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Fig. 1. The interface of the proposed system. During exploration, we can filter through a large number of sentence pairs summarized in
(a). the current selected pair is displayed in (b). The model internal information (attention) is displayed in (d) and (e). The predicted
probability (one of three labels: neural, entailment, contradiction) is shown in the barycentric coordinate in (f). Finally, the high-level
model structure and the updates to the model are summarized in (c).

Abstract— With the recent advances in deep learning, neural network models have obtained state-of-the-art performances for many
linguistic tasks in natural language processing. However, this rapid progress also brings enormous challenges. The opaque nature of a
neural network model leads to hard-to-debug-systems and difficult-to-interpret mechanisms. Here, we introduce a visualization system
that, through a tight yet flexible integration between visualization elements and the underlying model, allows a user to interrogate
the model by perturbing the input, internal state, and prediction while observing changes in other parts of the pipeline. We use the
natural language inference problem as an example to illustrate how a perturbation-driven paradigm can help domain experts assess
the potential limitation of a model, probe its inner states, and interpret and form hypotheses about fundamental model mechanisms
such as attention.

Index Terms—Natural Language Processing, Interpretable Machine Learning, Natural Language Inference, Attention Visualization

1 INTRODUCTION

As demonstrated by many recent successes, neural-network-based ma-
chine learning approaches have garnered increasing popularity and have
been adopted in a wide variety of applications. However, researchers as
well as practitioners often need to overcome many obstacles during the
training, debugging, and tuning processes to realize the full potential of
these models. Interpreting the internal mechanism and analyzing how
predictions are made are critical for both the design and deployment
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of a model. More importantly, the ability to pinpoint where and how
an error is made and propose hypotheses for the cause of the failure
is key to identifying the limitations of and improving upon existing
models. However, providing meaningful answers to these questions is
challenging and has been described as impossible by many.

Recently, significant research has been developed to combat the
model interpretability challenges. Both the machine learning as well
as the visualization community have proposed a number of promising
techniques aimed at interpreting convolution neural networks (CNN) [3,
13, 21, 22, 33, 39, 40]. At the same time, these approaches also remind
us how little we truly understand about the inner mechanisms of such
deep neural networks.

Compared to image classification tasks, natural language processing
(NLP) systems often involve additional challenges such as the discrete
nature of words. For example, feature visualization [21], an often
deployed technique for illustrating what image features a given part of
the network (e.g., neuron, layer, or channel) captures, cannot be readily
generalized to natural language. An image (pixel values) corresponds to



a continuous solution space. which is more accessible for optimization
and human visual recognition (i.e., the existence or the absence of
patterns). For natural language, even though we can encode a word as a
vector [17, 26], the word embedding space is still discretely defined, in
which the interpolation of two vectors (i.e., two words) does not hold
clear meaning.These restrictions call for new avenues for solving the
interpretation challenges of natural language models, which motivates
the proposed work.

Despite a number of recent advances, most of existing techniques
study the model as an invariant object, where the model’s behaviors are
recorded and analyzed in an offline fashion. However, the exploratory
nature of the model interpretation often leads to many “what if ...” types
of questions, such as, what if we perturbed the current input? Will the
prediction be stable? What if we change one of the critical internal
states of the model? How would the modification affect the prediction?
What if the current prediction is wrong? How and where could we apply
minimal change to the model to produce the correct result? And how
would it affect the internal state we care about? These types of queries
form a natural way to gain an understanding and develop hypotheses
of the model mechanisms by interrogating how the components of a
model interact with each other in a dynamic setting. Hypothetically, we
can code specialized experiments for each of these scenarios. However,
such a process is not only tedious but also ignores the iterative nature of
the exploratory analysis. Often, these questions are not pre-determined.
Instead, new exploration paths arise as we investigate and analyze
previous observations.

Here, we aim to provide immediate and informative answers to these
“what if” questions by combining the expressive power of visualization
and the direct online query/optimization of the neural network model.
Instead of viewing the models as invariant objects, we approach the
interpretability challenge by studying them in a dynamic environment.
By employing a perturbation-driven scheme, we probe the internal
states of the model and examine how changes in one part of the pipeline
(the input, internal states, and output prediction, see Fig. 4) affect
others, which in turn provides a new perspective to address the model
interpretation problem.

We materialize the goal of the perturbation-driven exploration in an
interactive visualization system for natural language inference mod-
els [24]. However, the components of the visualization and the overall
concept can be readily extended to other NLP tasks, such as question
and answer, text summarization, etc. In its simplest form, the inference
task asks whether the relationship between sentence A and sentence
B: is (1) entailment (one can infer B from A), (2) contradiction (B
disagrees with A) or (3) neutral (A and B talk about different/unrelated
things). Natural language inference addresses the fundamental chal-
lenge of identifying semantic relationships between sentences and is a
core NLP task (see Section 2.1 for details).

One recent advance in neural natural language process models is the
introduction of attention mechanisms [2, 36] (Section 2.3). Intuitively,
attention asks which parts of the input are deemed more important
for making a prediction. Attention is often represented via weights
for individual words or pairs of words (i.e., the alignment between
words in different sentences). There have been many theories about
how attention works in various models. The proposed tool introduces
a perturbation-driven visual analytics environment, where the domain
experts can study how changes in sentence input, attention, or prediction
affect each other, which helps the experts develop deeper intuitive and
alternative hypotheses. In addition, we propose to enhance the standard
visual encoding (e.g., as a bipartite graph or as a matrix) of the attention
matrix by overlaying sentence linguistic structure to allow grammar-
guided simplification of the visual representation. Finally, as discussed
in Section 6.4, the ability to examine how attention corresponds to the
grammatical structure also enables domain experts to speculate about
the potential benefits of including the linguistic structure in the design
of the attention component of the model.

