the high dimensionality and complex nature of

the parameter space, typically there is no single projection that faithfully represents the

structural relations among its points. With multiple subspace views and the animated

transitions among them, the user could start to understand how points from different parts

of the data are structurally related to one another.

I provide two approaches for selecting points in the dynamic projection canvas. Lasso

selection is used for painting points and sculpting the desired TF regions in multiple views.

Neighborhood selection paints a point together with its neighbors within a chosen radius

in the high-dimensional parameter space. As illustrated in Figure 5.10, for the hurricane

dataset, the user can paint the points via neighborhood selection by increasing the radius

on-the-fly, and interactively visualize the corresponding volumes.

Depending on how much the user utilizes the subspace labels associated with the rep-

resentatives in the dynamic projection panel, three approaches are provided for TF design.

The automatic TF design assigns colors based on subspace labels and gives a coarse vi-

sualization of the volumetric data. This TF assignment is based on the assumption that

subspace clustering captures more structural information compared to Euclidean distance

based clustering. Subspace highlighting is enabled when dynamically transitioning from

a source view to a target view. The points in the subspace that the target view belongs

to increase their opacities, whereas all other subspaces increase their transparency. Such

a design yields a smooth color transition within the volume visualization during dynamic

projections.

The semi-automatic TF design is guided by subspace labels and allows more refined TF

design. The user can import some or all of the subspace labels as an initial design and then

exploit relations among different parts of the data via animated transitions among multiple

views for TF modification and refinement.
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Finally, during the manual TF design, the user utilizes what he or she learned about the

parameter space through dynamic projections to manually sculpt the colormap across mul-

tiple views. Manual TF design treats the subspace labels as latent information, therefore,

allow the user exercises more freedom and flexibility in the design process.

5.4 Implementation and Scalability

Both sampling and k-means++ clustering are implemented in C++. For the subspace

clustering and basis estimation, Python is used for faster prototyping and reliable matrix

operations. The volume visualization is built on top of an existing high-dimensional data

exploration infrastructure (C++ and Qt) where additional modules are introduced to handle

multivariate TF design and volume rendering. Several processes are closely related to the

issue of system scalability. k-means++ (for subsampling) has a complexity of O(nk2) times

the number of iterations, where n is the number of data points. Subspace clustering incurs

O(m2d) time and O(m2) memory to construct the affinity matrix where m and d denote the

number of samples and the data dimension respectively. In addition, hardware capacities

limit the size of the raw volumetric data to be rendered, as well as the number of points

that could be used to guarantee smooth animated transitions during dynamic projections. I

primarily rely on data reduction via sampling and clustering to process large datasets. The

sampling rate is maximized as long as the clustering algorithm terminates in reasonable

time.

5.5 Application Examples

5.5.1 Hyperspectral Image Dataset

As a proof-of-concept example, the first dataset comes from earth remote sensing using

a hyperspectral imaging system. Such a system gathers and processes information collected

on an image plane from across the electromagnetic spectrum. It divides the spectrum into

a large number of wavelength ranges that go beyond what is visible to the human eye.

The dataset has a resolution of 1924 × 753 with a total size of 1.2GB. It is derived from

the Moffett Field dataset, part of the AVIRIS Standard Data. A total of 206 wavelengths

within the spectrum are selected. Therefore each location in the image corresponds to a

point in the 206D space. For data reduction, a 50% sampling rate and 3000 clusters are

used. Although this dataset is not volumetric, it can still be used to demonstrate the usage

and versatility of the system.

During subspace clustering, a configuration with eight 2D subspaces is arrived. Using

automatic TF design (based on subspace labels), four of these subspaces correspond to
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distinct regions in the image with meaningful interpretations. As illustrated in Figure 5.5,

the blue subspace (c) corresponds to the body of water, the yellow subspace (d) contains

the urban environment with man-made infrastructures such as roads and bridges, the black

subspace (e) represents certain types of buildings (e.g., airports) and the green subspace

(f) is likely the vegetation. Such a visualization demonstrates in principle that subspace

clustering gives a crude visualization that agrees with intuition or the prior knowledge of

the data.

With semi-automatic TF design, a more refined visualization is obtained, as illustrated in

Figure 5.6. The user starts by using the black subspace labels (a) to guide the selection of the

seed point for neighborhood selection that leads to the magenta area (b) that corresponds to

certain types of buildings (notice in particular the striped pattern near a large magenta area,

i.e., the airports). Then the user imports the blue subspace labels (c) as they correspond

to the body of water almost perfectly. Subsequently, the user chooses a point near the blue

area and perform neighborhood selection to arrive at the green region (d) that encloses

mostly vegetation. Notice the white grid-like pattern which corresponds to unexplored

region with man-made infrastructures. Finally, the user performs neighborhood selection

in the projection view seeded from an unlabeled point and arrive at the final yellow region

(e) that highlights other types of buildings in the image.

(a) (b) (c) (d) (e) (f) (g)

Figure 5.5: Hyperspectral image dataset: automatic TF design. (a) Geographic image
of the Moffett Field as a reference point. (b) A subspace view with points colored by
subspace labels. (c)-(f) Volume visualizations that correspond to blue, yellow, black and
green subspaces, respectively. (g) The combined visualization based on these four subspace
labels.
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(b) (c) (d) (e)(a)

Figure 5.6: Hyperspectral image dataset: semi-automatic TF design. (a) use the black
subspace labels to guide the TF design for the magenta area in (b) via neighborhood
selection. (c) import the blue subspace labels without modifications. (d)-(e) refine the
TF further via neighborhood selections.

5.5.2 Hurricane Isabel Dataset

This dataset originates from a simulation of a hurricane (in particular, Hurricane Isabel

from September 2003) from the National Center for Atmospheric Research in the United

States. It has a resolution of 500 × 500 × 100 (600 MB), which corresponds to a physical

scale of 2139km (east-west) × 2004km (north-south) × 19.8km (vertical). To form the

multivariate testing data, each location in the data is mapped to a 6D space (similar

dimensions have been used in [122]) by choosing six scalar variables in the simulation

including: cloud (cloud moisture mixing ratio), precipitation (total precipitation mixing

ratio), vapor (water vapor mixing ratio), temperature, pressure and wind speed. For data

reduction, a 30% sampling rate and 3000 clusters are used.

Subspace clustering gives an initial configuration with eight subspaces, which include

four 2D subspaces (blue, dark green, black and purple), three 3D subspaces (orange, brown

and red) and one 4D subspace (grass green). Such a configuration corresponds directly to

an automatic TF design, as illustrated in Figure 5.7, where the PCA views of the parameter

space colored by both subspace labels as well as temperature are also included. The blue

subspace is shown to contain points with minimum temperature, and the separation between
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(a) (b) (c)

Figure 5.7: Hurricane dataset: automatic TF design based on all subspace labels. The
PCA views of the parameter space are colored by (a) subspace labels and (b) temperature.
Here the “spectral” colormap is used where red means low and blue means high temperature.
The corresponding volume visualization is shown in (c).

the red and the purple subspaces seems to be aligned with the difference between their

temperature profiles.

Via dynamic projections, each subspace is highlighted when it transitions into its corre-

sponding views and correspondingly, the user can observe a dynamically varying TF in the

volume visualization, highlighting different features captured by each subspace. In Figure

5.8, the user starts from the blue subspace and then dynamically transition to the dark

green, brown, red, black, purple, orange and finally grass green subspaces. Based on such

subspace exploration, the user sees that sporadic spiral-like features are visible in the brown

subspace, which corresponds to a low vapor region, indicated by the direction of the qvapor

variable axis in the biplot. On the other hand, the red subspace has relatively high vapor

based on the biplot. In addition, the red, orange and green subspaces all cover some parts

of the hurricane eye.

Now the user proceeds with semi-automatic TF design, where the existing subspace

classifications and the dynamic transitions between different views is utilized to better

understand the high-dimensional parameter space. As illustrated in Figure 5.9, starting

from the PCA view in (a), the user notices that the orange, green, brown and blue subspaces

are intermingled with one another. The user now imports these four subspaces to get an

initial TF shown via the volume visualization panel in (b). During dynamic projection,

when transitioning from the PCA view to a brown subspace view in (c), the user observes

that the blue cluster becomes separated from the rest of the points, whereas the other

three clusters remain mixed (the snapshots of such an animation are shown in Figure

5.4). This result demonstrates the effectiveness of the subspace clustering in identifying

distinct substructures. The user further explores the relations among these four subspaces

via animated transitions in dynamic projections. When transitioning between two orange
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(b)(a) (c) (d)

(e) (f) (g) (h)

Figure 5.8: Hurricane dataset: automatic TF design. A dynamically varying TF in
the volume visualization using subspace highlighting is illustrated. The subspace view
navigation panel is showed on the left. Arrows connecting the nodes indicate the current
exploration path, which transitions from selected subspace views (a) to (h).

subspace views (d) and (e), the user notices a distinctive spike-like structure pointing

towards the opposite direction of the pressure axis in the biplot in (g). By painting such a

protruding triangular area with red in (f), a region in (g) that contains the hurricane eye is

located.

The user further examines the biplot axes in (f) and notice that the pressure and the

wind speed axes point away from the red region, which indicates that the red region has

low pressure and low wind speed. Furthermore, the temperature is another dominant axis

in this subspace view. To further explore the internal structure of the hurricane eye, the

user divides the area into four parts colored by red, yellow, cyan and magenta in (h). Based

on the cutaway view in (j), the user sees that the cyan area corresponds to the center of the

hurricane eye and the magenta, yellow and red areas form its outer layers. Based on the
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(a) (b)

(f) (g) (h) (i)

(c) (d) (e)

(j)

(k)

temperature

pressure

Figure 5.9: Hurricane dataset. Semi-automatic TF design.

relative positions of these four areas and the biplot in (h), together with the temperature

(j) and pressure (k) profiles, the user can conclude that the red area and yellow areas

have higher pressure whereas the magenta and yellow areas have higher temperature, when

compared with the cyan area.

Besides TF design using Lasso selection, the effect of high-dimensional neighborhood

selection is demonstrated. As illustrated in Figure 5.10, starting from an initial seed

point, the user gradually increases the size of its neighborhood in the high-dimensional

Figure 5.10: Hurricane dataset: showcase neighborhood selection during the TF design
as the neighborhood radius increases from left to right.
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parameter space and generate a dynamic TF interactively, revealing interesting structures

in the volume visualization.

Finally, an example of manual TF design with only Lasso selections is given, as illustrated

in Figure 5.11. Via dynamic projections, Lasso selections allow “sculpting” in multiple views

of the data during the design process, which touches regions in the high-dimensional space

not necessarily reachable by a single static 2D view. The user starts with the PCA view of

the data within the dynamic projection panel, by painting with green along a stratified set

in (a), which does not correspond to any identifiable structure in the volume visualization.

By transitioning between multiple views across different subspaces, the user identifies that

the rightmost green area in (b) (roughly enclosed by the black circle) appears to reside in a

very different subspace than the rest of the green points. Removing these points (c) results

in a void surrounding the hurricane eye (not shown in the figure). The remaining green

(a)

(b) (c) (d)

(e)

(f)

(g) (h)

(i)

Figure 5.11: Hurricane dataset: manual TF design where the TF is created in multiple
views to fully exploit the advantage of a dynamic canvas. (a) Initial design with Lasso
selection in the PCA view. (b)-(e) Further sculpting of the TF by removing subsets of green
points based on information obtained through dynamic projections. (f)-(i) Performing Lasso
selections in different regions of the parameter space for further TF design and refinement.
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points split into two clusters when transitioning to a third subspace view (d), and further

“sculpting” by removing the small green cluster (enclosed by the black circle in (d)) leads to

the visualization in (e) where the emptiness surrounding the hurricane eye becomes readily

visible. Subsequently, the user performs Lasso selection in different regions of the parameter

space and arrive at a visualization that highlights the hurricane eye across multiple layers

along the polar axis.

5.5.3 Ionization Front Instability Simulation Dataset

This data is from an ionization front instability simulation [124, 125]. Scientists are

interested in understanding the formation of galaxies, in particular, the effect of “shadow

instabilitie”, where radiation ionization fronts scatter around the primordial gas. The

dataset contains eight chemical species including H+
2 , H2, H−, He2+, He+, He, H+ and

H, as well as a few attributes that measure physical properties, including particle density,

temperature and the curl calculated from the simulated velocity field. It has a resolution of

600× 248× 248 (1.6GB), and each location is mapped to a 11D parameter space. For data

reduction, 25% sampling rate and 3000 clusters are used.

Such a dataset can be described with seven 2D and one 3D subspaces, via subspace clus-

tering. The user starts the visual exploration with the automatic TF design, as illustrated

in Figure 5.12. During dynamic projections, the user notices the transformation angles

between pairs of subspaces are generally small and no drastic deformation of point cloud

exists within most transitions. These transitions indicates a high-level of similarities among

the basis vectors describing each subspace. The point cloud in most views forms eclipsed

moon like structures and spreads along certain dominant directions. Such a directional

pattern is most visible for the red subspace in (a) where the point cloud is elongated into a

stick-like structure.

