Flavor of Computational
Geometry

Convex Hull 1n 2D Lo

Shireen Y. Elhabian (i
Aly A. Farag &

University of Louisville
February 2010

Agenda

Introduction

Definitions of Convexity and Convex Hulls
Naive Algorithms for Extreme Points

Gift Wrapping

QuickHull

Graham’s Algorithm

Incremental Algorithm

Introduction

Convex hull (or #e hull) is perhaps
the most commonly used structure
in computational geometry.

It can be used 1in wvarious
applications, let’s mention a few here;

Having a robot which tries to avoid
obstacles as it moves, if its convex
hull succeeded to avoid such
obstacles, the robot itself won’t hit
any of them.

Hence computing paths for robots
which avoid collision becomes much
easier if we are dealing with a convex
robot rather than a non-convex one.

Robot Convex Hull

In some applications, we need to find the
rectangle with the smallest area which
encloses a certain polygon.

It was found that such rectangle has one

of its sides coincides with the convex

hull of the polygon.

Hence computing the hull can be used as
the first step of minimum rectangle
algorithms.

Likewise, finding the smallest 3-
dimensional box surrounding certain

object in space will definitely depend on
computing the convex hull of such
object.

* In the field of shape

analysis, shapes can be
classified for matching
purposes by their
convex deficiency trees,

(2)

which are structures
that mainly depend on
finding convex hulls.

(b)
Example of convex deficiency
tree (a) the polygon and its
convex hull (b) deficiencies
and their hulls (c) deficiencies
of polygons from (b), (d)
deficiency of the one non-
convex piece from (c).

(d)

* Informally,

— The convex hull of a set of points in the plane is the shape
taken by a rubber band stretched around nails pounded into
the plane at each point.

— The boundary of the convex hull of points in three
dimensions is the shape taken by plastic wrap stretched
tightly around the points.

 Now let's move for more formal definitions for
convexity and convex hulls.

Definitions of Convexity and
Convex Hulls

Without being restricted to any particular dimension of the points, whether a set is connected,
bounded or unbounded, closed or open, a primary definition of convexity can be given as follows;

Definition 12: .4 5 S is convex if x € S andy € S implies that the segment xy < §.

It should be clear that for a given polygon, any region with a dent is
not convex, since two points spanning the dent can be found such that
the segment they determine contains points exterior to the polygon,
hence any polygon with a reflex vertex is not convex.

Definition 13: ¢ X,y be two points in R%, a segment xy Jjoining these two points is the set of all points
of the formax + Py wherea =0, = 0anda + p = 1.

For example, the midpoint of the segment is given by %(x +vy) with a = f = g_, where the end

points are achieved with one \\'eight set to zero and the other one set to one.

Definition 14: .4 convex combination of poinis X1, Xp, .., Xy &5 @ sum of the form Q1 X + QpXy + +++ +
AnXn witha; = 0,for 1 = 1,2, ...,nand a; +a, + ...+ a, =1

As a result of the Definitions 13 and 14, a line segment consists of all convex combinations of its
endpoints, and a tmangle consists of all convex combinations of its three comers. In three
dimensions, a tetrahedron is the convex combinations of its four comers. Convex combinations lead

to the concept of "barycentric coordinates".

There are various definitions for convex hull in literature;

Definition 15: The convex hull , denoted by H(S), of a set of points S in d dimension:

(1) is the set of all convex combinations of points of S. It is intustively clear that the convex bull defined in this
way cannot have a dent.

(2) is the set of all convex combinations of d + 1 (or fewer points) of S. Thus the hull of a 2-dimensional set is
the convex combinations of ifs subsets of three points, each of which determine a triangle.

(3) Is the intersection of all convex sets that contain S.

(4) Is the intersection of all halfspaces that contain S, where a halfipace in two dimensions is a halfplane which is
the set of points on or to one side of a line, hence a halfspace is the set of points on or to one side of a plane.

() In case of two-dimensions, it is the smallest convex polygon P that encloses S, smallest in the sense that there
is no other polygon P’ such that S € P’ < P, that is it has the smallest area and perimeter.

(6) In case of two-dimensions, it is the union of all the triangles determined by points in S.

Note that the convex hull of
a set is a closed "solid"
region, including all the
points inside.

Often the term is used more
loosely 1n computational
geometry to mean the
boundary of this region,
since it 1s the boundary we
compute, and that implies the

region.

We will use the phrase "on
the hull" to mean "on the
boundary of the convex

hull."

I
I
/]
I
/]
!
/]
I
/]
/]
I
I
/]
I
I
/]

An example of a convex hull (dashed line)
surrounding a given polygon

* We will be concentrating on algorithms for constructing the
boundary of the convex hull of a finite set of points in two
dimensions, starting from inefficient algorithms, gradually
working towards an optimal algorithm.