In summary, the key contributions of this paper are:

• A perturbation-driven exploration scheme derived from close
examination of how domain experts conduct exploratory analysis
on end-to-end NLP neural network models;

• The NLIZE system that enables the perturbation-driven explo-
ration by providing an intuitive environment that allows domain
experts to readily express hypotheses and obtain instantaneous
feedback;

• An optimization method for correcting a failed prediction based
on a natural extension of the margin-infused relaxed algorithm
(MIRA) to neural networks; and

• A visual encoding of the attention by imposing sentence linguistic
structure to allow grammar-guided sentence simplification.

2 BACKGROUND

The target audience of the proposed tool is domain experts who analyze
and develop NLP models. Therefore, certain background knowledge
in NLP is required to fully understand and appreciate the technique
discussed in this paper. In this section, we first explain the definition
of a natural language inference (NLI) task and how it fits into the
grand challenges in NLP. Then, we examine the common architectural
characteristics shared by many state-of-the-art neural network models.
Finally, we discuss the role attention plays in the model and why
attention is closely tied to model interpretability.

2.1 Natural Language Inference
Natural Language Inference (NLI) [7] is an important machine under-
standing task in NLP. The goal of NLI is to predict the relationship
between a premise (P) sentence and a hypothesis (H) sentence. The
prediction falls in one of three categories: entailment (E), contradiction
(C), and neutral (N). A simple example is shown in Table 2.1. In this
case, the premise is “A boy ate an apple”. The hypothesis statement “A
kid ate fruit” can be concluded from the premise. Therefore, the rela-
tionship between the premise and hypothesis is entailment. However,
we should note that such a relationship is not necessarily reversible.
Since the concept “fruit” is less restrictive than that of “apple”, we can-
not conclude “A boy ate an apple” from the statement “A kid ate fruit”.
The same logic applies to the hypothesis of “A boy ate a Fuji apple.”,
in which the premise neither implies nor opposes the hypothesis, and
therefore, their relationship is neutral.

Table 1. An illustration of natural language inference.

P / H sentences entail contradict neutral
premise A boy ate an apple. - - -

hypothesis A kid ate fruit.
hypothesis A boy ate a banana.
hypothesis Tom ate an apple.
hypothesis A boy ate a Fuji apple.

At first glance, the task of natural language inference may seem
less practical compared to other well-known NLP challenges such as
machine translation; however, the ability to distinguish the entailment
and contradiction relationship is fundamental to understanding natural
language at large. Considering the ambiguousness of natural language
and the polysemy of words, the inference task can become quite chal-
lenging (especially from the learning algorithm’s point of view). Take
the following sentences as an example (here P refers to premise, H
refers to hypothesis): (P) Facebook’s IPO electrified the general public;
(H1) Facebook went public; (H2) General Electric went public; (H3)
People ignored Facebook’s IPO. The literal similarity between “Elec-
tric” and “electrified” may trick a model to predict H2 as entailment. A
model likely will also fail to understand the link between “went public”
and “IPO”, and therefore, mistake H1 as neutral. Recently, Bowman et
al. introduced a large corpus [4] for NLI tasks, which has helped spawn
a new wave of effective neural network models for those tasks. Here,
we focus on the analysis of the decomposable attention model [23] on
this dataset (see Appendix A for a detailed description of the model).

2.2 Neural Network Models in NLP
Neural network models employed for computer vision and NLP tasks
share a key common characteristic: a majority of recent approaches use



end-to-end models. That is, the entire model operates as a black-box
that takes vectorized inputs and yields a final prediction for a task of
interest. However, as discussed in the introduction, the discrete nature
of words and sentences presents additional challenges for interpreting
NLP models.

Many recent end-to-end neural network models in NLP, despite
having diverse network architectures, share a similar high-level design
that consists of three distinct stages (encode, align, classify, see Fig. 2).
The existence of shared conceptual structures means the proposed tool,
although designed for NLI tasks, can be readily generalized for a much
broader set of applications.

Encode Align Classify
Word
Vectors Prediction

Fig. 2. The shared structure of end-to-end NLP neural network models.

These end-to-end models usually take pre-trained word vectors (nu-
merical vector representation of individual words, in which the semantic
similarities are expressed by distances in the high-dimensional vector
space [17, 26]) as input, and then in the encoding stage, the pre-trained
vectors are adjusted to the specialized task at hand. Subsequently,
the next stage aims at finding alignment between words in the input
sequences. For the NLI task, this means finding the correspondence
between words from the premise sentence to the hypothesis sentence
(see details in Fig. 3 and Section 2.3). Finally, in the last stage, the
alignment information and the encoded vector representations are ag-
gregated and then used as features for a classification network (last part
of the end-to-end neural network). Since all three stages of the model
are trained jointly in an end-to-end fashion, it is important to explore
the interaction between intermediate representations and predictions to
make sense of how predictions are made inside such a model.

2.3 Attention Mechanism

Among the three stages, the second stage often constitutes a crucial
part of the model as it determines where the classifier will focus for
generating a prediction. The operation to compute the alignment be-
tween words in the input is referred to as the attention mechanism [2].
The introduction of the attention mechanism allows pairwise interac-
tion between internal representations of words. This interaction can
be naturally explained as a form of alignment that exposes an inter-
pretable layer in end-to-end neural networks. Recently, the attention
mechanism has contributed to the strong performance of many NLP
models [23, 29, 31, 32, 38].
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Fig. 3. Attention can be naturally explained as a form of alignment that
exposes an interpretable layer in end-to-end neural networks. On the
left, the matrix shows the attention between the premise and hypothesis
pair. On the right, we illustrate that the attention can also be interpreted
as alignment.