To further explore such a directional pattern, the user proceeds with a manual TF design

by assigning different colors parallel to the dominating direction, starting from the subspace

view of Figure 5.13(a). The user then transitions to a different subspace view in (b)-(c),

proceed further with the TF design and showcase the zoomed-in volume visualization. When

transitioning among different subspace views in (e)-(f), the relative positions among groups

of points with the same color remain consistent most of the time. Such an observation

further validates the simplistic nature of the parameter space for the dataset. In addition to

mostly linear transitions among 2D subspace views (in (e)) during the dynamic projections,

certain twists and turns are observed among animated transitions between views in the 3D

subspace in (f), which provide additional structural understanding of the parameter space.
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(b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c) (d) (e) (f) (g) (h)

(a)

Figure 5.12: Ionization dataset: automatic TF design. (a)-(h) When transitioning between
views from different subspaces, a dynamically varying TF in the volume visualization is
shown.

The final volume visualization result in (d) displays the layered structure of the ionization

front, where the orange outer layer is followed by inner layers in purple, cyan, blue, green,

red and yellow, respectively. This pattern is consistent with the chosen colormap along the

dominant direction.

As a final note, the TF design for all datasets is carried out on a desktop machine

equipped with an Intel Core i5 2.6GHz CPU, a NVIDIA GTX570 GPU and 8GB of memory.

For the preprocessing, the running time for sampling from the volume is negligible and

k-means++ takes between 30 minutes to 3 hours depending on the size of the data and the

rate of convergence. Subspace clustering and basis estimation running on MATLAB take

less than 5 minutes. Finally, interactive volume rendering speed (more than 15 frames per

second) can be achieved with an appropriate voxel sampling rate.
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(a)

(b) (c)

(d)

(e)

(f)

Figure 5.13: Ionization dataset: example of a manual TF design. By coloring the
parameter space along the dominant direction, the user reveals the layered structure within
the ionization front. (a) The user assigns different colors parallel to the dominating direction
of the projection. (b-c) The user transitions to a different subspace view that expands the
design region with further TF modifications. The zoomed-in volume visualization is shown
to highlight their fine details. The final visualization is shown in (d). (e)-(f) The relative
positions among groups of points with the same color remain consistent most of the time
during animated transitions among multiple views.



CHAPTER 6

STUDYING ANALOGY RELATIONSHIPS

IN WORD EMBEDDING SPACE VIA

SUBSPACE ANALYSIS

Embedding words in a vector space has been a longstanding practice in the natural

language processing (NLP) research community. Algorithms, such as Google word2vec [126]

or Glove [127], compute the embedding based on large volumes of training articles and the

resulting vector space is assumed to encode their semantic relationships. The most notable

examples are analogy pairs, such as (king:queen) and (man:woman), where in the appro-

priate vector space one finds (king + woman - man) ≈ queen [128]. In general, encoding

words or even paragraphs into intermediate vector representations provides the foundation

for a range of different analysis approaches and has been successfully adopted for various

applications in NLP. Despite its central importance to the field and wide-scale adoption as

a technique, the word embedding space remains opaque to most NLP researchers. Most

often it is used as a black box representation for subsequent tasks without an in-depth or

intuitive understanding of its structure.

In order to distinguish all the words that exist in a large corpus of text, the embedded

dimension is usually chosen to be relatively high, typically between 50 and 300 dimensions.

Understanding such a high-dimensional space is an extremely challenging task. Currently,

the most commonly used approach by NLP researchers is generating 2D embeddings using

t-SNE [59], which result in a single nonlinear projection of all words. Although t-SNE has

the ability to embed a large number of words in 2D, it is typically used only as a rough visual

representation of overall embedding quality, or to quickly validate computational results.

The problem is that due to the nonlinear nature of the embedding, the interpretation

of its 2D projection result is challenging. Furthermore, many interesting properties and

relationships, such as analogy pairs, are linear in nature and thus will inevitably be lost in

the nonlinear embedding.

According to my collaborators in NLP, measuring the analogy pair relationship is the

primary method for evaluating word embeddings. These word embedding methods claim ge-
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ometric relationships (such as the vector relationship in analogy pairs) encode the semantic

information between words. Due to a lack of other meaningful ways to compare different

word embeddings, the geometric relationships exhibited in analogy pairs have been used

to evaluate these claims [128]. Within each analogy group (e.g., a set of analogies that

fit the relationship male:female), the vector relationship is checked for every two analogy

pairs. For example, the distance between (king - man + woman) and queen is taken into

consideration for evaluating the embedding quality. The smaller these distances are, the

better quality a given word embedding is. However, many open questions remain regarding

the analogy relationships and the word embedding evaluation approach. Are there different

trends within the analogy group? Do these trends correspond to more subtle but explicit

meanings? More importantly, does evaluating word embedding quality via analogy pairs

even make sense?

In this chapter, techniques from high-dimensional data visualization are adopted to

address these open questions, which provide new insights for NLP researchers. Many

properties of interest to the NLP community, such as word analogies, correspond to lin-

ear relationships in the ambient space. To highlight these linear relationships, subspace

analysis (introduced in Chapter 4) that identifies informative 2D projection is adopted.

A novel projection-finding approach that is tailored for the word analogy relationship is

also introduced. Compared to the widely used dimensionality reduction strategies in NLP

such as t-SNE, the proposed approach better captures many innate linear relationships

(e.g., trends within a given analogy group) that are crucial for understanding the analogy

relationships in the word embedding space. In order to build a system that provides new

capabilities while being user-friendly for NLP researchers, I have worked closely with domain

experts and go through several iterations of the design-implement-feedback loop to identify

the challenges as well as the right visualization approaches to address them.

6.1 High-Dimensional Word Embedding Space

In this section, background knowledge that is necessary to understand the application

domain is discussed.

6.1.1 Word Embedding Algorithm

Word embedding techniques are used to build an intermediate representation of text

for subsequent analysis in natural language processing (NLP). Recent approaches, such as

word2Vec [126] and Glove [127], have found widespread adoption. The general idea behind

word embeddings can be described as follows (see Figure 6.1): Assume we have a dictionary
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Summary Statistic of Word Relationships 

W
o
rd

s

the

the cat

cat

dog

like

I

learn

do

flying

dog like I learn do flying ... ...

... ...

Matrix factorization 
conceptually similar 

to the SVD

Large Corpus of Text

the

cat

dog

like

I

learn

... 

[0.076, -0.135, 0.321, 0.145, .... ]

[0.276, 0.035, -0.530, 0.373, .... ]

[0.164, -0.935, 0.321, 0.186, .... ]

[0.376, 0.135, 0.321, -0.745, .... ]

[0.969, -0.135, 0.321, 0.701, .... ]

[-0.012, -0.473, 0.773, 0.013, .... ]

... 

Vector Representation of the Words

1

2

3

Figure 6.1: An illustration of the word embedding process: The input of the algorithm is a
large corpus of text that is summarized in an n×n matrix M that encodes the relationships
between n unique words. Typically, M(i, j) records a statistical relationship, such as the
probability of joint occurrence between wordi and wordj . Subsequently, M is factorized, and
the coordinates in the d� n most significant components define the vector representation
of words.

of n words {w1, . . . , wn}. One can use the statistical relationships from large text corpora to

infer dense vector representations for words, such that words that are semantically connected

will reside in proximity to each other. Typically, the resulting vector space has a much lower

degree of freedom, i.e., d � n. Let us denote the vector representations for the words as

wi ∈ Rd.

More interestingly, with methods such as word2Vec [129] and Glove [127], the embedded

words exhibit some surprising algebraic properties, the most notable example being the

king:queen, man:woman analogy pairs, where king - man + woman is approximately equal

to queen (illustrated in Figure 6.2).

Computing word embeddings involves complex statistical and machine learning models

beyond the scope of this dissertation. For completeness, I provide a simplified view (based

on the word2Vec computation procedure) and refer interested readers to the relevant pub-

lications for details [129, 127]. The input to the algorithm is a large corpus of text (e.g., all

articles in Wikipedia). The first step is to summarize all pairwise word relationships from
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Figure 6.2: In the word embedding space, the analogy pairs exhibit interesting algebraic
relationships.

the articles into an n × n matrix M describing n unique words. An entry M(i, j) records

the statistical relationship between wordi and wordj . Intuitively, one might consider the

frequency of wordi and wordj to appear in the same sentence, although the real model

is more complex. More commonly, the pairwise mutual information (PMI) statistic is

used. Subsequently, M is factorized in a step conceptually similar to a Singular Value

Decomposition (SVD), and the coordinates corresponding to the d largest components are

used to represent words.

Understanding high-dimensional spaces has always been a challenging task. In order to

distinguish the large amount of vocabulary that exists in the text corpora, words are usually

embedded in a rather high dimensional space (50-300), making direct visual exploration

very challenging. Furthermore, word embeddings are typically used as an intermediate

representation for later analysis. Therefore, users often treat word embeddings as a black

box representation, without an in-depth understanding of the relationships among the words

in high-dimensional space.

6.1.2 Word Embedding Visualization

Currently, the t-SNE [59], a nonlinear dimension reduction technique, is by far the most

common approach for visualizing word embeddings. The t-SNE generates a 2D embedding

for a given high-dimensional data. It is ideal for a quick validation of the computation or

to obtain a rough estimation of the embedding structure. However, due to the nonlinear

nature of the method, many important linear relationships, such as the example illustrated

in Figure 6.2, are inevitably lost. From visual analysis aspect, the relationships between

analogy pairs relationships can be more effectively visualized using linear projections (e.g.,

principal component analysis) in comparison to nonlinear approaches such as t-SNE. As
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capital:country city:state

Figure 6.3: Nonlinear embedding methods such as t-SNE are poorly suited for visualizing
the relationship of analogy pairs. The orange and blue labels correspond to the two words
in a given analogy. The lines indicate the analogy pairs.

illustrated in Figure 6.3, in which the orange and blue colors indicate the two entities

of a given analogy and the link connects the words belonging to the same analogy, the

trend of analogy pair is totally lost in the t-SNE embedding, while the PCA preserves the

apparent relationships. Furthermore, the nonlinear nature makes it impossible to interpret

either distances or axis which severely limits the ability to derive insights or meaningful

conclusions from the plot. Finally, putting large numbers of points in a 2D visualization can

be counter-intuitive. Figure 6.4 illustrates an example visualization with t-SNE, where all

the words of interest are shown together in the same visualization. As it can be observed,

the individual words are cluttered in the visualization, which provides little information

beyond a general sense of colors and neighborhoods.

Despite these limitations, as suggested by the domain scientists, t-SNE is still considered

as the de facto standard for visualizing word embeddings (e.g., used for methods comparison

in the work [130]). According to the collaborators, no dedicated visualization system exists
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Figure 6.4: An example of t-SNE visualization [2] with different semantic groups indicated
by different colored symbols. The t-SNE embedding can provide a rough estimation of the
overall distribution of words. However, the visualization is cluttered by individual words,
and the words belonging to different semantic groups can be heavily intermingled.

for visualizing word embedding spaces. In this work, I aim to bridge this gap by providing an

effective tool specifically designed for visualizing analogy relationships in word embeddings.

6.1.3 Application Goals

The ultimate design goal of the proposed framework is to build a usable and extensible

system that can aid the domain scientists in gaining new insights for the word embedding

space, and answering specific questions they encounter in their research. The proposed

system aims at understanding analogy relationships due to their importance in evaluating

different word embedding methods.

In particular, through the interactions with collaborators I have identified three visu-

alization goals revolving around understanding analogy relationships: 1) Identify trends

in analogy relationships; 2) Interpret the orientation of the analogy vector direction; 3)

Compare the behavior of analogy pairs in different word embedding methods.

These goals aim to answer the following questions. Are there different trends within a

given analogy group? Do these trends correspond to more subtle but explicit meanings?

Does evaluating word embedding quality via analogy pairs even make sense? Answering

these questions are essential for an in-depth understanding of the analogy relationships in

high-dimensional space, which, according to my collaborator, is not available before. Fi-

nally, visualization techniques can generate visual summaries to provide useful benchmarks
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for domain scientists interested in a direct comparison of the current plethora of word

embedding methods.

6.2 Subspace Analysis for Understanding Analogy Pairs

As discussed previously, obtaining an in-depth understanding of analogy pairs’ behav-

iors is an essential part of studying a word embedding space. In this research, a linear

projection based visualization component is included for studying analogy pairs (showed in

Figure 6.5(a) ). The linear PCA projection helps the user identify the overall trend in each

analogy group. However, relationships within each analogy group is not always coherent

and separate trends exist within each analogy group (e.g., noun:plural-noun). The domain

experts are interested in finding these sub-trends (Design Goal 1) that can be emphasized

using multiple, complementary linear projections.

In order to address these challenges, the subspace analysis (see details in Section 4),

that automatically detect multiple linear subspaces within a given high-dimensional data,

is adopted. Subspace clustering methods represent a class of techniques originally developed

by the machine learning community. It decomposes the high-dimensional domain into

multiple subsets each of which is well contained in a lower dimensional subspace.

