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Overview — Computational Geometry

Computational geometry is the study of algorithms for solving geometric
problems on a computer.

In this lecture series we are mainly concerned with discrete and combinatorial
geometry where polygons play a much larger role than do curved boundaries.

Much of the wotrk of continuous curves and surface falls under the umbrella
of geometric/solid modeling,

Computational geometry is a field by itself; however we will be focusing on
three main topics.

We will begin with the core concern of computational geometry which is
polygon partitioning, then move to the issue of convex hull computation
and finalizing with triangulation of a given set of points.

In this lecture, we will discuss polygon partitioning/triangulation.



Art Gallery Theorems



Art Gallery Problem



Imagine an art gallery room,the question now is:
— How many stationary guards are needed to guard the room?

Each guard is considered to be a fixed point that can see in every direction, that is, has a
2n range of visibility.

An equivalent formulation is to ask how many point lights are needed to fully illuminate
the room.

This problem can also reformulated as how many video cameras required to guard this
gallery?

These cameras are usually hung from the ceiling and they rotate about a vertical axis.
The images taken from these cameras are sent to TV screens in the office of the night
watch.

Since it is easier to keep an eye on few TV screens, the number of cameras should be as
small as possible. This small number will lessen the cost of the security system needed to

watch-out this place. However on the other hand we cannot have too few cameras,

because every part of the gallery should be visible to at least one of the cameras.

Hence we should place the cameras at strategic positions such that each of the cameras
guards a large part of the gallery. This gives rise to what-so-called Art Gallery Problem.



Definition 1: Art Gallery Problem: bow many cameras/ guards do we need to guard a given gallery and how do
we decide where to place them?

* Let’s now define the art gallery problem
more precisely, the notion of gallery can be
formalized as follows;

— A gallery is a 3-dimensional space,
however its floor plan gives us enough
information to place the cameras,
hence we can model a gallery as a
polygonal region in the 2-dimensional
space.

* Most computational geometry algorithms perform their work on geometric objects
known as polygons. Polygons are considered to be a convenient way to represent many
real-world objects, however polygons can rather be complicated such that they are needed
to be composed of simpler components, this leads to the topic of this section:
partitioning polygons.

* In the following we will formalize the definition of a polygon, specifying which types of

polygon we will deal with. Intuitively, we will restrict ourselves with polygonal regions
which have no holes.



Polygon Definition



Definition 2: .4 polygon s the region of a plane bounded by a finite collection of line segments forming a simple

closed curve which is homeomorphic image of a disk, i.e. it is a certain deformation of a disk.

A more formal definition can be given as follows,

Definition 3: Let Vg, V1, ..., Up_q be N points in the plane R?, here all index arithmetic will be mod n,
implying a cyclic ordering of the points, with Vo following Vp—q since (n — 1) +1 =n = 0(mod n). Lez

€g = VoVy, €1 = V1V .., €n—q1 = VUn_1Vg be N segrients connecting the points. Then these segments bound a
polygon (simple closed curve) if and only if:

(1) The intersection of each pair of adjacent segments in the cyclic ordering is the single point shared between
- -

thew, i.e. € N €41 = Vyyp, forallit = 0,1,2,...,n — 1.
(2) Nonadjacent segments do not intersect, i.e. e Ne =@, forj] #1+ 1.

The reason these segments define a curve is that they are connected end to end, the reason the curve is closed is that they
Jform a cycle, the reason the closed curve is simple is that nonadjacent segments do not intersect. The points V; are called

vertices of the polygon and the segments €; are called its edges. Note that a polygon with n vertices has n edges.




Theorem 1: Jordan Curve Theorem : Every simiple close plane curve divides the plane into two components.

The two parts of the plane are called the interior and exterior of the curve. The exterior is

unbounded while the interior is bounded. Note that we define a polygon P as a closed region of the

plane, however it is common to consider the polygon to be just the segments bounding the region
and not the region itself. we will use the notion 9P to denote the boundary of the polygon P, hence
by our definition we have dP € P.

We will use the convention of listing
the vertices of a polygon in a
counterclockwise order such that if you
walked along the boundary of the
polygon visiting the vertices in that
order, the interior of the polygon
would be always to your left.

Examples of non-simple polygons, where adjacent
segments share a common point, however non-adjacent
segments intersect



Visibility

It 1s time now to define the notion of
visibility.



Definition 4: Lez X,V be tuwo points in the polygon P, we say that point X can see point'y, ory is visible 7o X if
and only if the closed segment XY is interior to the polygon P, i.e. Xy S P. Equivalently, we say X has clear
visibility 70y if xy € P and xy N 0P S {x,y}, that is the segment joining the points X,y intersect the
boundary of the polygon P at either one of thews or both.

Definition 5: A guard/ camera is a point. A set of guards/ cameras is said to cover a polygon if every point in the
polygon is visible to some guard/ camera.