For natural language inference task, as illustrated in Fig. 3, the
attention information can be represented as a matrix describing the soft
alignment between words in the premise and words in the hypothesis.
As we can see in this example, the higher values indicate significant
alignments between words. The subject, verb, and object between these
two sentences are aligned correctly (words, such as “an”, which has
less importance in determining sentence relationship, was assigned a
lower score). Interestingly, the difference between the subject words
does not affect their alignment. The classification stage can then utilize
this information to determine if the subject of the sentence is different,
and therefore, despite the other part of the sentences being identical,
the relationship between the premise and the hypothesis is neutral.

3 RELATED WORK

With the increasing demands for model accountability (e.g., what is the
evidence for making the prediction?) and model fairness (e.g., is the
prediction affected by the bias in the training data), the interpretability
of the machine learning model has significant implications. As a result,
a wealth of research has been developed that focuses on the explana-
tion and interpretation of neural network models by both the machine
learning and visualization communities.

Model Interpretability. In the machine learning community, one
of the most studied areas in model interpretability is the interpretation
of the convolution neural network (CNN) [21, 22, 33, 39, 40]. These
methods either identify the pattern that maximally activates a part of
the network (referred to as feature visualization, i.e., what feature does
the given neuron, channel, or layer capture?), or reveals what areas
in the input contribute most to the predicted label (often referred to
as attribution, i.e., attribute the prediction label in the input domain).
Besides the techniques designed for specific types of models, a few
study [10, 15, 28] approach the interpretability challenge from a model
agnostic perspective, which makes them applicable to different appli-
cations. In the LIME [28] work, a simpler linear model is fitted near
the prediction of interests to provide a simpler but easier to understand
snapshot of the classifier near a specific input. Despite being invaluable
for generating a human understandable explanation, however, the lack
of ability to access and explore the internal states of the system limits
their application. To avoid similar limitations, the proposed system
enables direct access and manipulation of the internals of the model.

Visual Exploration of Neural Network Models. Due to the ef-
fectiveness of exploring complex relationships, visualization has long
been adopted for interpreting neural network models [35]. Recently,
the increasing demand for interpretability for machine learning models
has motivated the introduction of many visualization studies that are
dedicated to neural network models. In [3], Bilal et al. analyzed classi-
fication errors in convolutional neural networks (CNN) and answered
the question of whether class hierarchy is learned in the network. Deep-
Eyes [27] focused on analyzing the training process of CNN, which
provided domain experts design guidelines for deep neutral network
architecture. ActiVis [8] introduced an interactive system tailored for
tuning industry-scale neural networks in Facebook. The TensorFlow
Graph Visualizer [37] work designed a hierarchical visual representa-
tion to encode complex computation graphs of deep neural networks
for the TensorFlow framework [1]. Finally, Liu et al. [12] presented
a visualization tool for understanding the often challenging training
process of deep generative models.

Visualization of NLP Models. Compared to many studies for mak-
ing sense of convolutional neural networks, relatively fewer studies
have been dedicated to neural language processing models. The pre-
vious works [9, 11, 14, 34] not only demonstrated the benefit of visu-
alization in understanding NLP models but also revealed enormous
possibility for future applications. The early work on character-level re-
current networks [9] demonstrates the effectiveness of the hidden state
in capturing the unique pattern in the training text. The compositional-
ity (i.e., build the meaning of a sentence from the meaning of words
and phrases) exhibited in neural network linguistic models is examined
by utilizing techniques inspired by model interpretability techniques in
computer vision by Li et al. [11]. In the RNNVis [19] work, Ming et al.
visualize the hidden state units in a recurrent neural network based on
their expected responses to model input. The RNNbow [5] system helps
domain experts understand how the model is trained by visualizing
the backpropagation gradient information. The LSTMvis [34] work
employs a line-plot style visual encoding to represent the time-varying
hidden states of the recurrent neural network. The word embedding
visualization work [14] illustrates how semantic relationships can be
recovered by linear projections in the high-dimensional word embed-
ding space (e.g., word2vec [17] or Glove [26]). All the previously
discussed NLP model visualization works either focus on the training
process or examine the trained model as a fixed object. In contrast, the
proposed method allows direct user interaction with the internals of the
trained model in a dynamic environment, which enables unrestrictive
exploratory analysis that has not been possible before.



4 TASK ANALYSIS

The primary driving force for designing the proposed tool is the error
analysis challenges faced by our long-term collaborators working on
natural language inference research. During the entire design and devel-
opment process, we worked closely with two NLP experts via weekly
meetings over a period of roughly seven monthes. Their constant evalu-
ation and feedback have helped shape the tool we see today. During this
period, we have conducted extensive discussions to understand the com-
mon approaches employed by researchers for assessing the behavior of
a model. Predictive accuracy has its place as an objective evaluation
metric to measure the overall effectiveness of the model; however, the
accuracy number alone does not provide the full story. For example,
the model may produce correct predictions for the “wrong” reasons
(e.g., pick up an unintended pattern in the training data that cannot be
generalized in real-word scenarios). As a result, the domain experts rely
on an exploration-centric approach to conduct error analysis and obtain
intuition. The experts often start with simple examples and then make
minor perturbations (replace a word or phrase) to the input and observe
the change in the prediction (and potential failures). This exercise
helps the domain experts reason about the relationship between input
elements and the predicted results. For many NLP models, the attention
information (see Section 2.3) is essential to infer the mechanism of the
model. Experts often print out the attention values or generate plots to
visualize sentence alignment or compare attention values. As the ex-
perts explore more variation of similar examples, combined with their
domain knowledge, they may develop hypotheses about the cause of
failures or ask additional questions that lead to further experimentation.

In such an exploration workflow, NLP researchers often need to
utilize multiple scripts and manually run all the experiments. The batch
process approach is not only time consuming, but it also hinders the flow
of reasoning that relies on obtaining instantaneous feedback and making
many on-the-fly adjustments. Therefore, the expert-driven exploration
process can greatly benefit from the introduction of an interactive visual
exploration environment, where the researchers can easily express their
hypotheses and obtain quick visual feedback of the results. Moreover,
by introducing new visual encodings and summarizations, we can
drastically expand the ways domain experts interact with the model,
enabling exploration options that previously were not possible either
due to either tedious manual operation or the lack of communication
channels. To support the exploratory workflow for analyzing NLI
models, we design the proposed tool to address the following tasks
based on the discussions with NLP experts;

• T1: Understand the stability of a prediction, i.e., how do pertur-
bations of the input affect the behavior of the model?

