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Introduction



• Convex hull (or the hull) is perhaps
the most commonly used structure
in computational geometry.

• It can be used in various
applications, let’s mention a few here;

• Having a robot which tries to avoid
obstacles as it moves, if its convex
hull succeeded to avoid such
obstacles, the robot itself won’t hit
any of them.

• Hence computing paths for robots
which avoid collision becomes much
easier if we are dealing with a convex
robot rather than a non-convex one.

Goal

Obstacle

Robot

Robot	Convex	Hull



• In some applications, we need to find the
rectangle with the smallest area which
encloses a certain polygon.

• It was found that such rectangle has one
of its sides coincides with the convex
hull of the polygon.

• Hence computing the hull can be used as
the first step of minimum rectangle
algorithms.

• Likewise, finding the smallest 3-
dimensional box surrounding certain
object in space will definitely depend on
computing the convex hull of such
object.



• In the field of shape
analysis, shapes can be
classified for matching
purposes by their
convex deficiency trees,
which are structures
that mainly depend on
finding convex hulls.

(a)

(b)

(c)

(d)

Example of convex deficiency
tree (a) the polygon and its
convex hull (b) deficiencies
and their hulls (c) deficiencies
of polygons from (b), (d)
deficiency of the one non-
convex piece from (c).



• Informally,

– The convex hull of a set of points in the plane is the shape
taken by a rubber band stretched around nails pounded into
the plane at each point.

– The boundary of the convex hull of points in three
dimensions is the shape taken by plastic wrap stretched
tightly around the points.

• Now let’s move for more formal definitions for
convexity and convex hulls.



Definitions of  Convexity and 
Convex Hulls
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It should be clear that for a given polygon, any region with a dent is
not convex, since two points spanning the dent can be found such that
the segment they determine contains points exterior to the polygon,
hence any polygon with a reflex vertex is not convex.







An example of  a convex hull (dashed line) 
surrounding a given polygon

Note that the convex hull of
a set is a closed "solid"
region, including all the
points inside.

Often the term is used more
loosely in computational
geometry to mean the
boundary of this region,
since it is the boundary we
compute, and that implies the
region.

We will use the phrase "on
the hull" to mean "on the
boundary of the convex
hull."



• We will be concentrating on algorithms for constructing the
boundary of the convex hull of a finite set of points in two
dimensions, starting from inefficient algorithms, gradually
working towards an optimal algorithm.

• However, before starting talking about algorithms, we should
first know what we expect from such algorithms, in particular
what do we mean by constructing the boundary? Four outputs
can be distinguished:

– All points on the hull in arbitrary order

– The extreme points in arbitrary order

– All the points on the hull in boundary traversal order

– The extreme points in boundary traversal order



Extreme points

Non-extreme points

Extreme points are the vertices of  the convex hull at which the interior angle is strictly convex, i.e. less than 



• Let us concentrate on identifying the extreme points. Note that the highest point of S, the
one with the largest y coordinate, is extreme if it is unique, or even if there are exactly two
equally highest vertices (both can then be extreme). The same is of course true of the lowest
points, the rightmost points, and the leftmost points.

• It should be clear that a point is extreme if and only if there exists a line through that point
that otherwise does not touch the convex hull. Such "there exists" formulations, however, do
not immediately suggest a method of find such extreme points.

Extreme points

Non-extreme points

A point is extreme if and
only if there exists a line
through that point that
otherwise does not touch the
convex hull.



Naïve Algorithms for Extreme 
Points

Let us therefore look at the other side 
of  the coin, the non-extreme points.



Non-extreme Points

Logically, if we identify the non-extreme
points, this would be enough to identify the
extreme points, hence let’s define non-
extreme point





Extreme Edges

However, it is somewhat easier to identify
extreme edges rather than non-extreme
(interior) points, where extreme edges are
edges of the convex hull.



S

Extreme Edge

Non-extreme Edge

Let S be a set of distinct points, the red line is an extreme edge since every point of S
is on or to one side of the line determined by that edge, on the other hand, the blue
line is not an extreme edge since there are some points in S which lie on the right of
the line determined by such edge.
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Gift Wrapping

Let’s now move to a more realistic hull algorithm.
With a minor variation on the Extreme Edge
algorithm, we can both accelerate it by a factor of n
and at the same time output the points in the order
in which they occur around the hull boundary.