Point x can see point y since the line segment

joining these two points is totally enclosed in the
interior region of the polygon.




How many
Cameras/Guards?!!

N .
" O
PHIL THE SECURKY GUARD



How many cameras/guards do we need
to guard a simple polygon?

This mainly depends on the polygon at
hand, since the more complex the
polygon is , the more cameras/guards
required.

However we can express the lower and
upper bounds on the number of cameras
in terms of the number of vertices of
the polygon, i.e. . It is important to note
that even if we have two polygons with
the same number of vertices, one might
be easier to guard than the other.

A convex pohgon for instance can be
guarded with one camera.

Two polygons with the same number of
vertices, however the one on the top needs at
least two cameras to be guarded since it is
non-convex polygon while the one on the
bottom needs only one camera because it is a
convex polygon



Definition 6: -4 polygon is said to be convex if it has no dents. A vertex is called rellex vertex if is internal

angle is strictly greater than T, otherwise the vertex is called convex vertex. A polygon with N vertices is said to be

convex polygon if all its vertices are convex.

Lookingat the worst-case scenario, whatis the bound of the number of cameras/guards thatis good

for any simple polygon with N vertices.

However since the polygon can be arbitrary complex, we need to decompose it into pieces that are

easy to guard, namely triangles. This gives rise to the theory of polygon triangulation.

Decomposing a polygon into triangles can be done by drawing diagonals between pairs of polygon
vertices.

Definition 7: A diagonal of a polygon P is a line segment between two of its vertices @ and b that are clearly
visible to one another, that is the intersection of the closed segment Qb with the boundary of the polygon OP is exactly
the set {a, b}, thus the diagonal cannot make grazing contact with the boundary, in other words a diagonal is an open

line segment that connects two vertices of P and at the same time the whole diagonal lies in the interior of the polygon

P.

The closed segment ab is not a
diagonal since it makes a grazing
contact with the boundary




In order to partition a given polygon into triangles, we need to have non-crossing/non-intersecting

diagonals, which can be defined as follows.

Definition 8: Tuo diagonals are said to be non-crossing / non-intersecting dragonals if their intersection is

a subset of their endpoints, that is they share no interior points.

If we add as many non-crossing diagonals to a polygon as possible, the interior of the polygon is

partitioned into triangles. Such a partition is called a #iangulation of a polygon.

Definition 9: A decomposition of a pohygon P into triangles by a maximal set of non-intersecting/ non-crossing
diagonal is called tnanguwlation Tp of the polygon P. We require that the set of non-intersecting diagonals be
maximal to ensure that no triangle has a polygon vertex in the interior of one of its edges. This could happen if the
polygon bas three consecutive collinear vertices.




* Triangulations are usually not unique, 1.e. a given polygon can have more than
one triangulations, this is because diagonals may be added in an arbitrary
order, as long as they are legal diagonals and non-crossing.

Simple polygon and one of its possible triangulations



Now, we can guard P by placing a camera in every triangle of a triangulation Tp of P. However,

does a triangulation always exist?

And how many triangles can there be in a triangulation? The

following theorem answers these questions.

Theorem 2 - Triangulation: Every simple polygon admits a triangulation, and any triangulation of a simple

polygon with n- vertices consists exactly n-2 triangles.

The key to proving the existence of a triangulation i§ proving the existence of a diagonal.

Once we

have that, the rest will follow easily. However, we need a fact to begin the proof: Every polygon

must have at least one strictly convex vertex.




Lemma 1: Every polygon must have at least one strictly convex vertex.

Proof: i

Let the edges of a polygon P are oriented so that their direction indicates a counterclockwise
traversal, then a strictly convex vertex is a left turn for someone walking around the boundary, and a
reflex vertex is a right turn. The interior of the polygon is always to the left of this hypothetical

walker.

N

reflex vertex
turn right

Convex vertex (turn left)



Proof: Continued

Let [ be a line through a lowest vertex 2 of P, lowest in having minimum y coordinate with respect
to a coordinate system; if there are several lowest vertices, let 2 be the rightmost. The interior of P
must be above L. The edge following » must lie above L. Together these conditions imply that the

walker makes a left turn at 2 and therefore that 2 is a strictly convex vertex.

The rightmost lowest vertex must be strictly convex.



~C— L

The proof still holds even if we turned the polygon upside down.

This proof can be used to construct an efficient test for the orientation of a polygon.



Lemma 2 - Meisters: Every polygon of N = 4 vertices has a diagonal.

Proof:

From Lemma 1, any given polygon must have at least one strictly convex vertex, hence let v be a

strictly convex vertex. Let 2 and 5 the vertices adjacent (neighbor) to #. If 44 is a diagonal, we are

finished.

14
Let v be a strictly convex vertex. Let a and b the vertices adjacent (neighbor) to v. Here
the segment joining a and b constructs a diagonal, hence the Lemma holds.