For a given analogy group, subspace clustering is applied. And for each of the cluster,

an optimal linear projection is generated that best preserves the point relationships within

Analogy Pair Projection Analogy Vectors  Cosine Distance Histogram(a) (b)

Subspace Graph

Figure 6.5: Analogy Pairs subsystem subsystem user interface. (a) Analogy Pair Projec-
tion produces linear projections of analogy groups. (b) Analogy Vector Cosine Distance
Histogram captures the overall coherency of the analogy vector orientations.
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the corresponding cluster. To ease the navigation between these selected linear projec-

tions, a navigation graph (showed as an inset on the top left of Figure 6.5(a), where each

node corresponding to a linear projection) is added to help users navigate among these

projections.

6.3 Analogy Orientation Similarity Histogram

Beside identify the trends, domain experts are interested in the orientation of the analogy

vector (Design Goal 2) constructed as the vector difference of the two words in an analogy

(e.g., man:woman). In particular, according to the assumption of the word embedding

algorithms [128], the analogy vector formed by similar analogy pairs should have similar

orientations (i.e., smaller cosine distance). However, to the best of my knowledge, there is

no prior work that investigates the distribution of vector orientations in detail, let alone

interpret the differences in the orientation of the analogy vectors.

To facilitate such inquiry, histogram of all pairwise cosine distance between analogy

vector orientations (see Figure 6.5(b) ) is added to the system. This conveys how coherently

each analogy group is oriented and whether there may exist additional substructures. In

the histogram, the horizontal axis corresponding to the cosine distance, and the larger value

is on the right side.

6.4 Projection-Finding Scheme for Analogy Relationship

As demonstrated in the previous section, linear projection approaches, such as PCA and

subspace analysis, are very suitable for capturing the linear relationships among the analogy

groups. However, a fundamental limitation exists. When generating a projection, all these

methods only take the individual words into consideration, without any input or knowledge

from analogy pairs relationship. So, strictly speaking, they are not really projecting the

analogy pairs.

Therefore, a more desirable method should take the analogy pair information into

consideration. In addition, since there is infinite way to project, a more interesting and

challenging question is: What is the “best” projection direction for highlighting the analogy

relationship?

To address these challenges, in this work, a novel projection method is introduced that

tailored specifically for finding the best view to showcase the similarity between analogy

pairs. The core idea of this approach is originated from the linear separability of the two

concepts in an analogy relationship. As illustrated in Figure 6.6, if a hyperplane is optimized

to maximum the separation between the two concepts in an analogy, the normal direction
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Analogy Pair, 
e.g. man:woman

The hyperplane that separate the two 
concepts computed from linear SVM

Type A Projection

Type B Projection

Figure 6.6: The domain specific projection finding scheme. The two projection directions
complement each other in aid the interpretation of analogy pair coherence.

likely will capture the most dominant direction among the analogy vector orientations. Such

a hyperplane and it normal can be computed from a linear support vector machine [131].

After finding the normal direction, one projection basis is obtained, and it captures the

dominant direction of the analogy. To better showcase the analogy relationship, identify the

variation in the analogy group is important. Here, PCA can be used to find the maximum

variance in one of the analogy concept to form the second basis. With these two bases, 2D

projection along the “side” of analogy pairs can be found (Type A projection in Figure 6.6).

To provide complementary information that highlights the divergence of analogy vector

orientations, the pairs can be projected onto the hyperplane (Type B projection in Fig-

ure 6.6). The analogy pairs that is much longer than the rest are likely the outliers (very

different analogy vector orientation compared to the rest).

As illustrated in Figure 6.7, for the man:woman analogy group, PCA (Figure 6.7(a))

can not find the linear projection that highlight the coherency among the analogy pairs.

By utilizing the projection finding scheme that tailored for showcase the analogy vector

directions, the analogy relationship is easily captured for man:woman. The outlier, police-

man:policewoman, are also easily revealed (Figure 6.7(c) (d)).

6.5 Implementation

As illustrated in Figure 6.8, the system is split into server and client. The server handles

complex computation while the client manages the user interface. The web-based client

allows me to continuously share the latest developments with my collaborators, which is
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Histogram of distance between 
the words and the SVM hyperpanle
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PCA
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Figure 6.7: The domain specific projection-finding scheme. The two projections direction
complement each other in aid the interpretation of analogy pair coherence.

crucial for a tight design-implement-feedback loop. The communication between the web

client and the server is accomplished by a set of RESTful APIs. To achieve a good trade-off

between implementation complexity and performance, the server is implemented in Python,

and the computation methods are handled by efficient libraries (e.g., scikit-learn [132]) or

python binding of native C/C++ code. The client graphical interface is implemented in

JavaScript and HTML, d3.js [133] is adopted for handling graphical elements. The web-

based visualization system is built iteratively following the visualization goals (discussed in

Section 6.1.3), and constant feedbacks from the collaborators.

According to the domain scientists, the larger the input text corpus is, the better the

quality of the embedding will be. Therefore, all the experiments are carried out with the
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Client

Server

MongoDB Database

Server RESTful API

Clusterings Dynamic ProjectionVector Lookup

scikit-learn, C++ binding, etc.

HTML d3.jsJavascript cola.js

Word Embedding Summary
Subsystem

Analogy Pairs 
Subsystem

Figure 6.8: The overview of system architecture. The entire system is split into server
and client, where the server handles complex computation tasks and the client handles user
interaction and display.

established and widely used pre-trained datasets (word2Vec googleNews dataset with 3

million words and phrases, and Glove Common Crawl dataset with 2.2 million vocabulary).

These datasets typically contain millions of words, thus I have incorporated the MongoDB

database [134] on the server to store and access the pre-trained data. With database in

place to fetch the word vectors instantly, combined with efficient implementation of the

computation algorithms, all operations can be carried out interactively on the full-scale

300-dimensional pre-trained word embedding spaces.

6.6 Application Results and Evaluation

In this section, the proposed system is tested to address the domain specific questions

and providing domain experts with new insights. The dataset used to carry out this study

is one of the standard analogy pairs test datasets used in various NLP research. In this

dataset, analogies are categorized into multiple analogy groups, each group corresponding

to one analogy type, such as, country:capital, verb:past-tense-verb, singular:plural, etc. In

all the examples, the 300-dimensional version of pre-trained datasets (Glove or Word2Vec)

are used.

6.6.1 Trends in an Analogy Group

The relationships between analogy pairs is essential for studying the properties of the

word embedding space. In the following examples, the analogy pairs related questions can

be addressed by utilizing different projection-finding methods.

First, the domain scientists are interested in identifying trends within each analogy

group (Section 6.1.3). In the proposed system, by utilizing subspace analysis on the analogy
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group, different trends (each corresponding to a linear subspace), in which similar analogy

pairs reside, can be uncovered, Compared to clustering method such as k-Means++ [135],

in which pairwise distances are directly used for clustering, subspace clustering identifies

groups of point that share similar lower-dimensional subspace independent of the euclidean

distance between them.

As illustrated in Figure 6.9(a), k-Means++ clustering will generally group close-by

words in term of semantics, but the subspace clustering (Figure 6.9(b) ) instead groups

related analogy pairs that share similar trends. Instead of relying only on the overall linear

projection, multiple linear projections each focusing on a localized trend within the analogy

group are presented, allowing the user to view the relationships from multiple perspectives.

As showed in Figure 6.9(c), the opacity of the analogy pairs corresponding how well the

distance between the two words in the analogy is preserved. The distance between words

in the pink cluster are better preserved by the current projection compared to the rest of

the words in this analogy group. In addition, the transitions between linear projections

are handled by dynamic projection, where a series of intermediate linear projections are

generated to create a smooth and meaningful transition for better tracking of changes.

In Figure 6.10(d)(e)(f), the adj:comparative analogy group is showed. Figure 6.10(d)

illustrates the overall trend of the analogy group as captured by PCA . With the help of

the system, the domain scientists are able to view the analogy relationships from multiple

perspectives, where each highlights a localized pattern that otherwise will be suppressed by

the dominant overall trend.

6.6.2 Not All Analogies Are Created Equally

Furthermore, that different types of analogy groups can have very different behaviors

regarding their coherency. In Figure 6.9 and Figure 6.10, the subspace can highlight trends

of analogy pairs. However, exceptions do exist. As illustrated in Figure 6.11(a), (b), (c), the

subspace clusters are identified in each of the analogy groups. The dotted circles are added

to the figure to highlight cluster patterns. In Figure 6.11(a), country:nationality, closely

related analogy pairs are grouped into the same cluster (e.g., Scandinavian countries and

capitals). In Figure 6.11(b), currency:country, the two concepts in the analogy are distinct,

so when applying subspace clustering, currencies and countries form their own subspaces.

In other words, subspace clustering identifies the stronger linear trends in the currencies

and countries, instead of analogy pairs. In Figure 6.11(c), as showed in the overall PCA

linear projection, the singular:plural analogy group contains words that have very different

concepts (animal:animals vs. fruit:fruits), therefore, when applying subspace clustering,
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K-Means++ Clustering (a) Subspace Clustering (b)

Focus on pink subspace (d)

Capital:Country

PCA Projection View (c)

Oslo : Norway

Helsinki : Finland

Stockholm : Sewden

Figure 6.9: Subspace clustering helps identify different trends in an analogy group.
(a) k-Means++ clustering result, where close related words are grouped. (b) Subspace
clustering partitions analogy pairs based on their analogy relationship’s trends. (c) The
linear projection that best preserves one of the trends (pink subspace). In (c), the distortion
based opacity encoding is enabled, in which the less well-preserved analogy relationship
become more transparent.

animal and fruit words are grouped into different subspaces, not necessarily due to the

pairs have very similar orientation, but because the differences between concepts have a

stronger influence on the subspace distance. By comparing the histogram in Figure 6.11(d),

(e), (f), we can see in Figure 6.11 (d), country:nationality is the group with the most

coherent analogy vector orientations. In Figure 6.11 (f), singular:plural corresponds most

analogy pairs are quite different orientation. The currency:country (see Figure 6.11 (e)), is

somewhere in-between.
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PCA Projection Focus on red subspace
(a) (b)

Focus on pink subspace (c)

adj:comparative

Figure 6.10: In (a)(b)(c), the adj:comparative analogy group is illustrated. (a) shows the
overall trend captured by PCA. In (b), the projection focuses on the red subspace while
(c) explores the pink subspace. With the help of the tool, the domain scientists are able to
view the analogy relationships from multiple perspectives that otherwise will be suppressed
by the dominant overall trend.

Therefore, if algebraic vector relationships are used in analogy groups as the quality

measure (as suggested in [128]), then applying it to different kinds of analogies produces

quite different errors estimation. However, the differences are not necessarily due to the

embedding quality but due to the innate differences between different analogies, which can

be easily observed in the visualization. The collaborators have indicated that the differences

between analogy groups have not be discussed in existing NLP literatures, even though such

an observation may have a significant impact on how one should approach different analogy

groups.
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(a) (b) (c)

(d) (e) (f)

singular:pluralcurrency:countrycountry:nationality

Figure 6.11: Different types of analogies can lead to very different behaviors of analogy
pairs. In (a), (b), (c), the subspace clusters are identified in each of the analogy groups.
The dotted circles are added to highlight cluster patterns. In (a), closely related analogy
pairs are group into the same cluster. In (b), currency:country, the two concepts in the
analogy are distinct, so the subspace clustering focused on the linear trends within the
currencies and countries, instead of among the analogy pairs. In (c), as showed in the
overall PCA linear projection, the singular:plural analogy group contains words that have
very different concepts (animal, fruit, etc.), therefore, analogy pairs are grouped into clusters
not necessarily because they share a very similar linear subspace, but due to the larger
distances between these different concepts have a stronger influence. The histogram in (d),
(e), (f) confirms the observation.

6.6.3 Word Embedding Methods Comparison

The histogram of the pairwise cosine distance provides a summary of the orientation

coherency of the analogy vectors. Therefore, as illustrated in Figure 6.12, it can be used to

compare the behavior of different word embedding methods. Based on the histogram, we

can see the word2Vec perform better for the currency:country analogy group, while Glove

perform better for the nationality:country. But, on average, both methods perform quite

similarly.

6.6.4 Expert Evaluation

The system is designed based on the constant feedback from domain scientists. In the

beginning of the study, the focus is on designing a better alternative for t-SNE to highlight

linear relationships. However, as the collaboration deepened, the importance of the analogy

relationships and how they connect to the evaluation of the word embedding quality lead
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Capitial:Country Currency:Country Nationality:Country Male:Female Verb:Singular Form

Word2Vec

Figure 6.12: Comparison between word2Vec and Glove regarding the pair-wise analogy
vector cosine distance distributions.

to the development of a tool that focuses on visualizing analogy relationships. Through

multiple designs iterations, the visualization goals are identified and achieved.