• T2: Examine the attention mechanism, i.e., what is the rela-
tionship between the input and the attention, and how does the
attention affect the prediction?

• T3: When the predicted label is wrong, how can we update the
model to correct the prediction? What are the effects of updating
different parts of the model?

In Section 6, we will illustrate how to utilize the proposed tool for
these tasks (the application scenarios 1, 2, 3 correspond to T1-T3,
respectively).

5 NLIZE SYSTEM

In this section, we discuss the design and implementation of the NLIZE
(pronounced as “analyze”; see interface overview in Fig. 1) system. As
discussed in the previous section, the experts often analyze and obtain
intuition about the model by studying how altering one part of the model
affects other stages of the pipeline. Such a process can be generalized as
the perturbation-driven paradigm, which is used as a guiding principal
for designing the proposed tool. As illustrated in Fig. 4, we enable the
automated or user-guided perturbation (i.e., replace words) of the input
sentence, the perturbation of attention (i.e., alter the alignment between
sentences) inside the model, and the perturbation of the prediction (i.e.,
adjust the prediction by making updates to the model, the optimization
is disucssed in Section 5.4). In the following sections, we describe

in detail the five major components of the proposed system, namely,
the sentence view (Section 5.1), the attention view (Section 2.3), the
prediction view (Section 5.3), the pipeline view (Section 5.4), and the
pair summary view (Section 5.5).

Sentence 
Pair

E
n
co

d
e
r

A
tt

e
n
ti

o
n

C
la

ss
if
ie

r

Prediction

N C

E

Language Inference Model

update model 

Perturb Sentence Perturb Attention Perturb Prediction 

Input

U
se

r
M

o
d
e
l 
P
ip

e
lin

e

Fig. 4. Perturbation-driven exploration of the natural language inference
model. In the proposed tool, we enable the interrogation of the relation-
ship between different components of the model via the perturbation-
based analysis. The user can perturb the input sentences (i.e., replace
words with synonymous), perturb the attention (i.e., alter the soft align-
ment between sentences), and perturb the prediction (i.e., adjust the
prediction by making updates to the model).

5.1 Sentence View
As illustrated in Fig. 1(b), the sentence view shows the premise and
hypothesis sentence. To facilitate the analysis task (T1), we employ an
automate sentence perturbation scheme that replaces nouns and verbs
by their synonyms in the wordNet [18] (the standard lexical database
for NLP applications). When the perturbation is applied to either of
the sentences, the replaced words are highlighted in blue to signal the
modification made to the original sentence.

At the top left of the view, the two controls Predict and Predict All
correspond to predicting the currently displayed sentence pairs and
predict all combinations of perturbed premises and hypotheses, respec-
tively. To avoid the situation where both sentences are perturbed, we
ensure only one perturbation per sentence pair (i.e., we use the original
premise if the hypothesis is perturbed, or use the original hypothesis if
the premise is perturbed). The previously explored original sentences
are stored in the dropdown list (on the right side of the buttons) that
allows the user to revisit examined examples. Also, the user can type
any sentences or modify existing text in the sentence display areas to
accommodate user-defined inputs.

5.2 Attention View
As discussed in Section 2.3, the attention is the only intermediate
layer in the network that provides interpretable information for domain
experts to infer the inner mechanisms of the model. Intuitively, the
attention captures the alignment of words between input sentences. For
the NLI model examined in this work, the attention is represented as a
matrix, in which the entries in the ith row correspond to the probabilities
of words in the hypotheses aligned to the ith word in the premise.

As illustrated in Fig. 5, we employ both graph and matrix visual en-
codings for visualizing attention. In the graph attention view (Fig. 5(a)),
a bipartite graph encoding is adopted, in which the edge thickness
corresponds to the attention value. The color of the rectangle text block
encodes the sum of all edge values connected to it (darker shade of blue
corresponds to higher values). The graph view is good for highlighting
the most dominant alignments. However, if many attention values are
high, the edges may become cluttered, leading to less effective visual-
ization. Also, if the sentence structures between premise and hypothesis
are drastically different, we are likely to see the prominent edges cross
each other, which can also lead to confusing and misleading visual
patterns. The matrix attention view (Fig. 5(b)), despite being more
verbose and less efficient in highlighting the dominant alignment, does
not have similar shortcomings. However, extra effort may be required
for identifying the words that correspond to high-value entries in the
matrix. Together, the graph and matrix views complement each other
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Fig. 5. Attention visualization. In the graph attention view (a), a bipartite graph encoding is adopted, in which the edge thickness corresponds to the
attention value. In the matrix attention view (b), the entries of ith row represent the probabilities of words in hypotheses align to the ith word in the
premise. The user can alter the attention values via the pop-up interface illustrated in (c). We overlay the dependency tree (a1) grammar structure to
highlight important words and simplify complex sentence to reduce clutter (d-e). In (f), we show the difference between two attention matrix (the
comparison feature is controlled by the buttons in the top left of all attention plots (a2) ).

and provide the same information from different perspectives (a related
matrix/graph visualization scheme is explored in [16] for studying the
brain network). To help the user recognize the correspondence during
the exploration, we enable the linkage between highlighted actions
in both views (see Fig. 5(a)(b), the attention of the two “couple” is
highlighted).