Proof: Continued

Suppose ab is not a diagonal. Then either 4b is exteror to the polygon P, or it intersects the

boundary P. In either case, since # > 3, the closed triangle Aavh contains at least one vertex of P
other than a, # 4 (which are three of the polygon vertices).

Let x be the vertex of P in Aasb that is closest to », where distance is measured orthogonal to the

line through @b. Thus x is the first vertex in Aawb hit by a line L parallel to 2 moving from v to ab.

It is clear that the interior of Aavb intersected with the half-plane bounded by L that includes v (the
shaded region in the following figure) is empty of points on the boundary dP. Therefore zx cannot

intersect 0P except at v and x, hence it is a diagonal.

The segment joining a and b intersects the
boundary of the polygon, hence the triangle avb
contains at least one vertex of the polygon, let x be
y the closest vertex to v, hence vx must be a diagonal



Although there can be different ways to triangulate the same polygon, however all triangulations of

the same polygon share same number of diagonals and same number of triangles.

: . , y fow by L, g o _ 7. 7.
Lemma 3 - Number of diagonals: Every triangulation of a polygon P of N vertices uses N — 3 diagonals

and consists of N — 2 triangles.

Proof

The proof goes by induction with the base step N = 3 which is the case of a triangle, ithasn — 2 =
1 triangles withn — 3 = 0 diagonals interior to it. Now letn > 3, consider an arbitrary diagonal ab
in some triangulation Tp. This diagonal cuts P into two sub-polygons with M, and M, vertices,
respectively. Every vertex of P occurs in exactly one of the two sub-polygons, except for the
vertices defining the diagonal, which occur in both sub-polygons. Hence, m; + m, = n + 2, this is
because @ and b are counted in both My and M,. By induction, any triangulation of P; consists of
m; — 2 triangles, which implies that Tp consists of (m; — 2) + (m, — 2) = n — 2 triangles, at the
same time there are (Mm; —3) + (M, — 3)+ 1 =n — 3 diagonals with the final +1 term is

counting for the diagonal ab.

Corollary 1 - Sum of Angles: The surmi of the internal angles of a polygon P of N vertices is (n - 2)7‘[.

Proof:

There are n — 2 triangles by Lemma 3, and each contributes T to the intemal angles.



Theorem 2 - Triangulation: Every simple polygon admits a triangulation, and any triangulation of a simple

polygon with n- vertices consists exactly n-2 triangles.

Now, we are ready to prove it ...
Proof:

We prove this theorem by induction on #. When # = 3 | the polygon is a triangle and the theorem is

true, that is the polygon 1s already triangulated and its triangulation contains 7 = » — 2 triangles.

Now, let # > 3, assume that the theorem is true for all # < # , thatis a polygon of » vertices can be
triangulated with #»-2 triangles, where » < #. Let P be a polygon with #-vertices, we need to prove

that this polygon can be triangulated (given that all polygon with #<# vertices can be triangulated).

Let d = ab be a diagonal of P , using Lemma 2 the existence of d is guaranteed. Since d be
definition only intersects the boundary of P at its end points, this diagonal will cut P into two
simple sub-polygons P; and P,. Let m; be the number of vertices of P; and M, the number of
vertices of P, Both mjand M, must be smaller than N, so by induction P; and P, can be
triangulated. Hence, P can be triangulated as well




Cameras/Guards Locations !!!



* Theorem 2 implies that any simple polygon with # vertices can be guarded
with 7-2 cameras, however it didn’t answer the question where to put these
cameras.

* If we place a camera on a diagonal, such camera would be able to guard two
triangles, hence by placing the cameras on well-chosen diagonal we might be
able to reduce the number of cameras to roughly 7/ 2.

* However placing cameras at polygon vertices seems to be much better
because a vertex can belong to more than one triangle, and since a camera has
2 visibility, it can guard all these triangles.

* 'This gives rise to the following scheme:

Let T'p be a triangulation of P. Select a subset of the vertices of P, such that any triangle in Tp has at
least one selected vertex, and place the cameras at the selected vertices. To find such a subset we
assign each vertex of P a color: red, green and blue. The coloring will be such that any two vertices
connected by an edge or a diagonal have different colors. This is called a 3-colonng of a triangulated
polygon where every triangle has a red, a green and a blue vertex. Hence, if we place cameras at all

red vertices, say, we have guarded the whole polygon. By choosing the smallest color class to place

. n
the cameras, Wc carn guard :P using at most ng camecras.




P

3-coloring of a simple polygon with 19 vertices it can be
guarded by 6 cameras either place at the red or blue vertices



However, do we guarantee the existence of a 3-coloring of an arbitrary simple polygon? To answer

this question we need to investigate what is called thq dua/ graph of T.

