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“I believe that we need another

In 1670’8 .o analysis properly geometric or
linear, which treats place directly

the way that algebra treats

magnitude.”

AN
Gottfried W. Leibniz Christiaan Huygens
German philosopher and mathematician prominent Dutch mathematician,
astronomet, physicist, and
Leibniz was dreaming of a calculus of figures where horologist

one can do arithmetic with figures with the level of ease
as with numbers.
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Overview

Topology is a major branch of mathematics that benefits a lot
from concepts of geometry, set theory and group theory, such as
space, dimension, shape, transformations and others.

In geometry,

— We study primitive figures such as triangles, parallelograms, polygons and
others;

— We also study their geometry properties such as side lengths, angle
measures and areas enclosed.

— A step further is learning when figures are geometrically the same or
congruent, i.e. having same geometrical properties.

— Then we study functions such as rotations which preserve congruence,
such function belong to a set of functions which perform rigid motion
on the given figure, they are commonly denoted as 1sometries.



Overview

* In topology; We can ignote geometric properties such as lengths and
angles because they have already been captured by geometry.

U &S

— Line segments with different lengths are topologically same shapes, if we
bend it to obtain a line segment to obtain the third or fourth shape, it will

stay the same topological shape, as long as we have not tear it into parts
or glue its ends.

Definition 1.1: Two objects are topologically identical i there is a continuous deformation (such as bending
and stretching) from one to the other.




Overview
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Think about these figures, are they topologically equivalent?!!!



Overview

Definition 1.2: _4» equivalence relation, ~, o a set of objects A is a relation on this set such that:

(1) Foreach x € A we have X~X (reflexitivity).
(2) For x,y € A, if X~y then y~Xx (symmetry).
(3) For x,y,Z € A, if X~y and y~z, then X~Z (transitivity).

A geometric equivalence relation has nothing to do with the positioning of
the figures, i.e. two congruent triangles can have vertices with different

coordinates. Hence congruence only conveys information related to the
geometric properties possessed by the figures.




Overview

* Figures as triangles and circles are considered as geomettric
objects, while topological spaces are the objects of topology.

Definition 1.3: Let X be a set and T a collection of subset of X. The collection T is called a topology on X

(1) The empty set @ and X arein T.
(2) The union of an arbitrary collection of members (sets) of T isinT .
(3) The intersection of any finite collection of sets in T is also in T .

The pair (X, T) is called a topological space.
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Functions

* ‘There 1s a common joke that Zopologisis are mathematicians who cannot tell their
donut from their coffee cups, this is simply because there is a continuous
function which deform a donut to a coffee cup.

A donut being deformed to form a coffee
cup, images taken from Wikipedia




Functions

* Thus functions are the core of topology, it can be defined as follows.

Definition 1.4: _4 function fis a well-defined rule assigning to each element of a set A a unique element in the
set B, it is denoted by f:A = B. The set A is the domain of the function [ and the receiving set B is its
codomain. The image or range of the function can be defined as f(A) = {f(a) € B| a € A} which is a
subset of B.

A function
Set A Set B

f:A—B

- ™ W W= o,

I)fgnritty f (A) = {f(a) € Bl a € A}

Range/image of the function



Functions

Definition 1.5: A function f:A = B is one-to-one (injection - monomorphism) if whenever f(ay) =
f(ay), then we have a; = a,.

b =fla;) = flay)

Co- Co-

. domain . domain
Domain Domain

This function is not one-to-one This function is one-to-one



Functions

Definition 1.6: A function f: A = B is onto (surjection - epimorphism) if for any b € B, there is an a € A
with f(a) = b

Set A fi:A—B Set B Set A f:A—B Set B

b =f(a,) = f(a,) b =f(a;) = f(ay)

b3 =f(a3) b3 =f(a3)

Co-
domain

Co-
domain

This function is not onto This function is onto



Functions

Definition 1.7: A function f: A — B is onto correspondence (bijection) if f is both one-to-one and onto.

Set A fA -~ B Set B

Domain

This function is a bijection



Functions

Definition 1.8: If f: A = B is a onto correspondence (bijection), then f has an inverse f~: B = A, which is
determined by the fact that if b € B, then there is an element @ € A such that f(a) = b. Furthermore a is
uniquely determined by b because f(a) = f(a") = b implies that a = a', hence we can define f ~*(b) = a.

* There 1s another way to define the inverse of a function which mainly
depends on the so-called identity function.