To support the ability to perturb the attention values (T2), we include
the attention editing functionality. The attention matrix view is the most
suitable place to conduct the editing operation since it provides a direct
mapping of the attention value. As we can see in Fig. 5(c), when a
user clicks the cell of the matrix, a sider will pop up for customizing
the attention value (as the user edits the value, each row is automati-
cally renormalized). As illustrated in Fig. 5(a2)(f), we also allow the
user to compare currently and previously displayed attentions by com-
puting and visualizing their cell-wise differences (the user can toggle
between different display modes using the C (current), P (previous), D
(difference) buttons bellow the colormap).

Even though the attention does not explicitly encode any grammar,
it often highlights essential words in the sentence structure. To help
the researcher better understand the relationship between attention
and sentence structure, as illustrated in Fig. 5(a1), we overlay the
grammar dependency tree [20] structure next to the sentence. Since
the dependency tree encodes the word importance information in a
hierarchical manner, it is very suitable for sentence simplification tasks.
Here, we utilize the grammar dependency tree to trim the decorative
structure to shorten the sentence to combat the visual clutter when
examining long sentences (see Fig. 5(d)). A simplification example is
shown in Fig. 5(d)(e)(f).

5.3 Prediction View

For a given sentence pair, the model predicts a discrete probability
distribution of the three labels (neutral, contradiction, and entailment).
In the prediction view, as illustrated in Fig. 6(a), a prediction probability
is encoded as a point in the barycentric coordinate system of the triangle.

Let C1,C2,C3 be the three points defining a triangle, and let p1, p2, p3
be the probabilities the label is neutral, contradiction, or entailment.
The coordinate of the prediction Cp in the triangle is computed as
Cp = p1C1 + p2C2 + p3C3. In the triangle, the distinctly colored
background (gray, light gray, and light green) indicates the regions that
correspond to different labels. The prediction result for the original
sentence pair is represented by the larger yellow circle, whereas the
smaller gray circles illustrate the perturbed sentence pairs. A density
contour of the prediction is computed via kernel density estimation to
emphasize the highly cluttered areas and distinguish the outliers. The
pattern of the perturbed pairs’ prediction directly conveys the stability
of the model for the given sentence pair. Here, we should also take the
length of the sentence into consideration as greater numbers of nouns
and verbs will likely lead to more varied perturbations.

(a) (b)

decision 
boundary

density
contour 

map

Fig. 6. In the prediction view, the prediction is encoded as a point in the
barycentric coordinate system of the triangle shown in (a). A density
contour of the prediction is computed via kernel density estimation to
emphasize the highly cluttered areas and distinguish the outliers. As
illustrated in (b), the predicted label does not match the ground truth.
Therefore, we apply a label reassignment operation, which triggers a
model update.



To perturb the prediction (T3) (the optimization for solving the
prediction perturbation is discussed in Section 5.4), we need a way to
communicate the reassignment of the predicted label. As illustrated in
Fig. 6(b), we integrate such an operation in the prediction view. When
pressing and dragging the prediction (represented as a circle), the user
is presented with the three options (E, N, C) corresponding to the labels.
When the user hovers on one of the options, a dotted line is shown to
indicate the newly assigned label. The reassignment is applied when
the user releases the mouse while hovering on the label of choice.

5.4 Pipeline View

The pipeline view provides a direct visual representation of the three
stages (encoder, attention, classifier) of the model. In the proposed
tool, we allow model parameters to be updated (via an optimization) to
correct a prediction error (T3). The pipeline view, by visualizing the
distribution of the parameter changes, informs the user about how each
stage responds to the optimization.

There are many ways to update the model to correct a prediction.
The simplest approach is applying standard backpropagation and over-
fits to the example. However, without any constraint, the update step
may alter the model in unexpected ways. Instead, we adopt the idea
in the margin-infused relaxed algorithm (MIRA) [6], where we regu-
late the optimization with the L2-norm of the parameter change. In
the proposed tool, we obtain the target parameters by the following
optimization:

argmin
W′

(CJ(W′)+ ||W′−Wo||2) (1)

where J(W) is the loss function of the neural network model, Wo is
the original model’s parameters taken as constant, W′ is the updated
parameters, and C is the weighting term, which determines whether we
intended to emphasize more on obtaining better fitting or deviating less
from the original model. Due to the nonconvex nature of the neural
networks, we use SGD to optimize the above combined loss function.
With this formulation, we try to find a good approximation to the newly
assigned label, while still maintaining relatively small changes with
respect to the original model.

optimization
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Fig. 7. The pipeline view provides the visual representation of the three
stages (encoder, attention, classifier) of the NLI model. In the proposed
tool, we allow model parameters to be updated to correct a prediction
error via a constrained optimization. The hyperparameters for this opti-
mization are shown in (a). In (b), we utilize a graphical representation
for each stage of the pipeline. In (c), the user can select whether to
use the current pipeline configuration as displayed or try all the pipeline
configuration combinations for the optimization.

The optimization hyperparameters are shown in Fig. 7(a). Each
stage is illustrated by a glyph (Fig. 7(b)), in which the user can en-
able or disable its parameter update by clicking on the blue rectangle
marked with the word “parameter” (the legend about its state is shown
in Fig. 7(d)). In Fig. 7(c), we select whether we want to use the current
pipeline update setting as displayed or try all the pipeline configura-
tion combinations (i.e., each stage can be either enabled or disabled;
therefore, there are 8 combinations in total, or 7 if we discard the case
where all stages are not enabled).

5.5 Summary View
We can focus on only one example at a time for a detailed analysis us-
ing the combination of all previously discussed views. Therefore, how
to select a pair of sentences of interest from the development dataset,
which consists of close to 10k examples, is an obvious challenge. In
addition, the experts are also interested in obtaining a high-level under-
standing beyond the information prediction accuracy provides.These
two goals are the two sides of the same coin. The selection task will
become easier if we can generate a good visual summary of the 10k
examples.
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(d)
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Fig. 8. We summarized all prediction results of 10k sentence pairs in (a).
The green block indicates correct predictions, the orange block indicates
wrong predictions. The user can click on a treemap node to focus on the
specific type of scenarios (e.g., E/E, indicating both the ground truth and
the predicted label are Entailment) to automatically reveal the histogram
(b) and scatterplot (c) for displaying the selected subset. The selection
can be further narrowed down by selecting the bin in the histogram. In
(c) and (d), each point corresponds to one sentence pair.