This graph G(Tp) has a node for every triangle in Tp. Let's denote the triangle corresponding to a
node v by £(v). There is an arc between two nodes ¥ and U if #(V) and #(u) share a diagonal,
hence the arcs in G(T'p) correspond to diagonals in Tp.

Because any diagonal cuts P into two sub-diagonals, the removal of an arc/edge from G(T'p) splits
the graph into two sub-graphs. Hence, G(T5)is a tree. (Notice that this is not true for a polygon

with holes.) This means that we can find a 3-coloring using a simple graph traversal, such as depth

first search.

The depth first search can be started from any node of G(Tp); the three vertices of the
corresponding triangle are colored red, green and blue. Now suppose that we reach a node vV in
G(Tp), coming from node U. Hence, £(v) and £(u) share a diagonal Since the vertices of £(u)
have already been colored, only one vertex of £(V7) remains to be colored. There is one color left for
this vertex, namely the color that is not used for the vertices of the diagonal between £ (V) and
£ (u). Because G(Tp); is a tree, the other nodes adjacent to ¥ have not been visited vet, and we still

have the freedom to give the vertex the remaining color.



Definition 10: .4 k-coloring of a graph G(Tp) is an assignment of & colors fo the nodes of the graph, such

that no two nodes connected by an arc are assigned the same color.

?

The dual graph G(Tp) of Tp has a node for every triangle in Tp. Let’s denote the triangle corresponding to a node v by
£ (v). There is an arc between two nodes v and u if £(v) and £ (u) share a diagonal, hence the arcs in G(Tp) correspond to
diagonals in Tp. Now suppose that we reach a node v in G(Tp), coming from node u. Since the vertices of £(u) have
already been colored, only one vertex of t( U) remains to be colored. There is one color left for this vertex, namely the color

that is not used for the vertices of the diagonal between £ (v) and £ (u).



Lemma 4: The dual graph of a iriangulation is a tree, with each node of degree at wiost three.

Thateach node has degree at most three is immediate from the fact that a triangle has at most three

sides to share.

The nodes of degree one are leaves of T, nodes of degree two lie on paths of the tree; nodes of

degree three are branch points.

Three consecutive vertices of a polygon g, 4, ¢ form an ear of the polygon if acis a diagonal; 5 is the

ear #p. Two ears are non-overlapping if their triangle interiors are disjoint.



Theorem 3 (Meisters's Two Ears Theorem): Every polyeon of N = 4 vertices has at least two non-

overlapping ears.
- 4

Proof:

A leaf node in a tnangulation dual corresponds to an ear. A tree of two or more nodes has n — 2 >

2 nodes must have at least two leaves since every triangulation of a polygon P of n vertices consists

of N — 2 triangles.

| "

Example of an ear which
corresponds to a leaf node in the [‘
® '

Anem

dual graph of polygon
triangulation




This theorem leads to an easy proof of the 3-colorability of triangulation graphs. The idea is to
remove an ear for induction, which, because it only "interfaces" at its one diagonal, can be colored

consistently.

Theorem 4 (3-coloring): The iriangulation graph of a polygon P may be 3-colored.

Proof:

The proof is by induction on the number of vertices #. Clearly a triangle can be 3-colored.

Assume therefore that # > 4. Let the Theorem be true for any polygon with »<# vertices, now does

it hold for » vertices?

Since every polygon of # > 4 vertices has at least two non-overlapping ears (Theorem ), thus P has
an ear, let it be Aabr, with ear tip . Form a new polygon P’ by cutting off the ear: That is, replace

the sequence abc in P with acin P

Now P’ has » - 1< n vertices since it is missing only 4. By the induction hypothesis P’ can be 3-
colored, and by the induction base statement, the ear also can be 3-wlored. Now put the ear back,

colonng b with the color not used at 2 and ¢ This is a 3-coloring of P.



Now we can conclude that a triangulated simple polygon can always be 3-colored. As a result, any

simple polygon can be guarded with [n/3] cameras.

But perhapswe can do even better. Since a camera placed at a vertex may guard more than just the

triangles it shares. Unfortunately, for any # there are simple polygons that require [n/3| cameras.

An example is a comb-shaped polygon with a long horizontal base edge and |[n/3] prongs made of
two edges each. The prongs are connected by horizontal edges. The construction can be made such
thatthere 1s no positionin the polygon from which a camera can look into two prongs of the comb

simultaneously.

So we cannot hope for a strategy that always produces less than [n/3]| cameras. In other words, the

3-coloring approach is optimal in the worst case. We just proved the Art Gallery Theorem.

Theorem 5: Art Gallery Theorem : For a simple polygon with n vertices, |N/3) cameras/guards are

occasionally and always sufficient to have every point in the polygon visible from at least one of the cameras/ guards.