Definition 1.9: Let f and g be two functions such that f:A = B and : B = C , then the composition
gofiA-> C isdefinedforanyx € Abygo f(x) = g(f(x)) € C.

Definition 1.10: A4 function f: A = A defined by f (x) = x is called the identity function and is denoted
[‘7)’ id A

Definition 1.11: A function f: A = B is invertible #f there is a function g: B = A such that

idg=focg:B->Bandidy=gof:A-> A

The function g is called the inverse of f and is usunally denoted by f 2.




Functions

Example: Consider the function f that folds the rectangle A along the dotted line, f is not
invertible since if an inverse f ! does exist, it would take the square B = f(4) and give A back, but
to do so, the point x would have to go to both of the points in4, thus f ~1 is not a function.

/”” ~~~\~
;_e’ /’—— -~;§
- - =™
& o< ~
f:A—-B
—_

Domain: .4 Range: B



Functions

However, the function f that takes a rectangle and cut it in half along the dotted line is onto and
one-to-one, thus invertible. The inverse would take the two squares and glue them back together;
however this function is not continuous.

f:A—B

A, 4, fia) fiA,)

Domain: .4 Range: B



Functions

* Now it 1s time to define the continuity of a function, we will first consider
continuity of a single-variable function.

Definition 1.11: Lef f: R = R be a single-variable function, where R is the set of real numbers, this function is
continuons at a point X, € R if for every € > 0, there is § > 0, such that whenever |x — x| < 8, we have

If(x) = fx,)| < €

* In order to generalize this definition for other types of function with arbitrary
domain other than the real line, we need first to define a distance measure

Definition 1.12: .4 metric space s a set X fogether with a distance function d: XXX - R satisfying the
Jfollowing:

(1) d(x,y) =0 forall x,y € X.

2) d(x,y) =0 ifandonly if x =y

3) d(x,y) =d(y,x) forall x,y € X.

@) The triangle inequality: d(x,y) + d(y,z) = d(x,z) forall x,y,z € X.




Functions

Definition 1.13: The open disc or open ball centered at X in a metric space (X, d) with radins € is given
by D™*(x,¢) ={y € R™:d(x,y) < €} that is the points in X within & in distance from X.

* Now we can re-write the definition of continuity as follows.

Definition 1.14: Suppose that (X, dx) and (y, dy) are two metric spaces and f: X — Y is a function. Then
f is continuous ar x, € X i forany € > 0, there is a § > 0 such that D(x,,8) < fHD(f (x,),€)).
The function f is continuous if it is continuous at X, for all x, € X.

Metric Space A function Metric Space
,d
m— - D(f (x,), €)
- —
-1,
N Y- X -
S -

fHDU (x0), )

. domain
Domain
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Topological equivalence

Definition 1.15: Ler X and Y be topological spaces. Then X is topologically equivalent or
homeomorphic 70 Y if there is a continuous invertible function f: X — Y with continnous inverse f~2:Y —

X. Such a function f is called a homeomorphism.

- (O

A circular arc 1s topologically equivalent to a line segment but not topologically
equivalent to a circle. You can also view this figure in the other way, if we cut a circle
we will form a circular arc, but his operation is not continuous.

Theorem 1.1: Topolggical equivalence is an equivalence relation

This theorem implies that one can use topological equivalence like equality,
topologically equivalent spaces have the same topological shapes.




Topological equivalence

Definition 1.16: Lez X be a point on the sphere S%, then S* — {x} is homeomonphic to R? by stereographic
projection, 7his is defined by placing the sphere on the plane so that they are tangent and the puncture is at the
North pole, for each y € S%, note that the ray from X through y intersects the plane R? at a unique point. Define

S(y) 7o be the point where this ray intersects the plane.

Stereographic projection can be thought of as stretching the punctured sphere and laying it out flat.
Thus the punctured sphere $? — {x} and the plane R? are topologically equuvalent, however one

space 1s bounded and the other 1s unbounded.

Definition 1.17: Property IP is a topological property if whenever set A has property P and set B is topologically
equivalent to A, then B also has property P.

Thus boundedness 1s not a topological property.
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Now, it is time to specify the category of the
object to be investigated. In topology, the
most general object to deal with is a set of

points on which functions can be defined.

N

~

)




Open and Closed Sets in R”

* We will consider point sets which are subsets of the real Euclidean 7-space

which 1s defined as follows.