* However, before starting talking about algorithms, we should
first know what we expect from such algorithms, in particular
what do we mean by constructing the boundary? Four outputs
can be distinguished:

— All points on the hull in arbitrary order
— The extreme points in arbitrary order
— All the points on the hull in boundary traversal order

— The extreme points in boundary traversal order

Definition 16: The extreme points of a set S of points in the plane are the vertices of the convex bhull at which

the interior angle is strictly convex, that is less than T. Hence points in the interior of a segment of the hull are not
considered fo be extreme. A more mathematical definition is that, a point x in S is extreme if there is no non-

a’e;ge;:erar'e line segment in S that contains x in its relative interior.

. Extreme points

Non-extreme points

Extreme points are the vertices of the convex hull at which the interior angle is strictly convex, i.e. less than

* Let us concentrate on identifying the extreme points. Note that the highest point of §, the
one with the largest y coordinate, 1s extreme if it 1s unique, or even if there are exactly two
equally highest vertices (both can then be extreme). The same is of course true of the lowest
points, the rightmost points, and the leftmost points.

* It should be clear that a point 1s extreme 1f and only if there exists a line through that point
that otherwise does not touch the convex hull. Such "there exists" formulations, however, do
not immediately suggest a method of find such extreme points.

O Extreme points

Non-extreme points

A point is extreme if and
only if there exists a line
through that point that
otherwise does not touch the

convex hull.

Naive Algorithms for Extreme
Points

ILet us therefore look at the other side
of the coin, the non-extreme points.

Non-extreme Points

Logically, it we identify the non-extreme
points, this would be enough to identity the

extreme points, hence let’s define non-
extreme point

Lemma 8: 4 point is non-extreme if and only if if is inside some (closed) friangle whose vertices are points of the

set and 15 not itself a corner of that triangle.

Proof:

Let’s check all the possibilities; It 1s clear that if a point 1s interior to a tnangle, it i1s non-extreme, in
the mean time the corners of a triangle might be extreme. A point that lies on the boundary of a
triangle but not at a corner is not extreme. Hence a point which lies inside a closed tn'angle and 1s

not itself a corner to that tnangle is indeed non-extreme.

a

Let S = {pg,P1s +» Pn_1} be a set of distinct points in R2. Based on the preceding lemma, we can

introduce the following algorithm to obtain the interior points of S, where the in-triangle test can be
implemented by checking whether a point is on the left or collinear with another two points.

Algorithm: Interior Points

for each i do
foreachj # ido
foreachk # i+ jdo
foreachl #i # j # k do
if p; € A(pi,pj,pk) , then p; 1s non-extreme (interior) point

This algorithm clearly runs in O(#*) time because there are four nested loops, each O(#): For each of
the #’ triangles, the test for extremeness costs 7 It would be a challenge to find a slower algorithm!

Extreme Edges

However, it is somewhat easier to identify
extreme edges rather than non-extreme
(interior) points, where extreme edges are
edges of the convex hull.

Lemma 9: _4n edge /s extreme i every point of S is on or fo one side of the line determined by the edge. Phrased

negatively, a directed edge is not extreme if there is some point in S that does not lie fo its left or on it

Extreme Edge

Non-extreme Edge

Let S be a set of distinct points, the red line is an extreme edge since every point of S
is on or to one side of the line determined by that edge, on the other hand, the blue
line is not an extreme edge since there are some points in S which lie on the right of

the line determined by such edge.

Unfortunately this algorithm computes points on the hull in arbitrary order (output (1)) rather than
the extreme points in output (2).

Suppose that XV is an extreme edge, and Z lies on the interior of the segment xy,i.e. Z € xy. Then xz and zy will both have
the property that there is no point strictly to their rights — that is there is no point that is not left of or on xy.

Now x, y and z are considered points on the hull, however to determine whether they are extreme points or not, it would
make sense to say that neither of these counts as an extreme edge and to demand that both endpoints of an extreme edge,

be extreme vertices.

Algorithm: Extreme Edges

for each i do
foreachj # ido
foreachk # i # jdo
if pg is not left or on p;p; then p;p; is not extreme

This algorithm runs in 0(n?) time because there are three nested loops, each O(n): For each of the

n? pairs of points, the test for extremeness costs n. Which vertices are extreme can be found easily
now (under the general position assumption, where there is no three points being collinear), since an

extreme point 1S an endpoint of two extreme edges.

Gift Wrapping

Let’s now move to a more realistic hull algorithm.
With a minor variation on the Extreme Edge
algorithm, we can both accelerate it by a factor of 7
and at the same time output the points in the order
in which they occur around the hull boundary.

Algorithm: Gift Wrapping

Find the lowest point (smallest y coordinate)
Let iy be its index and set i « i,
Repeat

foreachj # ido

Compute counterclockwise angle @ from the previous hull edge
Let k be the index of the point with the smallest 6.