Area of Polygon

In this section we will discuss one of the basic tools,
area of a given polygon, which we will be
extensively used to determine intersection between
line segments, quantify visibility relations and
ultimately lead to a triangulation algorithm.



Area of a Triangle



The area of a triangle £ is one half the base times the alttude. However, this formula is cannot be

directly used when we are given a triangle with arbitrary vertices @, b,c.

Let us denote this area by A(%), the length of base can be computed as |a — b| = ||la — b]|,
however the altitude cannotbe directly computed from the available coordinates unless the triangle

happens to be oriented with one side parallel to one of the axes.
Cross Product

From linear algebra we know that the magnitude of the cross product of two vectors is the area of
the parallelogram they determine. If A and B are vectors, then |A X B| is the area of the
parallelogram with sides A and B, as shown in the following figure.

N

The magnitude of the cross
product of two vectors is the
area of the parallelogram they
determine




Since any triangle can be viewed as half of a parallelogram, this gives an immediate method of

computing the area from vertices coordinates.

Justlet A=b —aand B = ¢ — a. Then the area is half the length of A X B.

The cross product can be computed from the following determinant, where 7 ; and & are unit

vectors in the x, ), and g directions respectively:

i j k
Ay Ay Ay =(A1B,—A;B,)i— (A;By — ApB,)j+ (AgBy — A1 By)k
By, B; B,

For 2-dimensional space, A, = B, = 0, hence this reduces to (AgB; — A1 By)k. The cross product

is a vector normal/perpendicular to the plane containing the triangle, thus the area can be given by,

1
ch(’f) - E(AOBI - AlBO)

Sincce A =b —aand B = ¢ — a, this will lead to,

2A(t) = ((bo —ag)(c; — ay) — (by —ay)(co— ao))
= aobl — a1b0 -} a1C0 — a0C1 -+ bOCI — CObl

Hence we have expressed the area of a given triangle in terms of the coordinates of its vertices.



Determinant Form

Thereis anotherway to represent the calculation of the cross product whichis formally identical but

generalizes more easily to higher dimensions.

The expression obtained before is the value of the 3 x 3 determinant of the three point coordinates,

with the third coordinate replaced by 1.

Lemma 5: Twice the area of a tianglet = (a, b, ) is given by,

a, a, 1
2A(t)=|bo by 1|=(by—ay)(c;—a;)—(co—ap)(b; —ay)
Cp ¢ 1




Area of a Convex Polygon



Now that we have an expression for
the area of a triangle, it is easy to find
the area of any polygon by first
triangulating it, and then summing the
triangle areas.

However it would be easier if we can
avoid this complicated step to just
compute the area of a polygon.

Let's first consider convex polygons
where triangulation 1s a trivial task.

Every convex polygon may be
triangulated as a "fan," with all
diagonals share a common vertex
which is denoted by the fan center, any
vertex in a convex polygon can serve as
the fan center.

A convex polygon can be triangulated as a
fan with all diagonals share a common
vertex known as the fan center

Therefore the area of a polygon with vertices Vg, Vy, ..., Vp—1 labeled counterclockwise, with vy as

the fan center can be calculated as

A(P) = A(vg,v1,v3) + AV, V3,V3) + +++ + A(Vy, V-2, Vpn-1)



Area of a Convex Quadrilateral



The area of a convex quadrilateral O = (g, , ¢, d) may be written in two ways, depending on the two

different triangulations shown in the following figure:

AQ)=A(a,b,c)+ A(a,c,d) = A(d,a,b) + A(d,b,c)

b

a a
Two possible triangulations of a convex quadrilateral

Using the cross-product formula for area of a triangle, the area of a convex quadrilateral can be

written as follows;

2A(Q) = (aphy — ayby + a;co — agcy + bocy — coby)
+ (agcy — a6y + a1dy — agdy + cod, — c1d,)

Note that @€y — @oCy appear in A(a, b, ¢) and A(a, ¢, d) with opposite signs, hence they cancel,
thus the terms corresponding to the diagonal ac cancel Likewise, the terms corresponding to the
diaongal bd in the second triangulation cancel. Hence the expression of the area will be the same

regardless ofthe triangulation being used. The following theorem generalizes the area expression in

terms of polygon vertices.



Theorem 6: Let P be a convex pobygon with vertices Vo, Vy, ..., Un—1 labeled counterclockwise, let the coordinates

of the i-th vertexc V; be denoted as X; and Y;, hence twice the area of the convex polygon P is given by,

n—1
2A(P) = z . (Xi¥i+1 — Xir1 D)
i=




Area of a Non-convex
Quadrilateral



Now suppose we have a non-convex quadrilateral O = (@, 4, ¢, d). Then there is only one

triangulation, using the diagonal db. See the following figure.