Definition 1.18: Rea/ Euclidean n-space is given by R™ = {X = (X1, %3, ..., X )| X; € R} where X denotes a

point with n-coordinates.

Example: R? = R is the real line while R? = {x = (x,y)} is the standard Euclidean plane and
R3 = {x = (x,y,2)} is the three dimensional space. In general we use x to denote a real number

while X to denote a point in #-dimensional space where » > 1.

* We can define a distance measure for Euclidean space using the Euclidean
metric which is given by the following definition.

Definition 1.19: Given two points X = (X1, X2, -, Xp) and y = (¥1,¥2, -, Yn) in R™, the Euclidean

distance /metric between X and'y is given by

dxy) = lIx—yll = v (x; = ¥1)2 + (3 — ¥2)2 + - + (xn — ¥n)?




Open and Closed Sets in R”

* Hence, a disc or ball centered at with radius  can be defined as:

D'(x,r)={y € R™:|x—y| <r}
Ay

N\

> R > X

xX-r X X+r
D'(x,r) ={y € Ri|lx—yll <1} D2(x,r) ={y € R%:|lx—yl|l < r}

Definition 1.20: D™ (X, 1) is called (disc) neighborhood of X in R™ which is an open disc containing X.




Open and Closed Sets in R”

If we have a set of points in the Euclidean 7-space, a point can be related to
this set in terms of its neighborhood in one of the following ways.

Definition 1.21: Let A be a set of points with A © R™ and R™ — A be all points not in A, i.e. the complement
of A:

(1) A point X € R™ is an interior point of A if there is a neighborhood N of X such that X € N' € A,
2.e. the disc is totally enclosed in A.

(2) A point X € R™ is an exterior point of A if there is a neighborbood N° of X such that X € N° &
(R™ — A), i.e. the disc is totally outside A. Another way of saying thisis N N A = ¢.

(3) A point X € R™ is a limit/accumulation point of A if every neighborbood N of X contains at least
one point of A, thus N° N A #+ ¢. Hence every point of A is a limit point of A.

(4) A point X € R™ is an isolated point of A if X € A and it has a neighborhood N satisping N° 0
A = {X}. Hence a point X is not isolated if every neighborhood of X contains at least one point in A other
than itself.

(5) A point X € R"™ is a boundary/ frontier point of A if every neighborhood N of X intersects both A

and R™ — A, i.e. contains points in and outside A. Thus boundary points are also kmit points.




Open and Closed Sets in R”

Point x is an interior point of 4 since it has a neighborhood totally enclosed
in A, point y is an exterior point of .4 since it have a neighborhood which lies
outside 4, while g is a boundary point of 4 because it has a neighborhood
which contains points in and outside A.



Open and Closed Sets in R”

* Now, we are ready to define open and closes
sets.

Definition 1.22: 4 set A is said fo be open if every point X € A is an interior point.

Definition 1.23: 4 sef A is said fo be closed if every point X & A is an exterior point.

(2

* Let A be a disc including the upper semicircle '
but not the lower one, x is a point in A which
is not an interior point of A4 (it is a boundary
point) so A cannot be an open set, on the
other hand point y is not in 4 but it 1s also
not an exterior point to A, hence A is not a
closed set, thus being not an open set does
not mean to be a closed one.



Open and Closed Sets in R”

Definition 1.24: 4 set A € R" is said to be bounded if A € D™(0,1) for some 1. Thus the set A can be

enclosed in some sufficiently large disc centered at its origin, i.e. A does not go on forever.

Definition 1.25: The interior of a set A, denoted by Int(A), is the set of all interior points of A. Thus
Int(A) C A.

If A consist of a single point X, then Int(4) = ¢ € A = {x}

Definition 1.26: The boundary of a set A, denoted by bdy(A), is the set of all boundary points of A. It is also
known as the frontier of the set A, denoted by Fr(A).

Definition 1.27: The closure of a set A, denoted by CL(A), is the set containing the points which lies in A and
the points on the boundary of A, i.e. A U bdy(A). Thus for any set A, we have A € CL(A).

Theorem 1.2: For any set A € R™, its closure CL(A) is a closed set.

Definition 1.28: 4 sequence 7n A is an infinite ordered set of points {X;}i=q = {X1, X2, X3, ... } where
X; € A € R",

Definition 1.29: 4 point x is a limit point of a sequence {X;}j=, if every neighborhood of x contains an
infinite number of X;'s.