Output p; Pk as a hull edge
seti « k
until { = i

For many years such algonthm was the primary algonithm especially for high dimensions, however it
was found that it is "output-size sensitive," in the sense that it runs faster when the hull is small: Its
complexity is O (nh) if the hull has h edges.

Let the red line be a detected extreme edge
with x be the unlinked endpoint, we need to
search for the next extreme edge e which will
share the unlinked endpoint x. The next edge
e makes the smallest angle 6 with respect to
the previous edge.

QuickHull

The basic idea is very simple; Intuitively, we
can discard many points which are interior to
the hull and then concentrate on those
points which are closer to the hull boundary.

The first step of the QuickHull algorithm is to find two distinct extreme points; we will use the

nightmost lowest and leftmost highest points X and y, which are guaranteed extreme and distinct
(since every polygon must have at least one strictly convex vertex).

The full hull is composed of an "upper hull" above xy and a "lower hull" below xy. QuickHull finds
these through a procedure that starts with extreme points (a,b), finds a third extreme point ¢
strictly right of ab, discards all points Aabc, and operates recursively on A = (a,c¢) and B = (¢, b).

N o
TS A\ "
R " o S
- o \\ hY
7 () 7 \ S
p" -~ \ 2
N
Y, L’ @ SO
YA O Q ¢
4
/e @ o\ \
K% e © \
d O
Y @S~ @ @ © i
"\ '.“s S i
S Ssg ‘ S b
NN ~ 3
AN -~ ‘ . \ 1
‘e @ "™~ @ s
S S Swg s\
~ ~
Y @ o S~ s\
S Sen. @ \!
NS ~ - N \\‘
W @ s, @ ® “ss. M 2

QuickHull: two distinct extreme points are firstly found, we use the rightmost lowest (x) and the leftmost highest (y).
Points are divided into those above xy from which the upper hull is obtained, and those below xy from which the lower
hull is obtained. The upper and lower hulls are obtained in the following manner; start with extreme points (a,b) where
a =x and b belongs to the upper hull. Find a third extreme point ¢ which is strictly to the right of ab, discards all
points Aabc, and operates recursively on A = (a,c) and B = (c, b).

Graham’s Algorithm

Now, 1t 1s time for the most efficient
algorithm to compute the convex hull of a
oiven set of points in plane which operates
in O(nlogn) time

Top Level Description

The basic idea of Graham's algorithm is quite
simple. We will first explain it with an example,
making several assumptions that will be removed
later. Let’s assume the general position assumption
where there is no three points in the given set are
collinear.

Assume we are given a point Xx mtenor to the hull.

Now sort the points by angle, counterclockwise about x. For the example shown in the following

figure, the sorted points are labeled a, b,...,].

Example for Graham’s algorithms, x = (2,1); S= {(7,4),(6,5),(3,3),(0,5),(-2,3),(-2,2),(-5,1),(0,0),(-3,-2),(3,-2)}

The points are now processed in their sorted order, and the hull grown incrementally around the set.

At any step, the hull will be correct for the points examined so far, but of course points encountered

later will cause earlier decisions to be reevaluated.
1

d,

Example for Graham’s algorithms, x = (2,1); S= {(7,4),(6,5),(3,3),(0,5),(-2,3),(-2,2),(-5,1),(0,0),(-3,-2),(3,-2)}

The hull-so-far is maintained in a stack S of points. Initially the stack contains the first two points,
S = (b,a) in our example, with b on top. We will use the convention of listing the stack top to
bottom, left to right. Point ¢ is added because (a, b, ¢) forms a left tum at b, the previous stack top.
Note that S = (c, b, a) is a convex chain, a condition that will be maintained throughout.

1
d,
@ ’
/
|‘\ ’
/
4 ¢
| \ 7/ a
| kS / o?
| \ c // o?
eO . I \ Q@ ’ »”?
~ \ /7 e
f \\| \\ // /,/
I /
.§~~§ Iz\\ \ /,’//,
‘o SRRt |
1 - X
h 2% ’
__________________ .
24) o= 27\ 4 G
// \
// \
// \
7 \
> \

Example for Graham’s algorithms, x = (2,1); S= {(7,4),(6,5),(3,3),(0,5),(-2,3),(-2,2),(-5,1),(0,0),(-3,-2),(3,-2)}

Next point d is considered, but since (b, ¢, d) forms a right turn at the stack top ¢, the chain is not
extended, but rather the last decision, to add ¢, is revoked by poping e from the stack, which then
becomes S = (b, a) again. Now d is added, because (a, b, d) forms a left turn at b.

d

Example for Graham’s algorithms, x = (2,1); S= {(7,4),(6,5),(3,3),(0,5),(-2,3),(-2,2),(-5,1),(0,0),(-3,-2),(3,-2)}

Continuing in this manner, e and f are added, after which the stackis S = (f,e,d,b,a). Point g
causes f and then e to be deleted, since both (e, f, g) and (d, e, g) are right tums. Then g can be
added, and the stackis S = (g,d, b, a). And so on.