First, by utilizing the proposed tool, the domain scientists find similar concepts can

form subspaces in the word embedding space (see Figure 6.9). The subspace clustering

helps the user obtain multiple projections that highlight different trends within each anal-

ogy group. Moreover, the domain scientists have learned from the histogram of pairwise

cosine distance that the orientation variations of some analogy groups are unexpected

high compared to popular belief, while other analogy groups show relatively coherent

orientations. Such an observation leads to a very important finding: the type of analogy will

greatly impact the coherency of the analogy relationships, not all analogy relationships are

created equally! Existing evaluation approaches for word embedding make the assumption

that all types of analogy relationships should be preserved. However, based on extensive

exploration via the proposed tool, the domain scientists conclude that for relationships such

as noun:plural-noun, where the semantic difference within an analogy (cat vs. cats) is small

and the semantic difference among the analogy pairs (cat:cats vs. apple:apples) are big

(see Figure 6.11), enforcing the relationship such as “cat - cats + apples = apple” may

not make a lot of sense. In other words, the difference in analogy groups should be taken

into consideration when using them to measure word embedding quality. Instead of blindly

using all types of analogy relationships to evaluate the word embedding, an examination on

how to select the “right” analogy relationships is necessary. Finally, the domain scientists

indicate that the visualization approach provides a refreshing new perspective for comparing

different embedding via visual encoding and summary.
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STRUCTURAL SUMMARY OF THE

SPACE OF 2D PROJECTIONS



CHAPTER 7

GRASSMANNIAN ATLAS

The focus thus far in this dissertation has been the identification of a selected set of 2D

projections. However, by studying the space of all 2D projections as a whole, new insights

can be gained.

Among related works, approaches to find (a selection of) “interesting” projections based

on one or multiple metrics have received significant attention. A commonly adopted strategy

is described as follows: a large number of different candidate projections can be created by,

for example, exploring all possible axis-aligned projections [107, 16] or through random

samplings [111, 116]. The candidate projections can then be ranked according to some

user-defined quality metrics [136, 43, 137, 1, 34]. In the end, a collection of top ranked

projections is presented to the user. This approach has been successful in finding small

sets of meaningful projections, but it has some drawbacks. First, except for very restricted

cases (i.e., axis-aligned projections of moderate dimension), it is not feasible to explore all

possible projections and it is unclear how well a given set of candidates samples such a space.

Second, using only a given quality metric, it is difficult to compare different projections

and thus determine which are potentially redundant and which represent fundamentally

different aspects of the data. Third, the ranked results rely completely on the intrinsic

properties of the metric itself, and it is not straightforward to analyze the effect of different

metrics. For example, some metrics may naturally emphasize multiple good projections,

each of which preserves certain high-dimensional relationships in some subset of the data

but distorts the others; whereas some other metrics might be more global and tend to

highlight all relationships equally well (or badly). Finally, despite the many metrics that

have been introduced, so far little effort has been spent on analyzing the metrics themselves,

on comparing their fundamental properties (as opposed to their results), or using such

information to guide the selection of projections.

To address these challenges, a general framework [30], referred to as the Grassmannian

Atlas, is introduced. The Grassmannian Atlas captures the global structural variation of

a quality metric within the space of all linear projections. The atlas exploits the fact
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that the set of all linear projections forms a manifold called the Grassmann manifold (or

Grassmannian) [25] with a well-defined geodesic distance metric and of known dimensions

(see Section 2.3 for details). The candidate projections are obtained by uniformly sampling

on this manifold, expressing a given quality metric as a function defined on this manifold and

using tools from scalar field topology to extract its global structure. Furthermore, the con-

cept of topological spines introduced in [26] is adopted to serve as an intuitive interface for

users to explore the space of all projections according to a given quality metric. Topological

spines use an easily accessible terrain metaphor that naturally groups different projections

around local optima of the metric and highlights the relationships among different groups,

i.e., how different (in value) and how far apart (on the Grassmannian) their corresponding

optima are. Finally, the topological structure provides new insights into the behavior of

metrics and an intuitive approach to compare metrics. For example, it is easy to determine

which metrics tend to highlight different complementary projections or which require more

or less candidate projections to be reliable.

7.1 Overview of the Computation Pipeline

As mentioned above, the Grassmannian Atlas is designed to provide a more intuitive

and reliable approach to select a set of 2D linear projections for visualization of a given

high-dimensional data. The challenge is that there exist an infinite number of possible

projections, and the top ranked ones according to some quality measure may not be

the most informative ones. In particular, similar projections are likely to have similar

quality measures. Consequently, a cluster of very similar projections will be chosen over a

potentially very different and more informative projection with slightly lower ranking.

Instead, this research select a set of locally optimal projections as representatives based

on computing the high-dimensional topological structure of the chosen quality measure. Fig-

ure 7.1 provides an overview of the approach. First, I randomly sample a (large) set of linear

projections represented as linear subspaces. A neighborhood graph can then be computed

on these samples to obtain a discrete approximation of the Grassmannian manifold, which

defines the space of all linear projections (see Section 2.3). I then evaluate the chosen quality

measure on the Grassmannian and compute its topological spine (Section 7.3). The local

maxima of the topological spine then indicate locally optimal projections (with respect to

the given measure), i.e., those that cannot be improved with incremental changes. Finally,

the topological spines also serve as a convenient and intuitive interface to navigate between

different projections.
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Figure 7.1: First row: the three steps (marked with different colors) for constructing the
Grassmannian Atlas. Bottom row: examine the space of linear projections involving a 3D
example. For illustration purposes, the left panel displays point cloud samples representing
projections rather than subspaces as the Gassmannian has no intuitive embedding.

7.2 Sampling the Grassmannian

I model the space of all linear projections based on a Grassmannian that parameterizes

all 2D linear subspaces of a high-dimensional dataset, and provide a sampling strategy to

approximate the Grassmannian in any dimension.

7.2.1 Uniform Sampling

To obtain an approximation of the Grassmannian Gr(2, n), I generate a discrete point

sample of the manifold and construct a neighborhood graph based upon the geodesic

distances on the manifold. Ideally, the sample should be uniformly random and dense

to adequately capture the structure of the manifold, as well as the structure of a reasonable

function defined on the manifold. First, how to construct an approximately uniform

sampling of a given size is discussed. Later, experiments for understanding the relationships

among input data dimension, sample size, and sample density, are provided. The sampling

quality is evaluated in Section 7.6.

A random sample on the Grassmannian Gr(2, n) can be generated by constructing

uniformly distributed random rotation matrices [138]. More specifically, the QR decom-

position [139] of a Gaussian random matrix S (i.e., a matrix that contains random numbers

with a Gaussian distribution) is used to compute a random rotation matrix T , that is,

T = Q · diag(sign(diag(R))) where S = QR. A random sample on the Grassmannian

therefore corresponds to a 2D subspace generated by applying a random rotation matrix

to a pair of standard basis in Rn. To ensure the set of rotation matrices is approximately
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uniformly distributed, resample can be applied to the initial points using the k-means++

seed point initialization algorithm [135], which maximizes the spread of points by selecting

points away from already selected samples. Finally, a neighborhood graph is constructed

connecting the sampled points using geodesics. Since the sample is approximately uniform,

a k-nearest neighbor graph (kNN) is sufficient (with an appropriately chosen k). Such

a graph is a discrete approximation of Gr(2, n) that supports the subsequent topological

analysis.

7.2.2 Sampling Experiments

In practice, for a given data dimension n, the choice of the number of samples is crucial

for reliable analysis of the data. To this end, I study the relationships among the number

of samples (m), the data dimension (n), and the sampling density defined by the average

nearest neighbor distance (dann). In Figure 7.2(a), for a fixed m = 1500, I vary the data

dimension n where 3 ≤ n ≤ 10, and compute dann. dann increases as n grows exponentially

(notice that x-axis is log-scale), indicating increasing sparsity in higher dimensions. In

Figure 7.2(b), for a fixed n (4 ≤ n ≤ 7), dann decreases with the exponential increase of

m (notice that the x-axis is log-scale). Finally in Figure 7.2(c), I illustrate that for an

approximately fixed dann ≈ 0.3, the required number of samples m increases exponentially

with the number of dimensions n (notice that the y-axis is log-scale).
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Figure 7.2: Sampling experiments. Let m be the sample size, dann be the average nearest
neighbor distance, and n be the data dimension. (a) For a fixed m = 1500, dann increases
with an exponential increase of n (x-axis, log-scale). (b) For a fixed n (4 ≤ n ≤ 7), dann
(y-axis) decreases with an exponential increase of m (x-axis, log-scale). (c) To maintain a
fixed density dann ≈ 0.3, m (y-axis, log-scale) scales exponentially with n (x-axis).
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7.3 Quality Measures

The proposed framework applies to any quality measure; in this work, I focus on three

categories: scagnostics [1, 18], projection pursuit indices [140, 141], and the measures

derived from objective functions of dimensionality reduction methods [31].

The graph-theoretic scagnostics comprises a set of nine measures describing the shape,

trend, and density of points from linear projections: outlying, skewed, sparse, clumpy,

striated, convex, skinny, stringy, and monotonic. These measures help to automatically

highlight interesting or unusual scatterplots from a scatterplot matrix. Scagnostics com-

putation relies on graph-theoretic measures such as the convex hull, alpha hull, and min-

imal spanning tree of the points. Take the skinny measure for example, cskinny = 1 −√
4πarea(A)/perimeter(A), where A indicates an alpha hull of the points in the projection.

Projection pursuit indices are quality measures developed on the basis of the original

projection pursuit approach [9] to capture various features in a projection. In particular,

I include gini, entropy [141] (highlighting class separation), central mass, and hole [140]

measures in this study. Finally, the objective functions of dimensionality reduction methods

are also used for identifying interesting projections. Linear Discriminant Analysis (LDA)

can be adopted to measure the amount of class separation. Stress, which is the objective

function in the distance scaling version of Multidimensional Scaling (MDS), measures the

quality of distance preservation. Let dij be the distance between a pair of points i, j in Rn

and d̂ij be the corresponding distance in Rk, where k < n. Stress is defined as
∑

i,j(dij −

d̂ij)
2/
∑

i,j d
2
ij [142].

Given an approximation of the Grassmannian, I consider various quality measures of

interest as scalar functions on the Grassmannian, and calculate their values on all the

sampled locations.

7.4 Extract Topological Structures

Given the list of subspace (samples) with the corresponding quality values, the tradition

approach simply selects the highest ranking projections and presents them to the user.

However, as discussed above, some of these projections may be similar and thus redundant.

Consider the 1D example of Figure 7.3(a). The two highest ranking samples are close to-

gether, i.e., represent a very similar projection, but the second peak is ignored, even though

in practice it may provide a very different projection and thus likely more information.

Treating the samples as individual points, these relationships between subspaces are difficult

to consider. Exploiting the underlying manifold structure, however, leads to an intuitive

definition of locally optimal subspace. Given both the samples and their neighborhood
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Figure 7.3: Selecting projections based purely on the ranking of a quality measure, (a)
fails to identify structurally distinct projections as those obtained via topological analysis
(b).

relations, it is natural to consider only those subspaces that have no neighbor with a higher

metric value. Intuitively, we prefer projections where no small adjustment could lead to a

higher quality value. Such a tendency naturally leads to the concepts of topology and in

particular the Morse complex.

7.4.1 Morse Complex and Persistence

I use the topological notions of Morse complex to identify local maxima of a function

and persistence to quantify their robustness.

Given an Morse function defined on a smooth manifold, f : M→ R, An integral line of

f is a path in M whose tangent vector agrees with the gradient of f at each point along

the path. An integral line starts at a local minimum and ends at a local maximum of f .

Descending manifolds (surrounding local maxima) are constructed as clusters of integral

lines that have common destinations. The descending manifolds form a cell complex that

partitions M, referred to as the Morse complex.

In the context of this research, M is the Grassmannian, a smooth manifold without a

boundary, and f is a quality measure of interest. We identify local maxima of f based on the

Morse complex, and they correspond to structurally distinct regions within the landscape

of f . To further quantify the robustness of a local maximum, the notion of topological

persistence is used. The persistence of a local maximum is defined to be the minimum

amount of perturbation to the function that removes it. In Figure 7.3, for example, the

right peak is less persistent than the left peak, since it can be removed with a nearby critical
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point (e.g., a local minimum) with a smaller amount of perturbation. I use the discrete

algorithm of [143] to approximate the Morse complex of a measure, given a sampling and

neighborhood graph as discussed in Section 2.3.

7.4.2 Topological Spines

The Morse complex provides a structural summary of the topology of a function, and

is well defined in any dimension, but it is not easy to visualize. Instead, the concept of

topological spines [26] is used to visualize both the space of projections and an intuitive

interface for users to select and explore various projections (see Figure 7.4)

The topological spine adapts a terrain metaphor, as shown in Figure 7.4, that con-

nects local maxima whose corresponding descending manifolds have shared boundaries.

Intuitively, these connections can be interpreted as the ridge-lines between neighboring

peaks of a terrain. The topological spine uses two parameters to simplify its structure.