But we just showed that the algebraic expression obtained is independent of the diagonal chosen, so
it must be the case that the equation A(Q) = A(a, b, c) + A(a,c,d) is still true even through the
diagonal ac which is exterior to Q, this has an obvious interpretation, which is that A(a,c,d)
should be negative and hence is subtracted from the bigger triangle Aabc. Note that (a,c,d) is a

clockwise path, hence from the cross product formulation, this triangle should have a negative area.

Triangulation of a non-convex quadrilateral



Area of Non-convex Polygon

In this subsection, we will formalize our
observations to obtain the area of a general non-
convex polygons. Let us first derive a general form
of summing the areas of the triangles in a given
triangulation using areas based on an arbitrary, may
be external, point p.



Let £ = Aabc be a triangle with vertices ordered in a counterclockwise manner, let p be any points

in the plane, then we claim that:

AE) =A(p,a,b) + A(p,b,c) + A(p,c,a)

Consider the figure, the first term A (P, @, b) is negative because the vertices are clockwise, on the

other hand the remaining two terms are positive because the vertices are counterclockwise. Hence
the term A(p,a, b) subtracts the portion of the quadrilateral (p,b,c,a) which lies outside the

triangle £ leaving only the area of the triangle.

Consider a triangle whose vertices are order in counterclockwise orientation, Counterclockwise
the area of the triangle can be obtained used an arbitrary point p which can
lie outside that triangle.

direction



Consider another location for this external point (see the figure above), both A(p,a,b) and

A(p, b, €) are negative because the vertices are clock wise, and they are removed from A(p,c, a)

which is positive.

Counterclockwise
direction

Considering another location for the external point p



All other positions for p m the place exterior to the triangle £ 1s equivalent to either the first or the

second case, the equation also holds when p is internal where A(p, a,b),A(p, b, c) and A(p,c, a)

are all positive.

Counterclockwise
direction



Therefore we have established the following lemma.

Lemma 6: If £ = Aabc is a triangle, with vertices oriented counterciockwise and p is any point in the plane, then

A#) =A(p,a,b) + A(p,b,c) + A(p,c,a)

The following theorem generalize the precedinglemma to obtain a generalized equation for arbitrary

polygons.

Theorem 7 - Area of Polygon: Lot P be a simple polygon (convex or nonconvex), having vertices

Vo, V1, -, Un—1 labeled counterclockuise, and letD be any point in the plane, then

A(P) = A, v, v1) + AP, V1,02 ) + A, V5,v3) + -+ + AP, V-2, Vn-1)
+ C’q(p)vn—livO)

L et the coordinates of the i-th vertex V; be denoted as X; and Y;, hence twice the area of the polygon P is given by,
i i i PoYE & 7)

n—

1
(¢ + x41) Oiv1r — Vi)

i=0

n—1
2A(P) = z . (XiYVi+1 — Xir1 Vi) = Z
i=

Proof left as homework .. ®




Segment Intersection

We still have one further step to be able to
develop an algorithm to triangulate a given
polygon, in this subsection we will discuss
how can we detect an intersection between
two given segments.



Diagonals



The key step to triangulate a polygon is to find a diagonal of that polygon, which is a direct line of
sight between two vertices V; and Vj . The segment v;V; will not be a diagonal if it is blocked by a
portion of the polygon's boundary, that is it intersects the boundary 0P at any point rather than v;
and V; .

Hence the segment V;V; 1s considered to be blocked if it intersects an edge of the polygon. Note
that if V;V; only intersects an edge ¢ at its endpoint, i.e. at one vertex of the polygon, perhaps only a

grazing contact with the boundary, it is still effectively blocked, because diagonals must have clear
visibility.

Thus we can re-define a diagonal as follows,

Definition 11: The segment S = V;V; is a diagonal of the polygon P if and only if:

(1) Forall edgese of P that are not incident to either V; or Vj, S and e do not intersect, i.e. SN e = (

(2) S is internal 1o P in a neighborhood of V; and v;.

Condition (1) of this definition has been phrased such that the diagonalbood of a segment can be
determined without finding the actual point of intersection between § and €, hence it is enough to
detect the intersection. Recall the original definition of the diagonal which states that @ dragonal only
intersects polygon edges at the diagonal endpoints, using this phrasing would require the computation of the
intersection points and comparing them to the endpoints. The purpose of condition (2) is to
distinguish internal from external diagonals, as well as to rule out collinear overlap with an incident
edge. In the following subsections we will be concentrating on detecting intersection between two

given segments.



Problems with Slopes

Lets = v;v; = ab and e = cd. Now we want to determine whether the two segments ab and cd

do intersect or not.

The first attempt towards this goal is to find the point of intersection between the lines L; and L,
containing these segments, this can be achieved by solving the two linear equations in slope-

intercept form and then checking if the point falls on the segments.
Although this method might work and not difficult to code, it 1s error prone.