Example for Graham’s algorithms, x = (2,1); S= {(7,4),(6,5),(3,3),(0,5),(-2,3),(-2,2),(-5,1),(0,0),(-3,-2),(3,-2)}

If we are as fortunate as in the considered example and our first point a is on the hull, the convex
chain will close naturally, resulting in the final hull S = (j,i,9,d, b, a).

Note that from stack top to bottom represents a clockwise traversal, as we built it up wia

counterclockwise scan. If a was not on the hull, the head of the chain would start to be the same as

the tail , and the algonithm analysis would kaa Ihlore difficult. We will see that this can be avoided.
b

Example for Graham’s algorithms, x = (2,1); S= {(7,4),(6,5),(3,3),(0,5),(-2,3),(-2,2),(-5,1),(0,0),(-3,-2),(3,-2)}

Pseudo code, Version A

* Let’s now summarize the rough algorithm in the following pseudo code, where we
assume stack primitives Push(p, §) and Pop(S), which push p onto the top of the stack S,
and pop the top off, respectively. We use 7 to index the stack top and 7 for the angularly
sorted points.

Algorithm: Graham Scan, Version A

Find interior point x, label it as p,
Sort all other points angularly about X, label them p;, ps, ..., Pp—1
Stack S = (p3,pP1) = (Pe> Pe—1) ; t indexes the top of the stack
Seti « 3
While i < n do
If p; is left of (Pr_1,P¢)
Then Push (p;,S) and seti « i+ 1
Else Pop(S)

Many issues remain to be examined (start and termination in particular), but at this coarse level, it
should be apparent that the while loop iterates O(n) times: Each stack pop permanently removes
one point, so the number of backups cannot exceed n. Together with n forward steps, the loop
iterates at most 2n times. So the algorithm runs in linear time after the sorting step, which takes

O (nlogn) time.

Details: Boundary Conditions

Now 1t 1s time to discuss details related
to various boundary conditions which
have been ignored so far.

Start and Stop of Loop

The algorithm so far presented might have trouble at either the starting of the loop or its end. We
already mentioned the termination difficulties that would anse if a, the stack bottom, was not on the
hull. Startup difficulties occur when b, the second point pushed on the stack, is not on the hull too.

Suppose that (a, b, ¢) is a right tum. Then b would be popped from the stack, and the stack reduced

to S = (a). But at least two points are needed to determine if a third forms a left turn with the
stack top.

Clearly both startup and stopping problems are avoided if both a and b are on the hull. How this

can be arranged will be shown in the next subsection.

[J [J [J
Sorting Origin
We assumed that the point X, about which all others are sorted, is intenior to the hull.

However computing such an interior point is unnecessary, it also may force the use of floating-point
numbers even when the input coordinates are all integers. We would like to avoid all floating-point

calculations to guarantee a correct answer on integer input.

A simplification is to sort with respect to a point of the set, and in particular, with respect to a point
on the hull. We will use the lowest point, which is clearly on the hull. In case there are several with
the same minimum y coordinate, we will use the nghtmost of the lowest as the sorting orgin.

Now we are prepared to solve the startup and termination problems discussed above. If we sort
PIEp P P
points with respect to their counterclockwise angle from the honzontal ray emanating from our

sorting omngin P, then p; must be on the hull, as it forms an extreme angle with p,. However, it
may not be an extreme point.

If we initialize the stack to S = (pg, p1), the stack will always contain at least two points, avoiding

startup difficulties, and will never be consumed when the chain wraps around to p, again, avoiding
termination difficulties.

|

|

' 2
1\ ,'

4\ ’

) ,1

/
| \ / /
A 3 ; /
5@, L ® J
N | \ | / /
N] / /
N | \ /
‘\\\ . |2 \ I / /
8 S N \ ! / /
‘ N n \ | / 7
S o N \ \ I / /
S S \I\ S 3 ;. 7/ X
\\\ 7'\ S \ I / /
__________ :‘______?-\<____v _l__ _/___________'
-4 \'gx\ I \\ NN 2 3 l /4/ 6
S | \\\ A \ | / /
-~ \\ \ I V4

r\\) \ I/

| \\\ \\\\ \ : I/

I SS S0y

New sorting origin for the points in the previous example, where the

lowest rightmost point is considered to be our origin around which other
points are angularly sorted.

Collinearities

The final "boundary condition" we consider is the
possibility that three or more points are collinear.
This issue affects several aspects of the algorithm.
First we focus on defining precisely what we seek as
output.

Hull Collinearities.