Open and Closed Sets in R”

There is a difference between a sequence and a set, consider {(—1)¥}4-, in R, as a set this consists
of only two elements {—1,1} = B, but as a sequence this is the infinite list {—1,1,—1,1, ...}, this

sequence has two limit points -1 and 1, both of which are also the limit points of the set B.

Theorem 1.3: If x is a limit point of a set A S R™, then there is a sequence of points {X;}i=q, where X; € A,
such that X is a limit point of the sequence {X;}i=1.

Theorem 1.4: If {x;}i2, is a sequence with each x; € A € R™ and x is a limit point of the sequence {X;}i=1,
then X is a limit point of the set A.




Relative Neighborhoods

Consider the open mterval (-1,1) 1n R* which can be defined as D1(0, 1), this interval is open when
considered as a subset of R! however when considered as a subset of R?, ie. a plane, the interval 1s
not open any more since any disc about a pomnt mn (-1,1) will overlap with the upper and lower half
planes. Hence the neighborhood should be defined within a context, see the following definition.

y
A
]RZ
{  ( a] I W 4 m N
— y A W )7
-1 1 -1 1

Definition 1.30: Ler A © R™. _A neighborhood of a point X € A relative to A is a set of the form D™ (X, 1) N
A.




Relative Neighborhoods

Examples

(1) consider the interval [—1,1],let x =1 € [—1,1], if we consider its neighborhood as
D! (1,%), 1.e. open imterval centered at 1 with radius Y2 , a part of the neighborhood will Lie
outside the interval [—1,1], hence the point x = 1 has the set (%, 1] as a neighborhood
relative to [—1,1], since D? (1,%) n[-1,1] = (%, 1], moreover the set (%, 1] is considered
open in [—1,1] since every point in (%, 1] has a neighborhood (relative to [—1,1]) totally

.1 1 .. : .
enclosed 1n (;, 1], but (E' 1] is not an open set when viewed as a subset of R.

r , 7 - N\

| *  —
C Y N . 7 R
-1 1 1 1%



Relative Neighborhoods

Examples

(2) Consider a cylinder viewed as a subset of R3. The neighborhood of the point x with respect
to R3 is supposed to be an open ball/sphere, however when viewed to be a point on the
surface of the cylinder, the neighborhood of x relative to the cylinder 1s a warped disk which
is the intersection of the cylinder surface with an open ball in R3? centered at x. In the same

manner, the neighborhood of y is a warped half disk.

— T
¥y. -

e

w




Relative Neighborhoods

* Now we can consider reformulating the definitions of interior, exterior and
limit points, since their definitions only refer to neighborhoods not
specifically to discs, these definitions remain valid for relative neighborhoods.

Definition 1.31: e+ B € A;

(1) A point x € A is an interior point of B relative to A if there is a neighborhood N of X relative to
A such thatx € N S B, i.e. the neighborbood is totally enclosed in B.

(2) A point x € A is an exterior point of Brelative to A if there is a neighborhood N of X relative to
A such thatx € N © A — B, i.e. the neighborhood is totally outside B.

(3) A point x € A is a limit point of B relative to A if there is a neighborbood N of X relative to A
such that N N B # (.

* Hence the definitions of open sets can be reformulated as follows;

Definition 1.32: Let B © A, the set B is open relative to A if every point x € B is an interior point to B
relative to A, i.e. if every point X € B has a relative neighborbood N” withx € N° € B.




Relative Neighborhoods

* Another way of defining relatively open and closed sets is the following
theorem.

Theorem 1.5: 1.t B € A € R,

(1) Bis open relative to A if and only if B = A N O for some set O which is open in R™,
(2) Bis closed relative to A if and only if B = A N\ C for some set C which is closed in R™.




Continuity

* We will reformulate the definition of function continuity in
terms of open and closed sets.

Definition 1.33: Let D © R™ and R © R™. A function f:D — R n is continuous if whenever A is an
open set in R, then f~1(A) is an open set in D, where f 1 denotes the set-theoretic inverse of f, such that f~1 is
defined for any subset A in the range of f by f1(A) = {X€ D : f(X) € A}.

Domain: D f_l(N) Range: R



Compact Sets

Definition 1.34: 4 set A is (sequentially) compact if every infinite sequence of points in A has a limit point in
A, that is if {x;}{=q1 is a sequence and X; € A for each i, then there is a point X € A such that X is a limit point

of (X }iZq-

Examples:

(1) The real line R is not compact, since the sequence {1,2,3, ...} = {n}; -, consists of points in

R but has no limit points in R.