First, persistence is used to remove noise and artifacts to construct a simplified dual

complex. Second, a variation threshold is provided to determine which of the remaining

connections should be considered “ridge-like”, and only those above the threshold are

visualized. Furthermore, the size of each cell in the Morse complex, i.e., the number of

samples it contains, is encoded by the width of the topological spine. The persistence plot

(see Figure 7.4) is essential for understanding the distribution of robust features in the

function: a long flat plateau indicates the existence of multiple robust peaks that are good

candidates for selection, whereas a descending slope suggests excessive noise and the lack

of robust structures.

SaddleMaxima

Persistence Plot

Figure 7.4: Multiscale topological spine representations. The persistence plots are shown
on the left: the x-axis corresponds to the persistence threshold, and the y-axis is the number
of current cells in the simplification. The long plateau in the persistence plot (bottom)
corresponds to a stable topological structure.
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Apart from the automatic selection of locally optimal projections, the proposed system

also allows users to interactively explore the different local maxima using the topological

spine as a selection interface. In particular, the system allows selection of the simplification

(persistence) levels that automatically updates the spine and provide dynamic transitions

between maxima/projections. The interface consists of two linked views, the topological

spine panel and the dynamic projection panel. The former displays the topological spine of

the chosen quality measure at the selected persistence set directly via the embedded persis-

tence plot (see Figure 7.4). The projection panel displays the dataset using the currently

selected linear projection (local maxima). To better understand the relationships between

projections I use the dynamic projection approach [116] to create animated transitions

between projections by displaying a set of intermediate linear projections.

7.4.3 Computation Complexity

Since the sampling of Grassmannian Gr(2, n) and the construction of neighborhood

graphs are independent from the actual dataset as well as the quality measures, the sampling

process need to be computed for each dimension n only once. Let m be the number

of data points, n the number of data dimensions, and k the number of samples on the

Grassmannian. Evaluating the quality measures for each linear projection takes between

O(mn2) (Scagnostics with binning optimization) and O(m2n) (Stress). The algorithm

used to construct the topological spine from the samples of a given quality measure has

a complexity of O(k log k). Therefore, the overall computation complexity for a given

data with a selected quality measure is O(m2nk + k log k). The theoretical relationship

between the number of samples k and data dimension n is examined in Section 7.6. Quality

measures and their corresponding topological spines are pre-computed to support interactive

exploration. For the examples discussed in this dissertation, the computation time varies

between 2 to 30 minutes, depending on the data dimension, sample size, and the number of

quality measures. The test setup consists of a machine with Intel Core i5 2.8GHz processor

running Linux. The software framework is written in C++/Qt and compiled with GCC

4.8.

7.5 Validation with Synthetic Data

In this section, the robustness and correctness of the computation pipeline is validated

through synthetic data example. I first evaluate the sampling procedure by showing that

the proposed approach samples the Grassmannian evenly and completely. Subsequently, I
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show that the topological structure is stable for different sampling sizes and neighborhood

graphs.

7.5.1 Sampling Density and Sampling Size Parameter Validation

To reliably represent functions defined on the Grassmannian, a uniformly distributed

sample that covers the entire manifold is required. For moderate input dimensions, the

Grassmannian has comparatively low dimensions, and creating sufficient samples, especially

during offline pre-processing, is straightforward. If the data dimension becomes too large

for the available resources, the Grassmannian has been shown to be amenable to dimension

reduction, i.e., a PCA [49].

To validate the results, Figure 7.5 shows the histogram of nearest neighbor distances

and farthest neighbor distances for 10k samples from Gr(2, 5). As expected, the nearest

neighbor distances are tightly clustered, indicating a nearly uniform distribution. Similarly,

the farthest neighbor distances indicate that the entire manifold has a “diameter” of 1.4.

As the sample is random and/or re-sampled, the uniform farthest neighbor distance makes

it unlikely (though not impossible) that the manifold is not completely covered. However, a

high-quality sample of the Grassmannian does not necessarily guarantee that a given metric

defined on the Grassmannian is well sampled.

Figure 7.6 shows the persistence plots and topological spines for the two-planes dataset

(discussed in details in the next section) for different numbers of samples and different

neighborhood sizes for graph construction. All results are stable, indicating that at least

for this dataset the Grassmannian is sufficiently sampled and the proposed approach is

Pointwise farthest neighbor distance 
Pointwise nearest neighbor distance 

Figure 7.5: A histogram showing the distribution of pointwise nearest (blue) and farthest
(orange) neighbor distances for Gr(2, 5) with 10K samples.
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k-NN, k=7 k-NN, k=8 k-NN, k=9

"Outlying"

"Clumpy"

Figure 7.6: Validating the stability of topological spines by varying the number of samples
and the number of neighbors for the k-NN graph.

numerically stable. Similar parameter studies are performed for all experiments to ensure

the correctness of the results.

7.5.2 Validation with Synthetic Two-Plane Dataset

To evaluate the effectiveness of the proposed approach I analyze a synthetic dataset

containing samples from two 2D planes embedded in R3 that intersect with a 75-degree angle

(see Figure 7.7(a)). The scagnostics skinny measure (Figure 7.7(b)) identifies the head-on

projection in which both planes are skinny as the main mode and various other projections

where only a single plane is “skinny” as alternatives. The Stress measure (Figure 7.7(c))

finds only a single, stable maximum, which identifies an average projection in which both

planes are equally distorted. The projection pursuit index central mass (Figure 7.7(d)),

on the other hand identifies good projections for both planes as local maxima. These

experiments demonstrate that the Grassmannian Atlas not only is able to identify good

projections but also provides insights into the measure itself. A measure with only a single

stable maximum likely produces some globally average projection whereas multiple maxima

indicate several complementary views emphasizing different, local aspects of the data.

7.6 Application Examples

In this section, several real word data are used to demonstrate the effectiveness of the

proposed method.
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(b) (d)(c)

(a)

Scagnostics-Skinny Projection Pursuit Index-Central MassStress
(a)

plane-1

plane-2

Figure 7.7: Validate the Grassmannian Atlas framework on a synthetic two-planes dataset.
The dataset is sampled from the space illustrated in (a). In (b), the two maxima within
the topological spine correspond to the projections where one or both planes are at the
“skinniest”. In (c), the (global) stress measure captures only one interesting projection at
its global maxima. In (d), the projection pursuit index central mass measure captures two
projections where one of the two planes becomes “skinny”.

7.6.1 Word Embedding Dataset

The following study of Word2Vec dataset is a collaboration with an expert in natural

language processing (NLP). The popular Word2Vec algorithm [129] learns a vector space

representation of words by modeling the intrinsic semantics of large text corpora. It

consolidates the statistical relationships between words in an abstract high-dimensional

feature space. According to my collaborator, the analysis and visualization approach for

such a dataset is very limited. Often, the t-SNE [59] nonlinear projection algorithm is used

for visualization, but most relationships in Word2Vec are linear in nature. He suggests

a visualization tool that can produce interesting linear projections to emphasize semantic

properties in different parts of the data could lead to valuable new insights.

The complete Word2Vec dataset is obtained by running the Word2Vec algorithm on

corpora of news articles, containing 100 billion words. The dimension of the resulting

vector representations for the words is fixed at 300. The data used in the experiment is a

small subset of the Word2Vec dataset, containing 900 frequently occurring words obtained

from the Google analogy task list. This list contains pairs of words with a semantic or
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syntactic relationship between them, e.g., (queen, king) and (man, woman). Following

this, I use PCA to reduce the dimension of the word vectors to 5D in order to reduce the

sampling cost. Note that subsampling and dimension reduction are both common strategies

in NLP to limit the complexity of the input data without introducing significant errors. To

provide a context for the visualization, the 900 words are labeled with 10 categories such

as adjective, adverb, verb, and different groups of nouns (e.g., capitals and countries in

different continents, states of the US, etc.).

As shown in the quality measure comparison analysis in Section 7.7, several measures,

such as clumpy, outlying, which are more likely to identify multiple complementary pro-

jections. In addition, clumpy by definition will likely highlight cluster-like features. As

demonstrated in Figure 7.8, the clumpy measure helps capture the projections that reveals

interesting semantic relations in the analogy dataset. The largest maxima (shown on

the right) correspond to a projection that clearly separates cities and countries from all

other words and does well in separating their respective continents (e.g., orange for North

America, dark green for Europe, and blue for South America). A second projection (shown

on the left) does less well on cities and countries, but nicely separates the remaining groups of

words. My collaborator considers the left projection to be the most informative overall, yet

it does not have a very high global ranking, and it would likely be ignored in a ranking-based

approach.

A one-on-one session is carried out to obtain meaningful feedback from the collaborator.

First, a carefully prepared demo by the researcher is presented to the collaborator. Then

the collaborator is directed to experiment with the tool to explore the various measures and

projections interactively. The session is concluded by a discussion regarding the capability

and usability of the tool. My collaborator shows great interest in the capability of the

cities & countries cities & countries

family nouns: daughter, 
grandson, etc.

fruit nouns: apple, banana
adjectives, 
adverbs. 

Figure 7.8: Word2Vect dataset. The clumpy measure helps to identify the two projections
that highlight clear separation between cities and countries from the rest of the data points.
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proposed framework. He points out that the Grassmannian Atlas framework can be a

useful tool for exploring the word feature space, especially considering it does not have any

restriction on what quality measures can be adopted. For example, he suggests new mea-

sures specifically tailored towards text analysis can be designed by incorporating semantic

relationships among words. Regarding the possible challenges for using the proposed tool,

the collaborator points out the basic concept can be challenging to digest at first, since it

approaches the problem from a fundamentally different perspective (the space of all linear

projections).

7.6.2 E. coli. Dataset

The proposed approach is also applied to biological dataset. As shown in Figure 7.9,

based on the clumpy quality measure, the framework identifies multiple interesting projec-

tions for the E. coli dataset that capture meaningful biological relationships.

The data points (corresponding to different E. coli strains) in the two highlighted

projections form clear clusters that are well aligned with the localization site classification

labels (see details in [144]). The black corresponds to the cytoplasm localization site,

which comprises cytosol (the gel-like substance enclosed within the cell membrane) and the

organelles (the cell’s internal sub-structures); the purple represents inner membrane without

signal sequence; the orange contains inner membrane with uncleavable signal sequence;

the light green corresponds to outer membrane; the brown (with only 5 points) is the

outer membrane lipoprotein; and the dark green corresponds to perisplasm, a concentrated

gel-like matrix in the space between the inner cytoplasmic membrane and the bacterial outer

Outlier

Global Maximum

Local 
Maximum

Figure 7.9: The complementary projections captured by Grassmannian Atlas using the
scagnostics clumpy measure for the E. coli dataset.
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membrane. The projection at the global maxima captures clear separation between the

black, and the (light and dark) green points, separating materials from the inner membrane

to the ones from or close to the outer membrane. On the other hand, the projection at the

local maxima merges the black with the green points. Both projections group the purple

and orange points into one cluster that contains information regarding the inner membrane.

7.6.3 Housing Dataset

In this example (see Figure 7.10), a set of housing data is studied in which each entry

records certain property characteristic (14 in total), such as crime rate, median property

value, average number of rooms per dwelling, etc. of towns in Boston area. By utilizing

the proposed framework and examining the topological spine and corresponding projection

computed from the outlying measure, I am able to identify some interesting outliers which

shed light on the large socioeconomic inequality correlated with the geological separation.

As shown in the projection on the right, I am able to identify outliers that correspond

to towns with a comparatively very high crime rate. The difference is so extreme that this

outlying pattern is strongest among all the linear projection samples. By looking at one of

the local extrema (the projection on the left), we can see the average number of rooms also

are correlated with some outliers. After examining the individual data points, the outliers

corresponding to the towns that have around 8-9 average rooms per dwelling, while at the

same time the minimal number is around 3.5.

Average Number of Rooms (RM) Crime Rate (CRIM)

Figure 7.10: The different outliers captured by the Grassmannian Atlas using the
scagnostics outlying measure for the housing dataset. The outliers are highlighted by small
solid circles.
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7.7 Quality Measure Comparisons

In this section, I compare the topological structures of various metrics on different

datasets to better understand the behavior of each metric.

The Grassmannian Atlas not only helps to identify complementary projections and

summarize the structure of quality measures, but also provides an avenue for examining and

comparing high-level structures of quality measures in general. In particular, the persistence

plot encodes a number of interesting properties in a concise and intuitive manner. As

discussed in Section 7.4, the persistence plot records the number of salient local maxima

depending on the simplification threshold. In general, the most interesting feature in a

persistence plot is the number and width of stairs. Multiple stairs indicate several sets of

complementary projections, and the width encodes how stable these features are.

I compute the persistence plots for all 16 quality measures (9 scagnostics, 3 projection

pursuit indices, 4 based on objective functions of dimension reduction techniques) and

include 11 of these in Figure 7.11. For each measure I evaluate its behavior for five datasets:

(i) 2-planes synthetic dataset (3D), (ii) UCI Iris dataset (150 samples in 4D), (iii) UCI E.

coli dataset (332 samples in 6D, a subset of the original 336 samples in 8D), (iv) olive oil

dataset (572 samples in 8D), and (v) housing dataset (506 samples in 14D). The details for

each dataset can be found in the UCI machine learning repository1.