There are two special cases to handles, a vertical segment whose line’s slope is infinite and parallel
segments whose lines do not intersect. In addition checking that the point of intersection falls on the

segments can lead to numerical precision problems, hence we will avoid slopes altogether.



The Left Predicate

Checking whether two segments intersect can be
established by determining whether or not a point is to
the left of a directed line.

This 1s called the Left predicate, in the next subsection
we will discuss how to use such predicate to check for
segment intersection, here we will concentrate on the
Left predicate itself.



Two points given a particular order (@, b) determine a directed line moving from the first point @ to
the second point b. If another point C is to the left of this directed line, then the triple (@, b, ¢) will

form a counterclockwise circuit, hence the triangle constructed by such circuit, i.e. £ = Aabc, will

have a positive area. This motivates the following lemma

Lemma 7: Let L be a directed line determined by two points given in a particular order (a, b)), let C be a point, €

is said to be to the left of (@, b) if and only if the area of the counterclockwise tiangle, £ = Aabc is positive, that is
A(t) = 0.

However, what happens if € is collinear with ab? Then the determined triangle will have zero area,

thus we can also detect collinearnty by checking the value of the area. c'

C

c is on the left of the directed line ab since
the triangle abc forms a counterclockwise
circuit, hence it has a positive area, so as
the point ¢’while dis not on the left (on
the right) of the directed line ab since the
triangle abd forms a clockwise circuit,
hence its area is negative




Intersection Detection



Intuitively, if two segments ab and cd intersect in their interiors, that is at a point belong to both
segments, then € and d are split by the line L; containing the segment ab, that is € is to one side and
d to the other.

And likewise, @ and b are split by the line L, containing the segment cd, that is @ is to one side and
b to the other.

Note that neither of these conditions alone is sufficient to guarantee intersection, however we
should make sure first that we do not have the case where three of the four endpoints are collinear.
This is referred to as proper intersection where we force non-collinearity when two segments intersectat

a point interior to both.

L,
(2) »
—--g > - L,
0. ,’/
P 4 o _-r——7‘—9— ——
’ LZ . 7 b d

Two segments intersect (a) if and

only if their endpoints are split by
A (b) their determined lines, (b) both

"Iﬁ pair of endpoints must be split



Now we should deal with the special case
of  improper intersection between two
segments, this occurs when an endpoint
of one segment lies somewhere on the
other segment, this can only happen if c
there points are collinear, however v d
collinearity is not a sufficient condition.

To check for improper intersection between two

segments where an endpoint of on.e se.gm.ent lies R (b)
somewhere on the other segment, collinearity is not a _«

sufficient condition, in (a) and (b) a,c,b are collinear

however (a) has improper intersection while (b) not.

Hence what we need 1s to decide if an endpoint of a segment lies between the endpoints of
the other segment.

We would like to compute the "betweenness" predicate without using slopes.

If the point ¢ is known to be collinear with  and 4, the betweenness check can proceed as
follows;

— If ab is not vertical, then ¢ lies on ab if and only if the x coordinate of ¢ falls in the
interval determined by the x coordinates of 2 and b If ab 1s vertical, then a similar
check on y coordinates determines betweenness.



Segment Intersection

* Now, we can determine whether two segments intersect or not
using the following condition:

Corollary 2: Tuwo segments intersect if and only if they intersect properly or one endpoint of one segmient lies between

the two endpoints of the other segrment.




Triangulation



Finding a Diagonal

In order to perform polygon triangulation, we need first to know how to find a diagonal of the given
polygon.

Recall that diagonals are characterized by two main conditions: (1) non-intersection with polygon

edges and (2) being interior to the polygon.

If we 1gnore the second condition, finding a diagonal will be straightforward: Consider a potential
diagonal S connecting between a pair of polygon vertices V; and V;, for every edge € of the polygon

P not incident to either V; or V;, check if € intersect S, as soon as an intersection is detected, S will

J»
be declared not to be a diagonal, if no such edge intersects S, then S might be a diagonal, since we

have already 1gnored the second condition, we should check whether it i1s interior or exterior to the

polygon, we will investigate this 1ssue in the next subsection.



InCone — Interior/Exterior
Diagonal

It 1s time now to distinguish between internal and
exterior diagonals, and at the same time handle the
case when one or more polygon edges are incident
to the diagonal endpoints (improper intersection).



Let ab be a potential diagonal which satisfies condition (1), that is it does not intersect with any
polygon edge.

Let a™ and @™ be the two neighboring vertices to @ which are directly connected to @ via one edge.

Let B be a vector which lies along the diagonal ab. Let A™ and A™ be vectors lying along the two
consecutive edges of the polygon aa* and aa” respectively.

The InCone predicate determines if the vector B lies strictly in the open cone counterclockwise

between two other vectors A™ and A™. Such a procedure will suffice to determine diagonals, as will

be detailed below. For the moment we concentrate on designing InCone.