(2) The interval (0,1), the number O is a limit point for the sequence {%,

W=
N

1
y 0 } = {;}‘?10=2 =

(0,1), but 0 & (0,1), hence the open interval (0,1) is not compact.

Theorem 1.7: Heine-Borel Theorem —_4 ser A © R" is compact if and only if it is closed and bounded. ‘

* The open interval (-1,1) 1s bounded but not finite (not compact), imagine walking
along this interval with an exponentially decaying step, as you move towards 1, your
step gets smaller, hence one will never reach 1, in this sense (-1,1) is endless hence
infinite. On the other hand, the closed interval [-1,1] is compact and does not go
forever since it has ends. Thus topological properties should not be based on distance
along as in boundedness since in topology distances mean very little.



Connected Sets

* Another fundamental notion in topology 1s the number of
pieces/components an object has, if an object contains only one piece, it is
considered connected; this is true if all its parts are stuck to each other.

A B A’ B’
—l) ——
. X Y

— Xoand Y are divided into two parts, where B looks exactly like B’ and A looks like A’ with the
point x added on, x can be viewed as gluing A and B together to make X connected, x is
absent from Y, hence there is a gap in Y, i.e. Y has two pieces. Note that x is in the set A and
is a limit point of both A and B, so that x cannot be separated from B so X is connected
while Y is not connected.

Definition 1.35: .4 sef § s connected i whenever S is divided info two non-empty sets such that S =

AUB,A # @,B + @ and AN B = @, then either A or B contains a limit point of the other.

— Example: the interval [0,1] is connected.

Theorem 1.8: If f: A = B is a continuous function from a connected set A onto the set B then B is connected.
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neighborhoods which makes use of Euclidean distance,
however studying point-set topology on a more abstract

klevel requires different definition of neighborhood. /




Open Sets and Neighborhoods

e Recall;

Definition 1.12: .4 metric space is a set X together with a distance function d: X X X — R satisfying the
following:

(1) d(x,y) =0 forall x,y € X.

2) d(x,y) =0 ifandonlyif x =y

3) d(x,y) =d(y,x) forall x,y € X.

@) The triangle inequality: d(x,y) + d(y,z) = d(x,z) forall x,y,z € X.

* Definition 1.12 defines metric space in terms of metric/distance measute 4,
the metric topology defined on a metric space can be defined as follows.

Definition 1.36: Let X be a metric space, the metric topology on X is defined by using sets N as neighborhoods of

a pointx € X where N' = Dy (X,7) = {y € X:d(x,y) < 1}, with r as a real number greater than zero.

— Now any distance function defines a collection of neighborhoods which in turn defines
open, closed sets and continuous functions.

— Thus we can redefine everything in terms of more general open sets and neighborhoods
starting with the definition of a topological space.



Open Sets and Neighborhoods

Definition 1.37: .4 topological space is a sef X with a collection B of subsets N € X called neighborhood

such that:

(1) Every point is in some neighborbood, i.e. for every x € X, there exist a neighborbood N° € B such that
X EN.

(2) The intersection of any two neighborhoods of a point contains a neighborhood of the point, ie. for every
Ny, Ny € B withx € Ny NNy, there exist N3 € B such that x € N3 € Nj N N,.

The set B of all neighborhoods is called a basis for the topology on X .

Definition 1.38: Let X be a fopological space with a basis B. A subset O © X is an open set if for each
x € O there is a neighborhood N € B such that x € N and N & O. The set T of all gpen sets is a topology
on the set X.

* Note that by definition, it is clear that any neighborhood is itself an open set,
hence it is possible to define everything using only open sets, however the
smaller collection of neighborhoods is usually easier to work with.




Open Sets and Neighborhoods

Theorem 1.9: Let X' be a fopological space with a basis B and topology T. A set O € X is open (note that

O €T)ifand only if O can be written as union of elements of ‘B which are open sets.

T ={0,X} T =10, {x}, X}

. .%.

T =10,},X} T =10,{x}{y}, X}
Schematic representation of all the topologies on a set with two elements, i.e. let X = {x,y}, all
possible topologies defined on X are T = {0, X}, T ={0,{x},X} , T =1{0,{y}, X}and T =
{0, {x}, {y}, X3}, note that the empty set @ must always be considered as an open set.