As shown in Figure 7.11, surprisingly few measures ever show more than two or three

complementary projections based on the number of wide stairs in their persistence plots, and

the stress measure captures a single robust projection in most cases. Such an observation has

important implications for ranking-based projection selection - selecting more projections

would most likely result in information redundancy.

The significant discrepancies among the topological structures of different quality mea-

sures can be explained by their formulations and design goals. The stress measure originates

from the objective function of MDS [142], and is designed to create a single embedding that

best preserves the pairwise distances. Therefore the stress measure typically produces

a single projection that is optimal on average. On the other hand, quality measures that

focus on evaluating the quality of projections based on local structure preservation typically

provide multiple, complementary projections. As shown in Figure 7.11, the clumpy, outlying

measures are some of the more effective ones for identifying complementary projections.

In general, given an appropriate quality measure, the Grassmannian Atlas can reliably

identify potentially diverse and locally optimal projections. Compared to conventional

1http://archive.ics.uci.edu/ml/
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Dataset Stress LDA Central-Mass ClumpyHole Outlying Stress-RangeMonotonic Sparse Skinny Striated

Iris 

Olive Oil 

E. coli 

2plane

Figure 7.11: Quality measures comparison by evaluating their respective persistence plots,
which provide concise summaries of the multiresolution topological structure. Only four
datasets are shown here due to space constrains.

rank-based approaches, the proposed framework summarizes the structural relationships

among projections according to the topology of the quality measure, and provides a more

reliable and locally optimal set of projections for visualization.
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CHAPTER 8

MEASURING ERRORS IN 2D

PROJECTIONS

8.1 The Deceiving Aspect of 2D Projection

The idiom “seeing is believing” was originally used to emphasize the importance of

evidence: “only physical or concrete evidence is convincing.” However, in the context of

visualization, especially among the end users of a visualization system, “seeing is believing”

can be used to convey a common mentality, in which users (mistakenly) believe the visualiza-

tion they see directly corresponds to the truthful underlying data. The deceiving aspect of

visualization is particularly relevant when the inability to “see” the high-dimensional space

directly is combined with the unavoidable information loss in generating a 2D projection of

high-dimensional data.

Take t-SNE [59] for example, which is a widely used nonlinear dimensionality reduction

(DR) method. According to a domain expert in the field of machine learning, users of

t-SNE often interpret the inconsistency (e.g., a point that does not seem to belong to its

2D neighborhood) in the projection as the noise in the data, before even considering the

inaccuracies in the visualization. However, the misplaced points are very likely introduced

by the visualization due to the inability of a 2D projection to faithfully express complex

high-dimensional relationships. Often, the notion of “seeing is believing” is so ingrained

in our subconsciousness that even expert users, who are well-aware the information loss

during the dimension reduction process, need extra help to correctly interpret information

in visualization.

8.2 Evaluate 2D Projection Through

Distortion Measures

To address the problem of misleading information in a 2D projection, effectively con-

veying the inaccuracies is essential. The inaccuracies in the projection can be evaluated

from two perspectives: first, a global measure of the absolute magnitude of the error,
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which addresses the question: Is the projection totally misleading? Second is a per-point

estimation of the error, which addresses the question: Should I trust a given point in the

projection? For the t-SNE example discussed previously, a per-point estimation of the error

will provide the user with adequate information to determine whether the inconsistency in

the projection is likely to have been introduced by the dimension reduction process.

The concept of quality assessment for projection is not new. Various quality measures

of dimensionality reduction (DR) have been proposed, primarily in the machine learning

community, for both labeled and unlabeled data. In this dissertation, these measures are

referred to as distortion measures. For labeled data, distortion measures that focus on

classification errors [145] or group memberships [146] seem to be obvious choices. For

instance, the quality of group compactness [146] measures consistency among group mem-

berships in the local neighborhood of a point, based on labeled information. For unlabeled

data, some criteria for evaluation relate pairwise distances through a direct comparison

between high- and low-dimensional space. For example, quality of distance mapping [146]

computes the correlation coefficient between the pairwise distance matrices before and

after DR. Measurements such as strain [147] and stress [142] (described in Section 8.3)

capture absolute differences between distance matrices. Other criteria do not directly

compare lengths but rather ranks of pairwise distances. Criteria such as precision and

recall [148], co-ranking [67], quality of point neighborhood preservation [146] and agreement

rate [149] focus on calculating the average number of neighbors that agree in high and

low dimensions. Such rank-based criteria are typically scale-independent in the sense that

they are invariant under linear transformations of distances. Specific measurements of

geometrical and topological distortions, due to manifold compression, stretching, gluing

and tearing, have been proposed and visualized in [150].

In this dissertation, the concept of distortion measure is extended and refined to classify

them into two categories [31]: these general measures that are applicable to various types of

projections, as well as the DR-specific measures that are applicable only to the projections

generated by a specific DR method. As pointed out by Lee et al. [67], a natural way to assess

the quality of DR is to look at the value of the objective function after optimization. This

idea is adopted in this dissertation for deriving the pointwise (local) distortion measures

from formalized objectives of DR methods. In addition, this research also introduced two

new distortion measures based on robust distance and kernel density estimate. In the next

section, a systematic discussion of the global and pointwise distortion measures is presented.
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8.3 Pointwise Distortion Measures

Pointwise (local) distortion measures provide the foundations for visualizing the inac-

curacies in 2D projections. In this section, a systematic overview of global and pointwise

distortion measures for several popular DR techniques is given. The first type of dis-

tortion measures quantifies the cost on structural transformation from high-dimensional

to low-dimensional spaces. It is derived from the particular objective function a given

DR technique is formulated to optimize; thus it is DR-dependent, as described in Section

8.3.1. The second type of distortion measures is DR-independent and focuses on computing

distance distortions, density differences or ranking discrepancies[68], applicable across DR

techniques, as described in Section 8.3.2.

The basic setting for DR is as follows: given a set of n points X = {x1, x2, ..., xn} in

Rl, find a set of points Y = {y1, ..., yn} in Rm where m � l, such that Y represents X

by preserving certain structural properties of X. For visualization purpose, m = 2, with

possible extension to m = 3. For a given DR technique, a global distortion measure assigns

a real-valued number to the pair (X,Y ), which gives an overall, coarse quality assessment,

whereas a pointwise distortion measure is a function that maps points in X to R, which

provides localized, fine quality assessment.

8.3.1 DR-Dependent Distortion Measures

Most DR techniques can be formulated as optimization problems formalized with objec-

tives. For the popular DR techniques described below, optimizing the objectives is typically

formulated as minimizing certain cost functions. A cost function incorporates a natural

quality measure that assesses how much structure, in terms of relations among data points in

high dimensions, stays consistent with the one inferred by the low-dimensional embedding;

or alternatively, how much cost is needed in transforming one to another. Such a cost

function gives rise to a natural global distortion measure E to assess the overall quality of

the DR, and its pointwise derivation leads to a local distortion measure ε : X → R that

captures how much a point contributes to the global distortion and how well it agrees with

its neighbors. Finally, the following relationship is enforced.

E =
∑
i

ε (xi)

Principle Component Analysis. PCA finds the directions of projection such that the

squared distance of the points to these directions is minimized. Let µ : Rl → Rl be a certain

projection map. PCA seeks to minimize the global cost over µ, E =
∑

i ||xi − µ(xi)||2, and

the corresponding local cost ε is defined as, ε (xi) = ||xi − µ(xi)||2.
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The map µ is defined by the orthogonal direction with respect to a hyperplane defined

by a collection of orthogonal basis {u1, u2, ..., um} (where ui · ui = 1 and ui · uj = 0 for

i 6= j). The projection x̂i := µ(xi) ∈ Rl of a given point xi ∈ X under µ could be written

as x̂i = x̄+
∑m

j=1 z
i
juj , where the mean x̄ = 1

m

∑
i xi, and zij = (xi− x̄) · uj . Now the global

cost can be written as:

E =
∑
i

||xi − x̂i||2

and the local cost:

ε (xi) = ||xi − x̂i||2

Classic Multidimensional Scaling. MDS is commonly referred to as a class of tech-

niques rather than a specific algorithm. cMDS [147], also known as Principle Coordinate

Analysis (PCoA) or Torgerson Scaling, is closely related to PCA. In cMDS, the distance is

converted to inner production dissimilarity and strain is optimized though an Eigenvalue

decomposition.

Let bij be the inner product between a pair of points xi, xj in Rl and b̂ij be the

corresponding inner product in Rm. That is, treating points as vectors, bij = xi · xj and

b̂ij = yi · yj . The relationship between distance matrix and inner product matrix can be

defined as, d2
ij = bii − 2bij + bjj , where dij corresponds to the Euclidean distance between

xi and xj . The global cost is defined to be equal to the strain, that is,

E =

∑
i,j(bij − b̂ij)2∑

i,j b
2
ij

The local cost corresponds to the pointwise strain,

ε (xi) =

∑
j(bij − b̂ij)2∑

i,j b
2
ij

Laplacian Eigenmap. The Laplacian Eigenmap [54] (LE) algorithm proceeds by first

constructing an adjacency graph on X based on either k-nearest neighbor (KNN) graph or

ε-neighborhood. If xi and xj are connected by an edge, the weight wij is either defined as

a heat kernel, that is, wij = exp (−||xi − xj ||2/t) (with diffusion parameter t), or simply

defined as wij = 1; otherwise wij = 0. LE seeks to minimize a global cost function,

E =
∑
i,j

||yi − yj ||2wij

Under appropriate constraints. The corresponding local cost is:

ε (xi) =
1

2

∑
j

||yi − yj ||2wij

Isomap. Isomap[52] is a nonlinear DR technique based on cMDS. In Isomap, the distance

between pairs of points is geodesic distances approximated by the shortest paths between
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pairs of points in a neighborhood graph. Therefore the cost function is the same as cMDS

except the Euclidean distance matrix is replaced by an approximated geodesic distance

matrix.

Locally Linear Embedding. LLE [53] represents each point (in Rl) as a weighted linear

combination of its neighbors and tries to preserve this linear relationship in the reduced

dimension Rm. It optimizes the following global cost,

E =
∑
i

||yi −
∑
j

Wijyj ||2

where Wij is the weight matrix that stores such a linear relationship. The local cost can be

written as,

ε (yi) = ||yi −
∑
j

Wijyj ||2

8.3.2 DR-Independent Distortion Measures

DR-independent criteria, on the other hand, can be applicable to a collection of DR

techniques, and are inspired by measurements of distance distortions, density differences or

ranking discrepancies. Some nonlinear DR techniques, such as LE, use constraints in their

algorithms to remove an arbitrary scsaling factor in the embedding. Points in the reduced

dimension are therefore computed under a fixed scale, which means that ranges of values

in Rl and Rm differ drastically, rendering the scale-dependent distortion measures such as

local stress, robust distance distortion and kernel density estimate distortion meaningless.

To address this issue, two types of scaling factors is used. The first one computes the ratio

between the radiuses of minimum enclosing balls [151] of the data in Rl and Rm to rescale

the embedding. The second type, which is also less sensitive to outliers, computes the ratio

of average distances to the centroid.

Kernel Density Estimate distortion. Here a novel class of distortion measures based

on a kernel density estimate (KDE) is introduced. Each of these measures (based on a

chosen kernel) quantifies differences in densities among local neighborhoods. In addition, a

multiscale version of the measure is easily attainable by varying the parameters associated

with a given kernel; thus it allows adaptive data explorations. A kernel is a non-negative

similarity measure K : Rl×Rl → R+ where more similar points have higher value. Gaussian

kernel is considered here, where K(p, x) = exp(−||p−x||2/2σ2). A KDE is a way to estimate

a continuous distribution function over Rl for a finite point set P ⊂ Rl. Specifically,

KDE P (x) =
1

|P |
∑
p∈P

K(p, x)
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The distortion function measures differences between KDE in Rl and KDE in Rm. That is,

the global KDE distortion,

K =
∑
i

|KDE X(xi)−KDE Y (yi)|

and the local KDE distortion,

k (xi) = |KDE X(xi)−KDE Y (yi)|

Stress. This distortion measure is based upon an objective function used in a distance

scaling version of MDS, referred to as stress. The stress is used to measure distance

distortions. Let dij be the distance between a pair of points i, j in Rl and d̂ij be the

corresponding distance in Rm. Global stress is defined as,

S =

∑
i,j(dij − d̂ij)2∑

i,j d
2
ij

Local stress is,

s (xi) =
1

2
·
∑

j(dij − d̂ij)2∑
i,j d

2
ij

Robust distance distortion. A distortion measure inspired by robust MDS (rMDS)

[152, 153] is introduced. It shares similarities with stress but is proved to be more robust

with respect to noise and outliers. The global robust distance distortion is defined as,

R =

∑
i,j |dij − d̂ij |∑

i,j |dij |

The local robust distance distortion is,

r (xi) =

∑
j |dij − d̂ij |∑
i,j |dij |

Co-ranking distortion. Despite not being the contribution of this research, in the software

system a rank-based, scale-independent criterion derived from co-ranking matrices [67, 68]

is included for completeness. Let dij be the distance between a pair of points xi, xj in Rl

and d̂ij be the corresponding distance between yi, yj in Rm. The rank of xj with respect to

xi is

ρij = |{k | dik ≤ dij or (dik = dij and 1 ≤ k < j ≤ N)}|

Similarly, the rank of yj with respect to yi is

γij = |{k | d̂ik ≤ d̂ij or (d̂ik = d̂ij and 1 ≤ k < j ≤ N)}|
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where | · | denotes set cardinality. The difference Rij = rij − ρij is considered rank errors.