We insist here on the most useful output (4): the extreme vertices only, ordered around the hull.
Thus if the input consists of the corners of a square, together with points in-between such corners
along the square’s boundary, the oufput should consist of just the four comers of the square.
Avoiding non-extreme hull points is easily achieved by requiring a stiez left turn (py_1, Pe,Pi) to
push p; onto the stack, where p; and p;_, are the top two points on the stack. Then if p; is collinear
with pe_; and p; it will be deleted.

Sorting Collinearities.

Collinearnities raise another issue: How should we break ties in the angular sorting if both points a

and b form the same angle with py? There are at least two options.

First, use a consistent sorting rule, and then ensure start and stop and hull collineanities are managed
appropriately. A reasonable rule is that if angle(a) = angle(b), then define a < 4 if |a — py| <

|b — po| - Closer points are treated as earlier in the sorting sequence.

We choose here a second option. It is based on this simple observation: If angle(a) = angle(b) and
a < b according to the above sorting rule, then a is not an extreme point of the hull and may
therefore be deleted.

Coincident Points.

Often code that works on distinct points crashes for sets that may include multiple copies of the
same point. We will see that we can treat this issue as a special case of a sorting collineanty, deleting

all but one copy of each point.

|
I 7 6
|
8 @ O 03
4 L
10 I -
o 4 L
\ | \\ I I pz
S) % ! 5 y
AN I \ 1| 4 /
" I \ 1 I Q //
14 13 11 S I \ [|
o. Q O. 12 E -
- \\ N \\ | \ 1| 1
15 S o SO \\ N 9 \ I |
O & \\ N \ 1 1
S S \\ ~ \\l S \ 11 /
S~ ~ N D \ 11 / X
__________ e "'_____T_LI"_T-/_—-_—______'
-4 ~2 _ ~Q; \\\\ 20 Vv g4y 6
RN PSR R NELLE VR4
~ ~ S NN /
i N SN i
= . ~ \\\ \ I/
_—TrE=sw

Sorting points with collinearities, indices indicate sorting rank, points to be

deleted are shown as open circles.

Pseudo code, Version B

Algorithm: Graham Scan, Version B

Find nghtmost lowest point, label it as p,
Sort all other points angularly about p,
In case of tie, delete the point closer to p, (or all but one copy for multiple points)
Stack S = (p1,Po) = (Pt Pr—1) ; t indexes the top of the stack
Seti « 2
While i << n do
If p; is strctly left of (pr_1,Pt)
Then Push (p;,S) and seti « i + 1
Else Pop(S)

Incremental Algorithm

The difficulty is that Graham's algorithm has no
obvious extension to three dimensions: It depends
crucially on angular sorting, which has no direct
counterpart in three dimensions. So we now
proceed to describe one further algorithm in two
dimensions which can be extended to three
dimensions.

The algorithm is very straightforward: The incremental algorithm.

Its basic plan i1s simple: Add the points one at a time; at each step, construct the hull of the first £
points and use that hull to incorporate the next point. It turns out that "factoring” the problem this
way simplifies it greatly, in that we only have to deal with one very special case: adding a single point
to an existing hull.

Let P = {pg, Py, Pn_1} be our set of points, and assume for simplicity that the points are in
general position, that is no three of them are collinear. The following outline highlights the high-
level structure of this algonthm.

Algorithm: Incremental Algorithm

Let H, = chull{py, p1, >}
Fork=3 ton—1do
H;, = chull{H}_, U py }

The first hull is the triangle chull{py,p;,p,}. Let @ = Hy_; and p = px. The problem of
computing chull{Q U p} falls into two cases, depending on whether p € Q or p & Q. (we could
ensure that p € Q by presorting the p;’s by x-coordinate for example).

Casel: p €Q
Once p is determined to be in Q, it can be discarded.

Note that we can discard p even if it is on the boundary of Q if we assume that we only want

extreme points.

Although there are several ways to decide if p € Q, perhaps the most robust way is to use LeftOn,
1e. p € Q if and only if p is left of or on every directed edge in Q.

Apparently this test takes time linear in the number of vertices of Q. Note that this method only
works for convex polygon @ which is all we need here, however more general point-in-polygon

algorithms can be used.

Case 2: p €& Q

If any LeftOn test returns false, then p € Q and we have to compute chull{Q U p}. What makes

this task relatively easy is that we need only find the two lines of tangency from p to @ and modify
the hull accordingly.

Our general position assumption assures that each line of tangency between p and Q touches Q at

just one point. Suppose p; is one such point of tangency, how can we find it?

The following figure shows that we can use the results of the LeftOn tests to determine tangency.
For the lower point of tangency p;, p 1s left of p; _,p; but nght of p;p;, 4.

For the upper point of tangency p;, the sense is reversed, i.e. p is ight of p;_;p; butleft of p;p;, 1.

Both cases can be captured with the exclusive-Or function: thatis p; is a point of tangency if two
successive edges yield different LeftOn results. Thus the two points of tangency can be identified via

the same series of LeftOn tests used to decide if p € Q.