Open Sets and Neighborhoods

Definition 1.39: If C is a subset of a topological space X with topology T then C is closed if X — C is open. ‘

Theorem 1.10: Lez X be a topological space:

(1) The empty set @ and X are closed sets.
(2) The intersection of any collection of closed sets in X is closed.
(3) The union of any finite collection of closed sets in X is closed.

If X is a topological space with a subset A, then A inherits a topology from X called the subspace
topology defined and the relative topology.

Definition 1.40: Lez X be a topological space with topology T and let A S X, a neighborbood of a point x € A
relative to A s of the form N 0 A when N is a neighborbood of x in X, the topology Ty generated by this basis is
called the subspace topology on A induced by the topology T on X.

Theorem 1.11: Let A be a subset of a topological space X, the apen sefs relative to A are precisely the open sefs of
X intersected with A, i.e. B is open in A if and only if B = A 0\ O for some set O which is open in X, furthermore
B is closed in A if and only if B = A N\ C for some set C which is closed in X




Continuity, Connectedness and Compactness

Definition 1.41: Let X and Y be topological spaces, then a function f: X — Y is continuous if whenever a set A
is gpen in 'Y, f~1(A) is an open set in X, if we let Ty denote the topology on X and Ty the topology for Y, this
can be restated as: f is continuous if for every A € Toy, we have f ~1(A4) € Ty.

Definition 1.42: A fopological space X is connected if X cannot be written as a union of two non-empty disjoint
opeﬂ sers.

Theorem 1.12: Let X and Y be topological spaces, and a function f: X — Y be a continuons function onto Y, if

X is connected then Y is connected.

Definition 1.43: Let A be a subset of a topological space X', an apen cover of A is a collection O of open subsets of
X such that A lies in the union of elements of O, i.e. A € UpepO.




Continuity, Connectedness and Compactness

A subcover of O is a subcollection Q' € O, so that 4 lies in the union of the elements of O’. A finite

cover (or subcover) 1s a cover O consisting of finitely many sets.

Definition 1.44: _4 topological space X is compact if every open cover of X has a finite subcover. ‘

‘ Theorem 1.13: If X is a compact topological sface and A is a closed subset of X, then A is compact.

Theorem 1.14: Let X be a compact topological space and f: X = Y be a continuous function from X onto a
topological space Y, then Y is compact.




Product Spaces

* Now, we will see a way of creating new topological spaces from
old ones.

Definition 1.45: Let X and Y be any spaces, the (Cartesian) product of X and Y is the set of all ordered pairs
(x,¥) such that X XY = {(x,y):x € X and y € Y}.

Let I denote the unit interval [0,1] and S! the unit circle, then I X I is the unit square, S!xIisa cylinder and

§1 x §1 is the skin of a doughnut or torus.

Theorem 1.15: Let X and Y be connected topological spaces. The product X X Y is connected.

Theorem 1.16: Let X andY be compact topological spaces. The product X X Y is compact .




Agenda

Overview

Functions

Topological equivalence

Point-set topology in R"

Point-set topology — more abstract level

Surfaces

ﬁj sing combinatorial approach to topology allows us to studh
spaces which are built from a uniform set of building
blocks; hence we need to study the blocks themselves and
how they are combined to form a topological space. The
basic building blocks are called ce//s which are assembled
into complexes. The cells are of varying dimensions however

we will concentrate on spaces which are locally 2-

@mensional. /




Complexes

Definition 1.46: _4» n-cell is a set whose interior is homeomorphic to the n-dimensional disc D™ = {x €
: with the additional property that ifs boundary or frontier must be divided into a finite number of
R™: ||x|| < 1} with the additional #y that its boundary or front t be divided into a finite number of

lower-dimensional cells, called the faces of the n-cell. We write 0 < T if 0 is a face of T.

(1) A O-dimensional cell is a point A.

(2) A 1-dimensional cell is a line segment a = AB, where A < a and B < a, that is A and B are faces of
the cell a.

(3) A 2-dimensional cell is a pohgon (often a friangle), such as @ = AABC, and then AB,BC,AC < g,
note that A < AB < @, hence A < @.

@) A 3-dimensional cell is a solid polybedron (often a tetrabedron) with polygons, edges and vertices as faces.

Faces of an #-cell are lower-dimensional cells: the endpoints of a 1-cell or edge are O-
cells or points, the boundary of a 2-cell or polygon consists of edges (1-cells) and
vertices (0-cells), these cells will be assembled together to form complexes.