The co-ranking matrix C is defined by

Ckl = |{(i, j) | ρij = k and γij = l}|

A DR with no errors would produce a diagonal co-ranking matrix.

In [67], a quality for dimension reduction is proposed as a sum of partial entries in the

co-ranking matrix,

Q =
1

Kn

K∑
k=1

K∑
l=1

Ckl

where K corresponds to the number of neighbors under consideration. Therefore every

co-ranking matrix C can be decomposed into a per-point permutation matrix Ci for every

point xi, with C =
∑N

i=1C
i and

Cikl = |{j | ρij = k and rij = l}|

The pointwise contributions is

Qi =
1

K

K∑
k=1

K∑
l=1

Cikl

where Q = (
∑N

i=1Qi)/N . For a given point, a larger Qi corresponds to less local distortion.

Therefore, the global co-ranking distortion is defined as Q = −Q and local co-ranking

distortion as q = −Qi.



CHAPTER 9

DISTORTION-GUIDED

STRUCTURE-DRIVEN

MANIPULATION

9.1 Interpret the Errors Via Structure-Driven

Manipulation of 2D Projections

For a given projection, the per-point distortion measures address the question of where

the inaccurate areas are. However, relying on the distortion measure alone, we still cannot

answer the question of why some of the highly distorted areas exist (i.e., why most errors

occur in a particular area). Also, ultimately, how do we obtain insights regarding the

structures of the data via explorations of their 2D projections (linear and nonlinear)? In

this research, an interactive visualization framework [31], in which the distortion measures

under dynamic setting are used as the feedback during exploration, is introduced to address

these challenges.

Visualizing pointwise distortions under the static setting illustrates the qualitative dis-

parities among different regions of the embedding, which in turn, reflect structural dis-

crepancies within the original data. Regions with higher distortions correspond to areas

with more structural uncertainty (and equivalently, less structural preservation). When

examining the cause of higher pointwise distortions, we may ask whether the existence

of such distortions are due to the high-dimensional structures of the original data that are

hidden in its embedding? Furthermore, is it possible for the user to manipulate the locations

of some points in the embedding in order to achieve better pointwise distortions locally, and

what would such a manipulation tell us about the original data? These questions motivate

the proposed research to compute and visualize distortion measures under a dynamic setting,

where on-the-fly updates of pointwise distortions due to data movement and data deletion

reflect structural relations among different parts of the data. Such data manipulations in the

visual space do not trigger a new DR optimization process, but result in updates of relevant

distortion measures, which offer valuable feedback as to how much the manipulated results
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deviate from the original embedding. By moving subsets of points, an increase (or decrease)

in distortion measures indicates structural dependencies (or independencies, respectively)

among different parts of the data, which may lead to new and valuable insights.

One fundamental challenge when manipulating projected data points in 2D is the lack of

high-dimensional structure information. Due to the constraints and limitations of 2D space,

common interaction tools such as lasso or box selection may select points that belong to

faraway high-dimensional neighborhoods, which introduce more inaccuracies rather than

helping resolve structural ambiguity. Meaningful data manipulations (e.g., data movement

and data deletion) in the visual space should be structure-driven, that is, the selected

points should respect certain structures of the original high-dimensional data. In order

to effectively manipulate high-dimensional structure in 2D, a skeleton is imposed onto

the embeddings computed from hierarchical clustering results, which serves as structural

abstractions of the data at multiple scales. The proposed framework allows users to choose

from two classes of built-in clustering methods: classical (e.g., single- or average-linkage)

hierarchical clustering [154] and topological hierarchical clustering based on Morse-Smale

complexes [155]. In addition, users can also directly import existing hierarchical clustering

results or any nonhierarchical class labeling of the data using a simple file format. These

clusters allow users to navigate and manipulate subsets of the data that belong to the same

high-dimensional neighborhood at an appropriate level of abstraction.

A typical interactive exploration workflow is illustrated in Figure 9.1, where the key

steps are indicated by (a)-(f). (a) Start the exploration by applying a DR technique to the

(b)

(a)
(c)

(d)

(e)

(f)

Figure 9.1: A typical interactive data exploration workflow. (a) Dimensionality reduction
or projection-finding result; (b) Distortion-guided selection of region of interest; (c)-(d)
Hierarchical clustering of the data and distortion-guided clustering selection. (e) Data
manipulations with on-the-fly update of distortion measures reveal structural insights of
the data. (f) Parameter differentiations across different clusters for additional structural
insights.
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high-dimensional dataset to obtain the initial projection or obtain the projection from other

projection-finding methods (such as the one discussed in PART II of the dissertation). The

global distortion measures such as co-ranking could be employed to select a suitable DR and

its optimal parameter setting. (b) By visualizing pointwise distortions on the embedding,

regions with high distortions across multiple measures (for example) are identified as regions

of interest for further investigation. (c) Apply hierarchical clustering of the data to extract

the skeleton for manipulation. (d) Use pointwise distortions to guide the clustering selection,

where the appropriate level of clustering is chosen based on its agreement with the region

of interest. (e) Move and/or delete a subset of data that belong to a targeted cluster in the

visual space, where on-the-fly updates of pointwise distortion measures reflect structural

relations among different parts of the data. A decrease/increase in distortion measure of

the targeted cluster typically indicates structural independencies/dependencies among the

target and its neighboring clusters. (f) Obtained further insights regarding differentiating

factors among different regions of the data by viewing detailed parameter summary across

each cluster

9.2 User Interface and Interaction

In this section, the user interface, user interaction design, and system implementation

of the proposed framework are discussed.

9.2.1 Interface Design

A system overview is shown in Figure 9.2. The overall interface consists of two views

and one data operation panel. These visual components are coordinated to provide a more

comprehensive visualization of the data. They are interconnected such that selections and

changes made in one component will be reflected in others. The system is highly modular

and is easily extendable to include additional visual components.

Embedding view. This view is the main canvas of the interface where the results of

DR, points embedded in 2D, are visualized. It contains a rich set of user interactions for

data exploration. One could apply different colormaps to visualize points by values of a

particular dimension, clustering labels or pointwise distortion measures.

Parallel coordinate view. This view displays the original data with each of its dimensions

as a vertical axis and each point as a line drawing through each of the axes. A normalization

of the range for each axis is optional to suit different usage scenarios.

Data operation panel. This panel contains various data operations such as DR and

clustering. The panel is part of the interlinked system so that changes made to the dataset
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Figure 9.2: A system overview showing two views and one control panel. (a) Embedding
view. (b) Parallel coordinates view. (c) Data operation panel.

are instantly reflected through other views. The panel consists of three sub-panels. The

meta-information panel gives a direct view of the data, in terms of its dimensions and

statistics, and includes the ability to filter (hide) certain dimensions for analysis; the clus-

tering panel allows the user to select distance metrics, data standardization schemes (e.g.,

variance normalization) and hierarchical (e.g., classical single-, average-linkage, topology-

based) clustering methods, while also allowing loading of existing clustering; and the DR

panel enables the user to choose DR techniques and specify their parameters.

9.2.2 Interaction Design

The fundamental principle behind the interaction design is to obtain fresh insights

regarding the structure of the data via distortion-guided, structure-driven, interactive ma-

nipulations. We provide a list of interaction semantics in the embedding view to aid the

manipulations and explorations.

View interactions. Interactions in this category do not cause re-calculation of distortion

measures. Typical operations include, point selection through the Lasso tool or cluster-level

selection; view zooming and panning; filtering of data points; and selection highlighting.

We provide visual aids for the exploration and manipulation operations. In the embedding

view, a solid circle (node) represents each cluster center (see Figure 9.3), whose radius scales

with the size of the cluster; the nearby cluster centers are connected by gray edges based

on the k-nearest neighbor information. These nodes and edges form an abstract skeleton
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Figure 9.3: Hierarchy skeleton computed from hierarchical clustering is used as a structure-
aware handle for manipulating high-dimensional data in 2D.

of the high-dimensional data, which is used as a structure-aware handle for manipulating

high-dimensional data. Now, let us take a look at the key exploration operations provided

in the system. Cluster selection allows the user to select points in a cluster in the view

through selection of the cluster center. Cluster expansion enables the user to expand a

selected cluster on-the-fly to reveal its child clusters. Cluster compression merges selected

child clusters into their shared parent cluster. A neighborhood graph could also be con-

structed connecting cluster centers based on their distance proximities, which functions as

a structural skeleton.

Data interactions. To visually assist the user to obtain new insights, a set of data manipu-

lations operators (data movement, data deletion) are introduced that cause re-computation

of distortion measures. Data movement changes the location of selected points via mouse

movement. Upon releasing the mouse, both global and pointwise distortion measures are

re-calculated and visualized. The increase or decrease of global distortion measure informs

the user of the amount of global structural change, while on-the-fly updates of pointwise

distortion measures provide valuable information to users regarding structural relations

among different parts of the data. Data deletion allows users to remove points from the

dataset and re-run DR and clustering. Data deletion can remove outliers affecting the DR

quality, points with high/low distortions, or hidden/occluded clusters and allow focused

analysis of subsets of the data.

9.2.3 Implementation

This distortion guided manipulation is part of an easily extensible software framework.

Qt is used for general GUI design and drawing functionalities in views. For DR, an open

source C++ library named Tapkee [156] is used. This template-based, easily extensible
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library provides more than a dozen commonly known DR techniques. In this work, this

library is modified to incorporate pointwise distortion calculations so they fit seamlessly

in the modular design. The topological hierarchical clustering is based on approximated

Morse-Smale segmentation [155]. Both clustering and DR modules are based on APIs that

are oblivious to the underlying implementation, and as a result the library implementations

could be easily updated or replaced.

9.3 Synthetic Dataset Example

Via a synthetic dataset, the basic functionality, namely, distortion-guided clustering

selection, data movement and data deletion in combination with an on-the-fly update of

pointwise distortion measures is demonstrated.

Here a parabola dataset is used as a proof-of-concept example, which contains trivial

structural information that is easily interpretable in the embedding view. Following the

exploration pipeline illustrated in Figure 9.1. Step (a)-(c): apply PCA to the data and

obtain a 2D embedding colored by KDE distortions (Figure 9.4(b)). Both KDE distortion

and local cost (not shown here) identify a central region of interest (enclosed by the red

circle) with low distortion. Step (d): pointwise distortion measures is used to guide the

clustering selection where a configuration with five clusters can be obtained after cluster

expansions (Figure 9.4(b)-(d)). Step (e): the system allows the user to move points that

belong to the blue (central) cluster and update the distortion on-the-fly (Figure 9.4(e)-

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9.4: Parabola dataset. (a) 3D embedding colored by z-coordinate. (b) 2D
embedding colored by KDE distortion. (b)-(d) Distortion-guided clustering selection.
On-the-fly update of distortion measures for data movement (e)-(f), and data deletion
(g)-(h). Distortion measures adopt spectral colormap.
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(f)). A drastic increase in distortion along its boundary indicates a structural dependency

among the blue cluster and its neighbors. Finally, after deletion of the blue cluster (Figure

9.4(g)-(h)), DR is re-appled on the remaining points for a more focused study.

9.4 Application Examples

The utility and effectiveness of the proposed framework is showcased through case studies

involving real-world datasets from combustion and nuclear simulations.

9.4.1 Combustion Simulation Dataset

This dataset consists of 2.8K samples of chemical composition and temperature extracted

pointwise from time-varying jet simulations of turbulent CO/H2-air flames [120]. The

simulation records the concentrations of 10 chemical compounds: H2, O2 (Oxygen gas /

Oxidizer), O (Oxygen), OH (Hydroxide), H2O (Water), H (Hydrogen), HO2, CO (Carbon

monoxide), CO2 (Carbon dioxide) and HCO. The dataset can be modeled as a 10D point

cloud with temperatures as observations. The domain scientists are interested in under-

standing conditions that trigger extinction and re-ignition phenomena, which correspond to

points (parameter settings) with minimal temperatures.

The interactive data exploration process follows a typical pipeline illustrated in Figure

9.1. Step (a): Apply cMDS to the dataset, and color the points by temperature. The

result is shown in Figure 9.5(a), where two areas are visible with minimal temperatures

(marked by arrows), which may correspond to extinction scenarios. Step (b): In order

to better understand the DR result and identify the area of interest for further analysis,

various pointwise distortion measures are examined (Figure 9.5(b)-(f)). All five of the

distortion measures indicate that relatively large distortion exists among points near one of

the temperature minima (top area enclosed by the red circle). Such a region becomes the

primary target for further investigation.