It only remains to form the new hull, the new hull is {pg, Py, +) Di—1, Pi» s Pj» Pj+1s -+ » Pn—1)- If the
hulls are represented by linked lists, this update can be accomplished by a simple sequence of
msertion and deletions.

Tangent lines from p to Q, ‘left’ means that p is left of the indicated directed line, and ‘!left’ mean ‘not left’

left - j+1]
-V O L L Y
/
/
/
/
/
Neft Ky
A /
] /
f 7
/
/
i+,1/
/
/

Algorithm: Tangent Points __==> left

Fori =0ton—1do i1 /"' 1
If Xor(p left or on p; _1p;, p left or on p;p;+ 4 // I
Then p; is point of tangency p !

The complexity analysis of this algorithm is simple: The work at each step is O(#); more precisely, it
is proportional to the number of vertices of the &th hull. In the worst case we would have : p & Q

at each step, resulting in total work proportional to 3 +4 +... +» = O(#*). It turns out that with only
a little more effort, the ime complexity can be reduced to O log).

Flavor ot Computational
Geometry

Convex Hull in 3D

Shireen Y. Elhabian
Aly A. Farag

University of Louisville
February 2010

Agenda

* Polyhedra

— Introduction
— Regular Polytopes

— Euler’s Formula

* Incremental Algorithm in 3D

Polyhedra

The focus of this section is discussing
algorithm for constructing the convex hull
of a set of points in three dimensions. We
will also touch basis on some properties of
polyhedra and how to represent polyhedra.

Introduction

Definition 17: The generalization of a two-dimensional polygon to three dimensions is called a polyhedron. I7 s
a region of space whose boundary is composed of a finite number of flat polygonal faces, any pair of which are either

disjoint or meet at edges and vertices.

* In this section we are mainly concerned with convex polyhedra,

which are simpler than general polyhedra.

* The boundary or surface of a polyhedron is composed of three
types of geometric objects:

— zero-dimensional vertices (0-cells, i.e. points),
— one-dimensional edges (1-cells, i.e. segments), and

— two-dimensional faces (2-cells, i.e. polygons).

* Faces can be convex polygons, which are defined to be bounded,
without losing generality, since non-convex polygons/faces can
be partitioned into convex ones, however we must then allow
adjacent faces to share the same plane, 1.e. coplanar.

Definition 17: The generalization of a two-dimensional polygon to three dimensions is called a polyhedron. I7 s
a region of space whose boundary is composed of a finite number of flat polygonal faces, any pair of which are either

disjoint or meet at edges and vertices.

* There are certain conditions which should be satisfied to
construct a valid polyhedral surface, such conditions defines how
polyhedral surface components are related to each other. We
have three types of conditions:

— The components intersect "propetly,"
— the local topology is "proper," and

— the global topology is "proper."

e Now let’s discuss these conditions in details

1. Components intersect "properly."

For each pair of faces, we require that
either

— they are disjoint, or
— they have a single vertex in common, or

— they have two vertices, and the edge joining
them, in common.

Having convex faces simplifies these

conditions.

Improper intersections include not only

. . Faces A and B meet face C
penetrating faces, but also faces touching improperly even though they do

in the "wrong" way. not penetrate C

There is no need to specify conditions on the intersection of edges and vertices,
as the condition on faces covers them also. Thus an improper intersection of a
pair of edges implies an improper intersection of faces.

2. Local topology is "proper."

Geometrically, the local topology is what the surface looks like in the

vicinity of a point.

This notion can be made precise via the notion of neighborhoods which are
arbitrarily small portions (open regions) of the surface surrounding a
point.

The points should have neighborhoods that are topological two-
dimensional disks, 1.e. neighborhoods of every point on the surface 1s
"homeomorphic" to a disk, where a homeomorphism between two regions
permits stretching and bending, but no tearing,

A bug walking on the surface would find the neighborhood of every point
to be topologically like a disk.

A surface for which every point have a neighborhood homeomorphic to
an open disc is called a 2-manifold, which is a class more general than the

boundaries of polyhedra.

2. Local topology is "proper."

* Moving to a combinatorial description to this condition, suppose we triangulate the
polygonal faces, then every vertex is the apex of a number of triangles. Let’s define the
link of a vertex as follows;

Definition 18: The link of a vertex v is the collection of edges opposite fo v in all the triangles incident fo v. Thus

the link 5 in a sense the combinatorial neighborhood of v. For a legal triangulated polybedron, we require that the link
of every vertex be a simple, closed polygonal path (polygonal chain).

* One consequence of this condition is that every edge 1s shared by exactly two faces.

Vertex v

An example of a valid polyhedral
—>» Faces share v surface, where the link of a
vertex v is defined to be the
collection of edges opposite to v

in all the triangles incident to v.
Thus the link is in a sense the
combinatorial neighborhood of
v. For a legal triangulated
polyhedron, we require that the
link of every vertex be a simple,
closed polygonal path.