Complexes

The space on the left is not considered to be a cell, it satistisfies the first condition of the
definition where its interior is homemorphic (topoloigcally equivalent) to a 2-disc, however
its boundary is a circle which is not a 1-cell, in order to be considered as a cell, its boundary
should be divided into finite number of lower dimensional cells, 1.e. edges (1-cells) and
vertices (0-cells) as illustrated on the right.



Complexes

Definition 1.47: A complex K is a finite set of cells, r.e. K = U{o: o is a cell}, such that:

(1) If a isacell in I, then all faces of o are elements of K.
2) If @ and T are cells in I, then Int(a) N Int(t) = Q.

The dimension of K is the dimension of its highest-dimensional cell.

{ ] L
The second condition of the definition prohibits these intersections between cells. It is
important to note that a complex is more than a set of points, since points are
arranged into cells with various dimensions. In each case above the intersections are
homeomorphic to cells however they are not among the cells of the complex



Complexes

sy
SSive

* A topological object may be represented by many complexes, we mentioned

before that these shapes are topologically equivalent, hence they represented
the same topological space but with different complex structures.



Complexes

Definition 1.48: Ler K be a complex. The set of all points in the cells of K is defined as | K| ={x : x €
g € K,aisacellinJ} is the space underlying the complex I, or the realization of K.

The main difference between a space and a complex 1s that a complex XK 1s a set of cells, it 15 a

layered structure build up of cells of various dimensions, while a space |K| is a set of points.

Definition 1.49: Ler K be a complex. The k-skeleton of I is K, = {k — cells of K}, that is k-skeleton
is the set of cells in I having a dimension of k. Noting that Iy, is a k-complex and K =VUg_q K, where
n = dim (K), which is the dimension of its highest-dimensional cell.




Complexes

- .
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The complex K is formed from two polygons (the square and the triangle) and the extra edge, by
;gluirzg ‘ider:tifj.‘irz;g the edges labeled ai, a; and a; to form one new ed-.ge labeled ‘2’ and ider:tifjfir:g the vertices
A1, Az and As; to the vertex A in K, and By, B>, B; and B4 to from the vertex B in K. The arrows can be used
instead of labeling the vertices to specify a direction/orentation for the edges which must be respected when
the gluing 1s done. Note that a single point on the edge “a’ in K correspond to three different points on the
two polygons, whereas the vertex A correspond to three vertices while the vertex B correspond to four
vertices.



Complexes

* 2-complexes have three types of points:

— Points which lie in the interior of one of the 2-cells
or polygons.

— Points which lie in the interior of one of the edges.

— Vertex points.



Complexes

Now, we will defined the neighborhoods for each type of pomts starting with a set of polygons

Points lying inside a 2-cell: if a point X lies in the interior of a polygon P; then one can define the

neighborhood of X to be any disc totally enclosed in the interior of P;.



Complexes

* Points lying on an edge:

B, B, B;
a, a,
A, A, A;

* DPossible neighborhoods of points lying on an edge, z lies on an
edge which is not a part of the boundary of any 2-cell, while y
lies on an edge of the complex.



* Vertex points:

Complexes

B, B, B,

=

a,
A, A

a
3




Manifolds and Surfaces

Definition 1.50: _4A#» n-dimensional manifold 7s a topological space such that every point has a neighborhood
topologically equivalent to an n-dimensional open disc with center X and radius v, ie. D"(X,7r) ={y €
R™: ||x — y|| < r}. We further require that any two distinct points has disjoint neighborhoods. A 2-manifold is
often called a surface.

Example: The sphere, denoted by §?, is a surface, even though it exists in a 3-dimensional spaces
(this emphasizes the difference between intrinsic and extrinsic properties, where intrinsic properties
have to do with the object itself, in contrast to extrnsic properties which describe how the object 1s
embedded in the surrounding space). If one considers a point X € $? as a point in R3, it will have a
neighborhood that looks like a ball. However as a point on the sphere, with the relative topology, x
has neighborhoods of the form: N =D"(x,r) ={y € R3:||x—y||<randy € $?}, these

neighborhoods look like 2-dimensional discs which have been warped a bit. See the following figure.



Manifolds and Surfaces

The sphere is represented by a disc with a zipper. On this planar diagram for the
sphere, neighborhoods of interior points like x are open discs totally enclosed in the
2-cell disc which form the sphere, while points along the edge such as y has
neighborhoods are half-discs, such that when the edges of the planar diagram are
glued together, these half-discs are also glued to form a neighborhood of y
topologically equivalent to a disc.