To address these challenges, we introduce the summary view (see
Fig. 1(a)), which consists of a treemap, a histogram, and a scatterplot,
to summarize the prediction results of the 10k examples and provide
the ability to drill down to individual examples for detailed analysis.
As illustrated in Fig. 8, we utilized a treemap (a) to encode the different
combinations of the ground truth label and the predicted label. The
green treemap blocks correspond to examples with correct predictions,
whereas the orange blocks indicate failures. The size of the block
encodes the number of examples belonging to each category.

By clicking on the treemap node, we can narrow down the selection
by focusing on a specific scenario. As we select the “E/E” (ground truth:
E-Entailment / predicted label: E-Entailment) category in the treemap
(see Fig. 8(a)), the histogram (Fig. 8(b)) and scatterplot (Fig. 8(c))
are shown. The histogram shows the distribution of the prediction
stability in the selected category. For each example, the stability is
defined by the ratio of the number of perturbed pairs that maintain the
same predicted label and all the perturbed pairs. Assuming we have
generated 100 pairs via the automated sentence perturbation operation
(i.e., replace nouns and verbs with synonyms), the stability is 0.8 if 80
of the 100 maintain the original label. We can further narrow down the
focused set by selecting the bins in the histogram (see Fig. 8(b)). In the
scatterplot (Fig. 8(c)(d)), each point corresponds to a sentence pair (the
user can focus the rest of the visualization on one particular instance
by selection). To help users better assess the stability number, we also
include the number of perturbed pairs (labeled as perturbCount). If the
perturbCount is rather small (< 10), then the stability value is likely
very noisy and unreliable.

5.6 Implementation
The initial learning curve and workflow setup cost of the tool are often
the most significant barriers for user adaptation. In the proposed sys-
tem, we approach these challenges by designing the system as a Python
library rather than as a monolithic standalone application. Just like a



Python plotting library, the different pieces of the visualization can be
accessed individually, which helps ease the initial learning curve. The
individual components can also be combined in any configuration de-
sired by users via a simple Python API to better fit into one’s workflow.
More importantly, the library-based design allows easy integration with
the existing model implemented in Python. To create a visualization,
users only need to import the library, create an instance of the visualiza-
tion object, and specify a set of callback functions, such as generating
a prediction and accessing attention, to link the visualization to their
NLP models (see the code example in Appendix B).

In the proposed work, the NLI model is implemented in Python
using pytorch [25]. The visual interface is implemented in Javascript
using D3.js library, and a Python server acts as the glue between the
Javascript visualization and the pytorch model.

6 APPLICATION SCENARIOS

To illustrate how the proposed perturbation-driven exploration tool
helps researchers interpret the neural network model, we present five
interconnected application scenarios domain experts may employ in
their analysis workflow. Users can start the exploration by examining
the stability of prediction (Scenario 1), from which they may identify
the individual instances worth further investigation (Scenario 2, 3, 4).
Alternatively, users can begin with handcrafted common/extreme cases
(Scenario 5) and continue from there.

(e1) Prediction 
is altered by
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Fig. 9. Prediction stability assessment. In (a)(b)(c), we estimate the over-
all prediction stability (regarding synonymous perturbation) for each type
of prediction over the entire development set (10k examples). The user
can drill down to individual examples by using the interface described in
Fig. 8. In (d), we illustrate a highly unstable prediction, where the original
pair’s prediction is near a decision boundary (i.e., the yellow circle is
between entailment and neutral). In (e), we show another example of
unstable predictions, in which the prediction changes drastically with a
minor perturbation (see (e1)).

6.1 Scenario 1: Assess the Model Prediction Stability
The robustness of the prediction is often hard to evaluate. However,
the prediction stability provides valuable information for researchers
to better understand the model. In the proposed work, we approach
the prediction robustness from a sensitivity analysis point of view.
The stability of the prediction is measured by how often the predicted
labels are altered after small perturbations are applied to the input.
Compared to other types of input (e.g., image), the perturbation of
the natural language can be particularly tricky, as small alterations of
words can drastically change the meaning of the sentence. As discussed
in Section 5.1, we try to maintain the sentence semantic by replacing
only words with their synonyms and only one word for each pair. As
illustrated in Fig. 9, by utilizing the proposed tool, the domain expert
can not only examine a visual summary of the stability but also quickly
dive into individual examples for a case-by-case analysis.

In Fig. 9(a)(b)(c), we compare the overall prediction stability (re-
garding synonymous perturbation) for all correct predictions in the

development set (10k examples in total). We observe a drastic dif-
ference for the stability for entailment predictions compared to the
contradiction and neutral ones. Such a distinction can be partially ex-
plained by how the entailment relationship is defined. The relationship
is valid only if the concept in the premise is more specific than the
concept in the hypothesis. Therefore, the synonymous perturbation
may change the entailment relationship, as the replaced noun or verb
can be more or less restrictive compared to the original. This inherent
disparity of sensitivity may warrant extra consideration when designing
future NLI models.

Besides presenting the summary view, the tool also allows the user
to quickly narrow down the selection to a single example by filtering
via the histogram and scatterplot (see details in Fig. 8). Through
the exploration of many samples with low stabilities, domain experts
notice that many highly unstable outliers are from sentence pairs where
the predictions are near the decision boundary (see Fig. 9(d): the
yellow circle corresponds to a entailment prediction that is very close
to neutral). However, we can also find sentence pairs, such as the one
illustrated in Fig. 9(e), in which the prediction is altered drastically
with minor perturbations (e.g., replace the word pile with heap in “pile
of snow”). In the following section, we examine what happened inside
the model and hypothesize the cause of the failure (see Fig. 10).
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Fig. 10. Editing the original attention (a) to correctly align the word ”heap”
with ”pile” as shown in (b) (these two words are highlighted in orange).
The change of attention leads to the change of prediction from neutral to
the class boundary between neutral and entitlement.