Steps (c)-(d): Apply classical (average-linked) hierarchical clustering to the data. As

illustrated in Figure 9.6(a)-(b), pointwise distortions is used to guide the clustering selection,

where the appropriate level of clustering is chosen based on its agreement with the region

of interest. Through cluster expansion, a resolution with five clusters (Figure 9.6(b)) is

obtained, where the red cluster (pointed by red arrow) agrees well with the region of interest

(area enclosed by the red circle in Figure 9.5(b)).

Steps (e): the user moves a subset of the data that belongs to the red cluster away from

its neighboring clusters, as illustrated in Figure 9.6(c)-(e). A drastic decrease of pointwise

distortion can be observed in the area of interest under moderate movement (Figure 9.6(d)).
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(a) (b) (c)

(d) (e) (f)

Figure 9.5: Combustion dataset. (a) Points colored by temperature. (b)-(f) All five
distortion measures (local cost, local stress, robust distance distortion, KDE distortion
and co-rank distortion) indicate an interesting region with high distortion around one of
the temperature minima. Temperature image uses the spectral colormap and distortion
measure images adapt the hot colormap.

This indicates a certain level of structural independencies between the red cluster and its

neighborhood points. Therefore, the points in the red cluster may potentially correspond

to a distinct extinction phenomenon that is different from its nearby cluster. However,

further data movement substantially increases the distortion measure (Figure 9.6(e)), which

indicates that the red cluster is not completely separated from the rest of the data.

Step (f): To further investigate the nearby red and purple clusters that both contain

points with local minimal temperatures, summary statistics of parameters associated with

each cluster is display, as illustrated in Figure 9.6(g) (where the red and yellow bars

correspond to the mean values and the data range of the labeled parameters). Such

summary statistics indicate that the differentiating factor between those two clusters is

the vastly different HO2 concentration (marked by pink arrows). In addition, the proposed

tool provides alternative topological hierarchical clustering results to further validate the

separation of these local minima, as illustrated in Figure 9.6(f) where the blue cluster

(pointed by blue arrow) is a topologically different region (based on the Morse-Smale

segmentation) with respect to its neighbors, see [143] for details.

Finally, according to the domain scientists, the red cluster in Figure 9.6(b) represents

an independent temperature local minima that correspond to parameter configurations of a

special extinction condition (previously unknown to domain scientists as described in [143]),

where the mixing of fuel and oxidizer is highly turbulent and blows the flame out, resulting

in a large amount of HO2.
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(a ) (b )

(c ) (d )

(e ) (f)

(g )

Figure 9.6: Combustion dataset. (a)-(b) Distortion-guided cluster selection. (c)-(e) On-
the-fly updates of pointwise distortion measure (local stress) reflect structural relations
between different parts of the data. (f) Validation of two overlapped temperature minima
based on topological clustering. Distortion is colored by spectral colormap. The parameter
boxes in (g) contain summary statistics of parameters in the clusters.
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9.4.2 Nuclear Reactor Safety Analysis Dataset

This dataset simulates an accident scenario when a plane crashes into a sodium-cooled

fast reactor power plant and destroys three of the four cooling towers [157], and, thus,

the reactor core cooling capabilities are disabled. A recovery crew then arrives at the

site and attempts to re-establish the cooling of the reactor by restoring the damaged

towers one by one, during which time the core temperature keeps increasing if the cooling

system is disabled. When the reactor reaches a maximum temperature of 1000K the

simulation is considered a system failure scenario; otherwise it is a system success. A

set of stochastic parameters, such as crew arrival time and tower recovery time, influence

how the core temperature changes over time. An ensemble of 609 transient simulations has

been generated, each consisting of a time-varying core temperature profile corresponding

to a single simulation. Each profile sampled at 100 time steps and is studied as a 100D

dataset. The domain scientists are interested in studying the structure of this dataset

and understanding characteristics associated with system failures and system successes, for

nuclear reactor safety analysis.

Once again, the analysis is carried out by following the data exploration pipeline (il-

lustrated in Figure 9.1). Step (a): Apply cMDS to obtain a 2D embedding. Step (b):

Both local stress and robust distance distortion visualizations (Figure 9.7(a)-(b)) identify

an interesting region in the lower part of the embedding (enclosed by the red circle) with

relatively high distortions.

Step (c)-(d): Apply classical hierarchical clustering on the data. Through cluster

expansion and compression (Figure 9.7(c)), a hierarchical clustering with four clusters where

the green cluster agrees almost perfectly with the region of interest is obtained. Step (e):

The user then move the points associated with the green cluster away from its neighbors in

the visual space, and a small movement increases the distortion measure drastically (Figure

9.7(f)-(g), distortions before and after data movement). This change of distortion indicates

that the green cluster is structurally dependent on the rest of the data.

Step (f): Now the embedding with known labels of the data is shown, as illustrated in

Figure 9.7(d), where points are colored by their labels of success (purple) or failure (yellow).

The green cluster in Figure 9.7(c) agrees almost perfectly with the the yellow cluster (failure

cases) in Figure 9.7(d). This offers validation that the distortion-guided clustering selection

captures some inherent structure of the data.

By further investigating the local stress and robust distance distortion (Figure 9.7(a)-

(b)), there are two points with the highest distortions. These points are marked by arrows

in Figure 9.7(a), (b) and (e), where Figure 9.7(e) illustrates all the time-varying core
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(a) (b) (c) (d)

(e) (f) (g)

Figure 9.7: Nuclear dataset. (a) Local stress; (b) Robust distance distortion; (c)
Distortion-guided cluster selection; (d) Points colored by their labels: system failure (yellow)
and system success (purple); (e) Plot of 609 time-varying core temperature profiles in the
parallel coordinate plots where x-axis is time, y-axis is temperature. (f)-(g) On-the-fly
update of local stress before (f) and after (g) movement of points belonging to the bottom
cluster.

temperature profiles in the parallel coordinate plot. The point marked by white arrow

corresponds to a boundary scenario that separates system failures from system successes,

and the other marked by pink arrow corresponds to a limiting scenario that reaches failure

temperature at the earliest simulation time. These distortion-guided observations again

offer valuable information of the data.

Furthermore, the analysis can focus on just the system success scenarios by removing

all the failure cases. As shown in Figure 9.8(a), all the failure cases are deleted and cMDS

is re-applied. Through local distortion visualizations (Figure 9.8(b)-(c)), a point with high
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(a) (b) (c) (d)

Figure 9.8: Nuclear dataset. (a) Interactive deletion of failure cases; (b)-(c) re-apply DR
and visualize by local cost (b) and KDE distortion (c). Both visualizations reveal a point
(indicate by white arrow) with high distortion that corresponds to a boundary scenario for
the success cases. (d) Success scenarios in parallel coordinate plots.

distortion that corresponds to a boundary scenario can be identifed among the success cases

(Figure 9.8(d)).



PART V

CONCLUSIONS AND FUTURE WORK



CHAPTER 10

SUMMARY AND OUTLOOK

10.1 Conclusions

Ever since John W. Tukey popularized the concept of exploratory data analysis [158]

and introduced (together with Friedman) the seminal work projection pursuit [9] in the

1970s, understanding high-dimensional space through 2D projections has been regarded as

an important and challenging research goal for statisticians and computer scientists alike.

In this age of information abundance, multi-parameter datasets have been generated in nu-

merous fields with ever-increasing complexity and size. High-dimensional data visualization

techniques are presented with the tremendous opportunity to become one of the standard

tools for studying a wide range of applications. Despite many advances in visualization,

enormous challenges remain.

This dissertation introduces a visual exploration framework that aims to address some of

these visualization challenges. It introduces the subspace analysis approach for identifying

2D projections that reveal intrinsic structures of the dataset (PART II). The subspace

analysis approach assumes the high-dimensional dataset can be represented by a mixture

of low-dimensional linear subspaces with mixed dimensions, and provides a method to

reliably estimate the intrinsic dimension and linear basis of each subspace extracted from

the subspace clustering. Subsequently, these bases are used to define unique 2D linear

projections as viewpoints from which to visualize the data. To understand the relationships

among the different projections and to discover hidden patterns, they are then connected

through dynamic projections that create smooth animated transitions between pairs of

projections. The view navigation graph, which provides flexible navigation among these

projections, is introduced to facilitate an intuitive exploration. This dissertation also

proposes an algorithm for generating a structural summary of quality measures in the

space of 2D projections (PART III). The Grassmannian Atlas provides a fundamentally

unique approach to exploring the space of all linear projections (more specifically linear

subspaces), the Grassmannian. By studying quality measures as functions defined on
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the Grassmannian, users are able to identify local optimal projections as well as obtain

an intuitive understanding of the topological structures of these quality measures. The

proposed framework not only enables the comparison of multiple quality measures, but also

helps to guide the design of and provide benchmarks for new quality measures. Moreover,

this dissertation introduces a data manipulation scheme in a 2D projection that aids

the understanding of high-dimensional structures (PART IV). The distortion-guided and

structure-driven interactive framework facilitates the understanding of high-dimensional

data via manipulation of its 2D projections (linear and nonlinear). The structural abstrac-

tions obtained through hierarchical clusterings allow multiscale data manipulations, even

with hidden or occluded data points in 2D. Pointwise distortion measures are used to guide

the cluster expansion and compression process to select the appropriate level of clustering

and help users explore meaningful subregions of the data. Combining interactive data

manipulations in the 2D projection with on-the-fly updates of distortion measures provides

new insights regarding structural relations among different parts of the data. Finally, all

the proposed techniques in this dissertation are readily available as components that work

together in a self-contained software system, DataExplorerHD. To conclude, this dissertation

has made meaningful advances that expanded the state-of-the-art.

10.2 Beyond the Dissertation

During the process of my dissertation research, I inevitably realized the strong connec-

tion between machine learning and high-dimensional data visualization. Each of these two

research areas has demonstrated the possibility to have a significant impact on one another.

In this dissertation, I have utilized the subspace clustering algorithm, a recently established

approach from the machine learning and computer vision community, for capturing impor-

tant information in high-dimensional space for visualization. On the other hand, I also

work with collaborators in natural language processing, utilizing visualization methods to

help the domain experts gain an understanding of high-dimensional word embedding space

(Word2Vec [129]).

High-dimensional spaces exist in many aspects of the machine learning process. The

input of a machine learning algorithm, the feature space, is usually high-dimensional for even

the simplest problems. In addition, the learned model usually defines structures or divisions

in the high-dimensional feature space (or transformation of such a space). Moreover, outputs

of machine learning algorithms can be high-dimensional as well. For example, neural word

embedding methods generate high-dimensional spaces that encode semantic relationships.

Finally, even the optimization process that often used to build the learning models try to
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find a local or global minimum of the cost function in a high-dimensional parameter space.

One fundamental obstacle that prevents the effective use of machine learning algorithms is

the inability to directly understand or detect issues in these high-dimensional spaces, which

are opaque for the users. This is particularly prevalent as machine learning proliferates in

numerous domains, where non-experts use these processes as black boxes to solve problems

in their respective domains. The novice users will likely do not have the expertise for fine

tuning parameters or to identify the problems in their learned models. A visualization

tool that helps encode the underlying information of machine learning models, which at

the same time is easy to understand for novice users, can be extremely usefully in opening

the black box and lower the threshold required for effective utilization of machine learning

algorithms.

Several visualization approaches have been introduced to aid in the understanding of

various machine learning algorithms in the past. Tzeng et al. present a visualization

system that helps users design neural networks more efficiently [159]. The works of Teoh

and Ma [160] and van den Elzen and van Wijk [161] investigate visualization methods

for interactively constructing and analyzing decision trees. Visualization has also been

used to aid model validation [162, 163]. However, most of these methods do not directly

investigate the high-dimensional aspect of the learning model. Since making sense of the

high-dimensional aspect of the machine learning process is essential for understanding why

certain model works (or not works) for given data, as a continuation of my dissertation

work, I plan to bridge the gap between high-dimensional data visualization and machine

learning.

By leveraging high-dimensional visualization approaches, I would like to introduce in-

teractive visual aid for quickly verify or provide a sanity check for the high-dimensional

structures in the different computation process. In addition, tracking and understanding

the optimization process of the machine learning model is another important aspect for

effective utilization of machine learning models. Therefore, I envision the development of

a visual debugging tool that provides on-the-fly feedback and monitor of the optimization

computation process. In some way, this tool is equivalent of the in-situ visualization often

seen in large-scale scientific simulation, where the intermediate computation result or time

step is directly visualized in order to understand the simulation process and detect errors

early on to save computation resource.

On a grander level, numerous challenges for understanding machine learning algorithms

coincide with the goals of high-dimensional data visualization. I believe high-dimensional



129

visualization will play an increasingly important role in designing, tuning, and validating

machine learning algorithms.
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