Link of vertex v

Definition 19: .4 polygonal chain, polygonal curve, polygonal path, or piecewise linear curve,

15 a connected series of line segments. More formally, a polygonal chain P is a curve specified by a sequence of points

(A1, 45, ..., Ay) called its vertices so that the curve consists of the line segments connecting the consecutive vertices.

Definition 20: .4 simple polygonal chain i one in which only consecutive (or the first and the last) segments
intersect and only at their endpoints.

Definition 21: .4 closed polygonal chain is one in which the first vertex coincides with the last one, or,
alternatively, the first and the last vertices are also connected by a line segment. A simple closed polygonal chain in the
F 4 o F) > ' £ g , g Sogr F For e , PLABIPN cord 147 F 3947 con o] ,)
plane 15 the boundary of a simple polygon. Often the term "polygon" i5s used in the meaning of "closed polygonal
chain"'.

As
A A, Example of (a) a simple polygonal chain (b) a self-
intersecting polygonal chain and (c) a closed
As polygonal chain
A2 A4 A1
(2)
A A A, As
‘ A As As

As A A (€)

(2)

(b)

Three objects that are not polyhedra. In all
three cases, a neighborhood of the circled
point is not homeomorphic to an open disk.
In (a) the point lies both on the top surface
shown and on a similar surface underneath.
Object (c) is not closed, so the indicated
point's neighborhood is a half-disk.

3. Global topology is "proper."

We would like the surface to be connected, closed, and bounded. So we

require that the surface be connected in the sense that from any point, one
may walk to any other point on the surface.

This can be stated combinatorially by requiring that the 7-skeleton, the graph
of edges and vertices, be connected.

Such condition with emphasizing having a finite number of faces, our
previous conditions already imply closed and bounded surfaces.

One might be inclined to rule out "holes" in the definition of polyhedron,
holes in the sense of "channels" from one side of the surface to the other
that do not disconnect the exterior (unlike cavities).

Should a torus (a shape like a doughnut) be a polyhedron? We adopt the usual
terminology and permit polyhedra to have an arbitrary number of such holes.
The number of holes 1s called the genus of the surface.

Normally we will only consider polyhedra with genus zero: those
topologically equivalent to the surface of a sphere.

In Summary ...

* The boundary of a polyhedron is a finite collection of planar,
bounded convex polygonal faces such that:

— the faces intersect propetly;

— the neighborhood of every point 1s topologically an open
disk, or (equivalently) the link of every vertex is a simple
polygonal chain; and

— the surface is connected, or (equivalently) the 1-skeleton 1s
connected.

* The boundary 1s closed and encloses a bounded region of space.
Every edge is shared by exactly two faces; these faces are called
adjacent.

Definition 22: 4 polytope, or sometimes 3-polytopes to emphasize their three-dimensionality, is a polybedron
that is convex in that the segment connecting any two of U5 points is inside.

Just as convex polygons can be charactenized by the local requirement that each vertex be convex,

polytopes can be speciﬁed locally by requiring that all dzbedral angles be convex (S).

Definition 23: Dihedral angles are the infernal angles in space at an edge between the planes containing ifs two
incident faces.

For any polytope, the sum of the face angles around each vertex is at most 2z, but this condition
does not alone imply convexity.

It 1s important for building intuition and testing out ideas to become intimately familiar with a few
polyhedra. We therefore take time to discuss the five Platonic solids.

The dihedral angle (pale red) is the part of

the space between two half-planes (pale
blue).

Regular Polytopes

Definition 24: 4 regular polygon 5 one with equal sides and equal angles: equilateral triangle, square, regular
pentagon, regular hexagon, and so on. Hence there are an infinite variety of regular polygons, one for each n (number of

vertices).

Definition 25: Regular polyhedra are convex: polybedra, they are often called regular polytopes in the sense that
- - L

all faces are congruent regular polygons, and the number of faces incident fo each vertex is the same for all vertices. This

implies equal dihedral angles.

* The surprising implication of these regularity conditions is that
there are only five distinct types of regular polytopes. These are
known as the Platonic solids.

* We now prove that there are exactly five regular polytopes.

* The proof is very elementary. The intuition is that the internal
angles of a regular polygon grow large with the number of
vertices of the polygon.

Let p be the number of vertices per face; so each face 1s a regular p-gon.

1
p—th

The sum of the faces angles for one p-gon is m(p — 2), so each face angle is of this, 1.e.

ﬂ(l — ;)

Let v be the number of faces meeting at a vertex.

The key constraint is that the sum of the face angles meeting at a vertex is less than 27, in order for
the polyhedron to be convex. (we only consider real vertices at which the face angles sum to strctly
less than 2m).

This can be seen intuitively by noticing that if the polyhedron surface is flat in the vicinity of a
vertex, the sum of the angles is exactly 27 and the sum of angles at a needle-sharp vertex is quite

small.