6.2 Scenario 2: Examine the Decision-Making Process
The predicted label alone provides limited information. Often, domain
experts want to know how the model arrives at a conclusion, and if the
prediction is incorrect, where in the model the error occurs. Examining
the decision-making process is not only instrumental in evaluating the
model performance but also essential for hypothesizing improvement
strategies for future models. In the NLI model, the three stages (en-
coder, attention, classifier) work in synergy to produce the prediction.
Therefore, making sense of the prediction involves understanding how
different parts of the model affect the final prediction.

In the previous section, we have noticed that a minor perturbation
of the sentence may result a change in the final prediction (Fig. 9(e)).
Here, we want to make sense of what leads to the failed prediction.
In this example, the premise P is “A very young child in a red plaid
coat and pink winter hat makes a snowball in a large pile of snow”,
and the original hypothesis H1 is “A child in a red plaid coat and pink
winter hat makes a snowball in a large pile of snow”. The perturbed
hypothesis H2 replaces the word pile with heap in H1. This example
should be rather straightforward for the model since there are only
minor differences between P and H1/H2.

As illustrated in Fig. 10(a), based on the graph attention visualization,
we can see in the attention for (P, H2) pair that the words pile and heap
are not well aligned. To test whether the alignment is what contributes
to the misclassification, the domain expert utilizes the attention editing
functionality in the matrix attention view (Fig. 5(c)) to make the word
pile align with heap (shown in Fig. 10(b)). After the edit, the original
prediction (Fig. 10(c)) has been moved from neutral to the classification
boundary (Fig. 10(d)), but the corrected attention fails to produce
a conclusive entailment prediction (another example, in which the
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Fig. 11. Experiment with all configurations for the label reassignment optimization. As shown in (d), the update to the attention stage seems to have
significantly less impact on the prediction result compared to the classifier or encoder stage of the model.

attention edit corrects the final prediction, is shown in Fig. 12). Such
an observation implies that the model does not firmly believe “heap of
snow” and “pile of snow” have the same meaning, which may indicate
a potential issue with the encoder or word embedding.

We have shown that the perfect alignment does not necessarily
guarantee a correct prediction. On the flip side, we may produce the
right predictions for the “wrong” reason (i.e., incorrect attention). For
example, in the sentence pair (P: “A couple is taking a break from
bicycling”, H: “sisters sit next to their bikes”), the words take and next
should not align with each other, yet the model still predict the correct
label (neutral).

6.3 Scenario 3: Update the Model to Correct a Prediction

Up to here, we have employed perturbation for input to understand pre-
diction robustness and utilized the perturbation of attention (and input)
to infer the model decision-making process. Both these perturbation
operations rely on forward propagation in the pipeline and assume the
model parameter remains unchanged. However, once we get a sense of
how predictions are made and hypothesize about the cause of the failure
in the case of a prediction error, it is natural to ask follow-up questions:
What does it take to fix an incorrect prediction? And more importantly,
what role does each of the three stages play in such a process? And, are
they affecting the prediction differently?

Domain experts can obtain answers to these questions by utilizing
the prediction and pipeline view in the proposed tool. As discussed in
detail in Section 5.4, we employed a margin-infused relaxed algorithm
(MIRA) based optimization with two objectives (apply the least amount
of change to the parameter, and make the new prediction as close to
the reassigned prediction as possible) to update the network parameters.
We then visualize how much each stage of the model is changed through
the distribution of differences between the two sets of parameters (see
Fig. 7).

To infer the role each stage of the pipeline plays, the proposed
tool allows the parameter update to be enabled or disabled for each
pipeline stage. The system also includes an automatic option to test
all the possible configuration combinations. As illustrated in Fig. 11,
the ground truth for this sentence pair is neutral. However, the model
produces an incorrect label entailment. The domain expert reassigns the
prediction to neutral, which triggers the prediction update optimization
for seven different pipeline configurations. Four configurations are
shown in Fig. 11(a)(b)(c)(d). The updated predictions are illustrated as
blue squares, and the arrowed lines highlight the corresponding pipeline
configurations.

Interestingly, all configurations except one are concentrated around
the full neutral prediction. Referring back to the pipeline visualization,
we observe that the only configuration that failed to produce the correct
label is the one for which we allow only updating of the attention stage
of the model. The domain experts find this observation very interesting
and suggest a preliminary interpretation. They believe the attention pro-
vides a way to compose word semantics. Individual word semantics are
yielded from the encoder and input embedding, whereas the composed

semantics participate in the classification layer. From this analysis, we
can extrapolate that the ultimate decision relies on the semantics (i.e.,
encodings and composed encodings in the classifier). The encoder and
classifier layer can swiftly adjust weights for word/composed semantics
to correct prediction. However, the attention layer, which only works
on how individual words are aligned, affects the prediction less signifi-
cantly. Recent word embeddings works (e.g., ELMo [30]) also support
such an observation that better word embeddings can substantially ben-
efit a model. However, the result by no means implies attention is not
useful, because it serves as a way to compose word semantics.

6.4 Scenario 4: Explore the Relationship Between Gram-
mar and Attention

The attention computation in the NLI model does not take the grammar
structure of the sentences into consideration, yet the attention often
highlights key elements of the sentence. Therefore, domain experts
wish to understand whether attention alone is sufficient to capture
sentence structure; and, more importantly, what kind of additional
information from grammar parsing can help address the NLI challenge.