Manifolds and Surfaces

Definition 1.51: _4#» »-manifold with boundary is a 7opological space such that every point has a
neighborhood topologically equivalent to either an n-dimensional open disc, i.e. D™ = {x € R™: ||x|| < r}, or the
bhalf-disc D} = {xX = (X1, X3, ..., Xn) € R™: ||X|| < r and x,, = 0}. Points with half-disc neighborhoods are
called boundary points, where the homomorphism must send a boundary point fo a point with X, = 0. The edge
of n-manifold is an (n-1)-manifold.




Triangulations

Definition 1.52: _4 Jocally 2-dimensional topological space X is triangulable if a 2-complex structure I can
be found with X = K|, and I has only triangular cells satisfying the additional condition that any two triangles
are identified along a single edge or at a single vertex or are disjoint. A triangulated complex I is called a

simplicial complex or a triangulation on X. A cell of a simplicial complex is called a simplex.

* These are valid cell complexes with only triangular 2-cells, but are not triangulations



Triangulations

* We often want to triangulate a given complex. Each face of a 2-
complex is a polygon which can be easily divided into triangles
by introducing a new vertex in the interior of the polygon then
connecting this new vertex to each of the vertices on the

boundary of the polygon.

»




Triangulations

* However, it should be noted that although this process gives a method for
dividing any 2-complex into triangles, it does not always give a triangulation
satistying Definition 1.52.

OO

* The planar diagram for the sphere is divided into triangles, but his is not a

triangulation since this complex has two different triangles labeled PQR,
hence it cannot be simplicial. The triangles must be further subdivided



Triangulations

Definition 1.53: Let K be a 2-complex with triangular 2-cells. A new complex K' called the barycentric
subdivision of K s formed by introducing an new vertex at the center of each triangle and a new vertex at the
midpoint of each edge and drawing edges from the center vertex to each of the new midpoint vertices and to the original
vertices. In general, this is described as creating a new vertex Vg in the center of every cell o € X, including any

vertex P when we define Vp = P, and add a connecting cell from Vg fo vy whenever 0 < T.

AL




Triangulations

Definition 1.54: A4 #riangulated surface (without boundary) is a simplicial 2-complex such that:

1) each edge is identified/ glued to exactly one other edge;
2) the triangles meeting at a vertex can be labeled T, T, ..., T, with adjacent triangles in this sequence
identified/ glued along an edge and'T , is glued to T along an edge.

The first condition guarantees points on an edge belong to exactly two
triangles, and so a disc-like neighborhood exists for each point on the edge
resulting from gluing two half-discs together, one from each triangle. While
the second condition ensures that a neighborhood at a vertex looks like a disc
formed from gluing #-triangles which share this vertex.



Triangulations

(a)

(a) an edge point on a surface has a disc-like neighborhood,
(b) an edge point on a complex which 1s not a surface,

(c) A vertex point on a surface has also a disc-like neighborhood



Triangulations

Theorem 1.17: A surface is compact if and only if any triangulation uses a finite number of friangles.

Theorem 1.18: _4 surface is connected if and only if a triangulation can be arranged in order T, 'T,, ..., T, with
each triangle having at least one edge identified/ glued to an edge of a triangle listed earlier.

A triangulated surface with boundary is a topological space obtained from a set of triangles with

edges and vertices identified to satisty Definition 1.52, except some edges will not be identified.
These unmatched edges form the boundary of the surface.

Definition 1.55: 4 triangulated surface with boundary is a topological space with a simplicial 2-complex such that;

1) Each edge is identified to at most one other edge.

2) The triangles meeting at a vertex can be labeled 1., T,, ..., T, with adjacent triangles in this sequence
identified along an edge and ‘T, either glued to T, along an edge, or'T, and T, each have one edge on the
boundary.

3) No edge not on the boundary can have both vertices on the boundary.

The third condition is added so that it is possible to clearly identify the vertices and edges of the
boundary. If vertices A and B are on the boundary, then the edge AB must also lie on the
boundary. In order to satisty this condition, we may have to alter the simplicial complex by
dividing some of the triangles and edges into smaller pieces by using the barycentric subdivision
to obtain a new triangulation. In practice, however, it 1s more efficient to only subdivide edges and
triangles as necessary, thus minimizing the number of new triangles.
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