Let the red line be a detected extreme edge
with x be the unlinked endpoint, we need to
search for the next extreme edge e which will
share the unlinked endpoint x. The next edge
e makes the smallest angle θ with respect to
the previous edge.

S

x
e

θ



QuickHull

The basic idea is very simple; Intuitively, we
can discard many points which are interior to
the hull and then concentrate on those
points which are closer to the hull boundary.





x

y

a

b

c



Graham’s Algorithm

Now, it is time for the most efficient
algorithm to compute the convex hull of a
given set of points in plane which operates
in O(nlogn) time



Top Level Description

The basic idea of Graham's algorithm is quite
simple. We will first explain it with an example,
making several assumptions that will be removed
later. Let’s assume the general position assumption
where there is no three points in the given set are
collinear.
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Example for Graham’s algorithms, x = (2,1); S= {(7,4),(6,5),(3,3),(0,5),(-2,3),(-2,2),(-5,1),(0,0),(-3,-2),(3,-2)}.
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Pseudo code, Version A
• Let’s now summarize the rough algorithm in the following pseudo code, where we

assume stack primitives Push(p, S) and Pop(S), which push p onto the top of the stack S,
and pop the top off, respectively. We use t to index the stack top and i for the angularly
sorted points.



Details: Boundary Conditions

Now it is time to discuss details related
to various boundary conditions which
have been ignored so far.



Start and Stop of  Loop



Sorting Origin
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New sorting origin for the points in the previous example, where the
lowest rightmost point is considered to be our origin around which other
points are angularly sorted.



Collinearities

The final "boundary condition" we consider is the
possibility that three or more points are collinear.
This issue affects several aspects of the algorithm.
First we focus on defining precisely what we seek as
output.
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Sorting points with collinearities, indices indicate sorting rank, points to be
deleted are shown as open circles.



Pseudo code, Version B



Incremental Algorithm

The difficulty is that Graham's algorithm has no
obvious extension to three dimensions: It depends
crucially on angular sorting, which has no direct
counterpart in three dimensions. So we now
proceed to describe one further algorithm in two
dimensions which can be extended to three
dimensions.
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Polyhedra

The focus of this section is discussing
algorithm for constructing the convex hull
of a set of points in three dimensions. We
will also touch basis on some properties of
polyhedra and how to represent polyhedra.



Introduction



• In this section we are mainly concerned with convex polyhedra,
which are simpler than general polyhedra.

• The boundary or surface of a polyhedron is composed of three
types of geometric objects:

– zero-dimensional vertices (0-cells, i.e. points),

– one-dimensional edges (1-cells, i.e. segments), and

– two-dimensional faces (2-cells, i.e. polygons).

• Faces can be convex polygons, which are defined to be bounded,
without losing generality, since non-convex polygons/faces can
be partitioned into convex ones, however we must then allow
adjacent faces to share the same plane, i.e. coplanar.



• There are certain conditions which should be satisfied to
construct a valid polyhedral surface, such conditions defines how
polyhedral surface components are related to each other. We
have three types of conditions:

– The components intersect "properly,"

– the local topology is "proper," and

– the global topology is "proper."

• Now let’s discuss these conditions in details



1. Components intersect "properly."

• For each pair of faces, we require that
either

– they are disjoint, or

– they have a single vertex in common, or

– they have two vertices, and the edge joining
them, in common.

• Having convex faces simplifies these
conditions.

• Improper intersections include not only
penetrating faces, but also faces touching
in the "wrong" way.

B
A C

Faces A and B meet face C
improperly even though they do
not penetrate C

• There is no need to specify conditions on the intersection of edges and vertices,
as the condition on faces covers them also. Thus an improper intersection of a
pair of edges implies an improper intersection of faces.



2. Local topology is "proper."
• Geometrically, the local topology is what the surface looks like in the

vicinity of a point.