In the proposed system, we overlay the sentence dependency tree
with the attention, which enables researchers to conduct comparisons
between attention and grammar structure. As illustrated in Fig. 12(a),
the prediction of the sentence pair (P: “A woman in a green jacket is
drinking tea.” H: “A woman is drinking green tea.”) is wrong. We can
infer the cause by examining the attention, in which the word green in
“green jacket” is aligned to the green in “green tea”. Due to such an
alignment, the model mistakenly believes the two greens are used to
describe the same thing (therefore, predict entailment). However, as we
examine the dependency tree, the two greens are attached to different
words, i.e., green in P is attached to “jacket”, whereas green in H is
attached to “tea”. Therefore, they should not be aligned to allow the
classifier to make the right decision. This experiment demonstrates
the potential benefit of including grammar structure in the alignment
computation. Interestingly, as illustrated in Fig. 12(b), by editing the
attention and forcing the alignment of the two greens to be zero, the
prediction label is corrected (neutral).

6.5 Scenario 5: Handcrafted Example Exploration
To test the limits of the model, domain experts often handcraft “extreme”
examples (such as the Facebook IPO example discussed in Section 2.1)
for which they know most models will have difficulty making a correct
inference. The researchers start with a set of experiments they plan to
run, from which they will develop new hypotheses for further analysis.
We can think of such a process as a natural blend of all previously
discussed scenarios. However, instead of having a specific goal in mind,
the domain experts focus on probing around to uncover any interesting
or out-of-the-ordinary behaviors in the model.

7 EVALUATION AND FEEDBACK

As discussed previously, we have worked closely with NLP experts
during the development of the tool. However, since these two NLP
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Fig. 12. The dependency tree provides valuable information that can help fix the prediction error. In (a), the model mistakenly aligns the word green,
which leads to an incorrect prediction. After examining the dependency tree (highlighted by pink squares), we can see the two greens are attached
to different words. In (b), by editing the attention and forcing the alignment of the two greens to be zero, the prediction label is corrected to neutral.

experts have been heavily involved in the design process, they may
not be the best candidates for identifying potential issues of the tool
due to familiarity. To uncover the limitation and identify areas for
improvement, we gathered a wider audience from either visualization
(four researchers, including three Ph.D.-level students and one postdoc
researcher) or NLP backgrounds (five Ph.D.-level students who are
familiar with the concept of natural language inference and attention)
for obtaining feedback for the tool.

With the goal to identify the potential interface design issues, we first
conducted an informal demonstration-and-feedback session with the
visualization group. We started by explaining the basic natural language
inference concept. We then demonstrated the features of the tool in
detail. After that, we answered questions and sought feedback. From
this session, we have gathered complaints and suggestions on various
aspects of the visual interface. Some of the identified issues include:
(1) difficult to distinguish different types of predictions (distinct colors
are added to the final version); (2) hard to recognize the ground truth
label (we now use a green rectangle to indicate the ground truth); (3)
lack of legends to understand the key elements in plots (legends are
added). We address these interface issues before presenting the final
version to the NLP group.

We conducted an individual revaluation session with each participant
from the NLP group, in which the participant was given 30 minutes
to experiment with the tool after an overall feature demonstration.
Since both the matrix and graph-based visual encodings were the most
common attention representations used in the NLP literature, most par-
ticipants can utilize them immediately and find the linked highlighting
feature of the two views quite useful. Once the participants become
familiar with the tool, they often try to type two similar sentences and
examine the attention and prediction. After that, they will modify some
words, or negate the hypothesis sentence, and then check the attention
and prediction again. Such a “perturb and observe” operation demon-
strates the most fundamental exploration strategy and matches well to
the perturbation-driven paradigm the proposed tool aims to support.

One participant shows us two examples after a quick exploration
session. In the first example, he identifies a case where the wrong atten-
tion alignment produces a correct final prediction. In the other example,
he finds a sentence pair with the incorrect attention that produces a
wrong prediction. However, even after he forces the correct alignment,
the prediction result remains incorrect. He believes observations such
as these will provide valuable insights for him to interpret the model.
Another participant comments that the ability to enable or disable the
model parameter update in the pipeline view is beneficial.

The participants also identify potential issues and places for improve-
ment. One participant wishes the pipeline view could provide more

detailed information compared to the current aggregated histogram
visualization. Another participant suggests the possibility to examine
multiple similar examples at a time (instead of one by one). Also, for
the participants who do not focus on NLI research, understanding all
the views at first can be a bit challenging. However, this issue can
be addressed by the modular design, as the user can simply enable
only the sentence, attention, and prediction views. Overall, all the
participants believe the proposed tool is very convenient for conducting
experiment and exploring various hypotheses, which is essential for
building intuitions about the model.

8 DISCUSSION

The current setup for the proposed tool is suitable only for the natural
language inference task. However, due to the modular design and the
many shared attributions among the end-to-end NLP models, we can
readily extend the system to handle other tasks. In the future, we plan
to open source our projection and add support for more NLP tasks,
such as neural machine translation and question-and-answer. From our
evaluation process, we found that the quality of automatic perturbed
sentences can be a potential limitation of the tool, since we rely on
WordNet to generate the perturbation, which has a rather inclusive
definition for synonymous. Often, we can identify perturbed sentences
that are not particularly meaningful (e.g., sentences with very obscure
words or usages). Even if all the words are meaningful, currently, there
is no way we can verify whether the perturbed sentence is valid natural
language composition or not. However, from the natural language
process point of view, the perturbation of a sentence while maintaining
semantic and correct grammar is an open research area on its own.

To conclude, this work introduces a perturbation-driven visual inter-
rogation system that provides experts with a streamlined exploration
environment for testing hypotheses and obtaining intuition about the
model. The proposed system frees the researchers from interruptions
and tedious operations, thereby allowing them to focus on more pro-
ductive activities.
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