This would be a straightforward task if the apex, i.e. @, of the cone is a convex angle; It is clear from
the following figure that ab is internal to P if and only if it 1s internal to the cone whose apex 1s @,
and whose sides pass through atanda”.

This can be easily determined via our Left predicate: @~ must be left of ab, and a* must be left of

ba. Both left-ofs should be strict for ab to exclude collinear overlap with the cone boundaries.
Hence the condition will be Left(ab,a”) && Left(ba,a™)



Polygon interior

A+

Diagonal ab is in the cone determine by a* and a~ which are the two neighboring vertices to a
which are directly connected to @ via one edge. When the cone apex a is convex, a™ should lie to the
left of ab and a  should lie to the left of ba.



However, the following figure shows that these conditions do not suffice to characterize internal

diagonals when a 1s reflex: a™ and a~ could be both left of, or both nght of, or one could be left
and the other nght of| an internal diagonal.

But note that the ex7erior of a neighborhood of @ 1s now a cone as in the convex case.
So it is easiest in this case to characterize ab as internal if an only if 1t 1s not external.
It 1s not the case that both g+ 1s left or on @4 and 4 1s left or on ba.

Note that this time the left-ofs must be improper, permitting collineanty, as we are rejecting
diagonals that satisfy these conditions. Hence the condition will be !(Left(ab,a™) && Left(ba,a)).

Polygon interior

b

Exterior of
a neighborhood
of a

. . . + — . -
Cone apex a is reflex, hence the left-of conditions from a” and a are not sufficient to determine
internal diagonals.



Finally, distinguishing between the convex and reflex cases is easily accomplished with one
mvocation of Left: 4 1s convex iff 4 1s left or on aa™. Note that if (@, 4, a”) are collinear, the internal

angle at 2 1s 7, which we defined as convex.
Now we can determine if @5 is a diagonal:

This 1s true if and only if @b does not intersect any of the polygon edges and ab 1s InCone and b4 1s
InCone too.

The last two conditions are to make sure that 4% is internal and to cover the edges mncident to the

endpoints and not examined in the first condition.

To efficiently implement this check, the InCones should be checked first, because they are each
constant-time calculations, performed in the neighborhood of 2 and / without regard to the
remainder of the polygon, whereas the first condition includes a loop over all # polygon edges.

If either InCone call returns false, the first condition will not be checked which will save
computational overhead.



Triangulation by Ear Removal

We are now ready to outline an algorithm for polygon
triangulation. One possible method is to mimic the proof
of the triangulation theorem: Find a diagonal, cut the

polygon into two pieces and do the same for each piece

till we end up with bunch of triangles.

Such method is called diagonal-based algorithm, however this
method results in rather inefficient code.



Diagonal-based triangulation is an 0(n*) algorithm, there are (g) = 0(n?) diagonal candidates and

testing each for diagonalhood costs 0 (n), repeating this O(n®) computation for each of the n — 3
diagonals leads to 0 (n*).

We can speed this up by a factor of # by exploiting the two ears theorem: not only do we know there

must be an internal diagonal, we know there must be an internal diagonal that separates off an ear.

There are only O(n) ear diagonals candidates, which connect two consecutive vertices (V;,Vj;2), | =

01..,n—1.

This also makes the recursion easier, since after removing the ear we will have an ear which is
already tnangulated and the rest of the polygon, previously we had two sub-polygons to recurse on

in order to be triangulated. Thus we can achieve a worst-case complexity of O (n?) using this way.

We can further improve this algonthm, the key idea which permits improvement here is that

removal of one ear does not change the polygon very much, in particular, this does not change

whether or not many of its vertices are potential ear tips. This suggests first determining for each
vertex v;, whether it is a potential ear tip in the sense that (v;_;v;;;) is a diagonal. This

uses 0(n?), however this expensive step need not be repeated.



Let v, V1, V5, Uy, Vs be five consecutive vertices of P, and suppose that v, is an ear tip and the ear
E, = A(v;,v,, v3) is deleted. Which vertices' status as ear tips might change? Only v; and vj.

Consider v,, for example. Whether it is an ear tip depends on whether v3v5 is a diagonal. The

removal of E, leaves the endpoints of segment v3V5 unchanged. Hence the status of v, is not

changed by ear removal, this is same for vs.

Vi

Vs

Ve

Clipping an ear E; = A(Vq, V2,V3), here the ear status of V1 and V3 change from true to false.



Thus the algorithm can be formulated as follows;

Algorithm: Triangulate via ear removal

) Imtialize the ear tip status of each vertex
(2) While » > 3 do
a. Locate an ear tip v, where (v v3) is a diagonal.
b. Update the ear tip status of v; and v; where v; is an ear if Vo153 15 a diagonal and v,
1s an ear 1f V; v, 1s a diagonal.

c. Cut of the ear v,.




Thank You