• This notion can be made precise via the notion of neighborhoods which are
arbitrarily small portions (open regions) of the surface surrounding a
point.

• The points should have neighborhoods that are topological two-
dimensional disks, i.e. neighborhoods of every point on the surface is
"homeomorphic" to a disk, where a homeomorphism between two regions
permits stretching and bending, but no tearing.

• A bug walking on the surface would find the neighborhood of every point
to be topologically like a disk.

• A surface for which every point have a neighborhood homeomorphic to
an open disc is called a 2-manifold, which is a class more general than the
boundaries of polyhedra.



2. Local topology is "proper."
• Moving to a combinatorial description to this condition, suppose we triangulate the

polygonal faces, then every vertex is the apex of a number of triangles. Let’s define the
link of a vertex as follows;

• One consequence of this condition is that every edge is shared by exactly two faces.

Vertex v

Faces share v

Link of  vertex v

An example of a valid polyhedral
surface, where the link of a
vertex v is defined to be the
collection of edges opposite to v
in all the triangles incident to v.
Thus the link is in a sense the
combinatorial neighborhood of
v. For a legal triangulated
polyhedron, we require that the
link of every vertex be a simple,
closed polygonal path.Polyhedron



(a)

(b)
(c)

Example of (a) a simple polygonal chain (b) a self-
intersecting polygonal chain and (c) a closed
polygonal chain



(a)

(b)

(c)

Three objects that are not polyhedra. In all
three cases, a neighborhood of the circled
point is not homeomorphic to an open disk.
In (a) the point lies both on the top surface
shown and on a similar surface underneath.
Object (c) is not closed, so the indicated
point's neighborhood is a half-disk.



3. Global topology is "proper."
• We would like the surface to be connected, closed, and bounded. So we

require that the surface be connected in the sense that from any point, one
may walk to any other point on the surface.

• This can be stated combinatorially by requiring that the 1-skeleton, the graph
of edges and vertices, be connected.

• Such condition with emphasizing having a finite number of faces, our
previous conditions already imply closed and bounded surfaces.

• One might be inclined to rule out "holes" in the definition of polyhedron,
holes in the sense of "channels" from one side of the surface to the other
that do not disconnect the exterior (unlike cavities).

• Should a torus (a shape like a doughnut) be a polyhedron? We adopt the usual
terminology and permit polyhedra to have an arbitrary number of such holes.
The number of holes is called the genus of the surface.

• Normally we will only consider polyhedra with genus zero: those
topologically equivalent to the surface of a sphere.



In Summary …

• The boundary of a polyhedron is a finite collection of planar,
bounded convex polygonal faces such that:

– the faces intersect properly;

– the neighborhood of every point is topologically an open
disk, or (equivalently) the link of every vertex is a simple
polygonal chain; and

– the surface is connected, or (equivalently) the 1-skeleton is
connected.

• The boundary is closed and encloses a bounded region of space.
Every edge is shared by exactly two faces; these faces are called
adjacent.



The dihedral angle (pale red) is the part of
the space between two half-planes (pale
blue).



Regular Polytopes



• The surprising implication of these regularity conditions is that
there are only five distinct types of regular polytopes. These are
known as the Platonic solids.

• We now prove that there are exactly five regular polytopes.

• The proof is very elementary. The intuition is that the internal
angles of a regular polygon grow large with the number of
vertices of the polygon.









Tetrahedron OctahedronCube

Dodecahedron Icosahedron



Euler’s Formula

Leonhard Paul Euler (15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and
physicist who spent most of his life in Russia and Germany.
Euler made important discoveries in fields as diverse as calculus and graph theory. He also introduced much
of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the
notion of a mathematical function.



• In 1758 Leonard Euler noticed a remarkable regularity in the numbers of
vertices, edges, and faces of a polyhedron of genus zero:

– The number of vertices and faces together is always two more than the number
of edges; and this is true for all polyhedra.

• So a cube has 8 vertices and 6 faces, and 8 + 6 = 14 is two more than its 12
edges. And the remaining regular polytopes can be seen to satisfy the same
relationship.



Incremental Algorithm in 3D
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