So the angle sum is in the range (0,2m) Thus we have v angles, each w(1 — %) which must sum to

less than 21.

We transform this inequality with a senies of algebraic manipulations to reach a particularly
convenient form:

2
vn(l——)<27t

p
2 2
1——<—
p v
pv < 2v+2p

pv—2v—2p+4 <4
p—2)v—-2) <4

Where both p and v are integers. Because a polygon must have at least three sides, i.e. p = 3. It is
perhaps less obvious that v > 3: ie. at least three faces must meet at each vertex, since no "solid
angle" could be formed at » with only two faces. These constraints suffice to limit the possibilities to
those listed in Table 1. For example, p = 4 and v = 4 leads to (p - 2)(v - 2) = 4, violating the
mequality. And indeed if four squares are pasted at a vertex, they must be coplanar, and this case
cannot lead to a polyhedron.

Table 1 — Legal p/vvalues, The Greek prefixes in the names refer to the number of faces: tetra = 4, acta = 8, dodeca = 12,
icosa = 20. Sometimes a cube is called a ""hexahedron". V is the number of vertices, E is the number of edges and F is the
number of faces.

p | v | @22 Name Description V| E| F
3 13 1 Tetrahedron 3 triangles at each vertex - 6 -
4 13 2 Cube 3 squares at each vertex 8 12 6
3 |4 2 Octahedron 4 triangles at each vertex 6 12 8
5 |3 3 Dodecahedron | 3 pentagons at each vertex 20 | 30 | 12
3 |5 3 Icosahedron 5 triangles at each vertex 12 | 30 | 20

v i R

Tetrahedron Cube Octahedron

Dodecahedron Icosahedron

Euler’s Formula

Leonhard Paul Euler (15 April 1707 — 18 September 1783) was a pioneering Swiss mathematician and
physicist who spent most of his life in Russia and Germany.

Euler made important discoveries in fields as diverse as calculus and graph theory. He also introduced much
of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the
notion of a mathematical function.

* In 1758 Leonard Euler noticed a remarkable regularity in the numbers of
vertices, edges, and faces of a polyhedron of genus zero:

— The number of vertices and faces together is always two more than the number
of edges; and this is true for 4/ polyhedra.

* So a cube has 8 vertices and 6 faces, and 8 + 6 = 14 i1s two more than its 12
edges. And the remaining regular polytopes can be seen to satisfy the same
relationship.

Theorem 7: Let U, E, and F be the number of vertices, edges, and faces respectively of a polybedron, then what is
now known as Euler's formula 7s:

V—-E+F=2

Incremental Algorithm 1n 3D

The overall structure of the three-dimensional incremental algorithm 1s identical to that of the two-
dimensional version:

At the /-th iteration, compute H; = chull{H;_; U p;}. And again the problem of computing the
new hull naturally divides into two cases.

Letp = p;jand Q = H;_;.

Decide if p € Q. If so, discard p; if not, compute the cone fangent to Q whose apex is p, and construct
the new hull.

The test p € Q can be made in the same fashion as in two dimensions: p is inside Q if an only if p is

to the positive side of every plane determined by a face of Q.

The left-of-triangle test is based on the volume of the determined tetrahedron, just as the left-of-
segment test 1s based on the area of the trangle.

If all faces are omented consistently, the volumes must all have the same sign (positive under our
conventions). This test clearly can be accomplished in time proportional to the number of faces of

Q. which as we saw previously, is O(n).

When p is outside Q, the problem becomes more difficult, as the hull will be altered.

Recall that in the two-dimensional incremental algonthm, the alteration required finding two
tangents from p to Q.

In three dimensions, there are tangent planes rather than tangent lines. These planes bound a cone of

triangle faces, each of whose apex is p, and whose base is an edge e of Q.

An example is shown in the following figures. The first figure shows H;_; and H;,; from one point
of view, and the second one shows the same example from a different viewpoint.

(b)

-Viewpoint one: (a) H;_; before adding point in corner, (b) after: H;

(2) (b)

- Viewpoint two: (a) H;_, before adding point in corner, (b) after: JH;

We now discuss how these cone faces can be constructed.
Imagine standing at p and looking toward Q.

Assuming for the moment that no faces are viewed edge-on; the interior of each face of Q is either

visible or not visible from p.

It should be clear that the visible faces are precisely those that are to be discarded in moving from

Q - .7{,:_1 to }[i'

Moreover, the edges on the border of the visible region are precisely those that become the bases of

cone faces apexed at p.

Since suppose e is an edge of Q such that the plane determined by e and p is tangent to Q. Edge e is

adjacent to two faces, one of which is visible from p, and one of which is not.
Therefore, e is on the border of the visible region.

An equivalent way to view this is to think of a light source placed at p. Then the visible region is that
portion of @ illuminated, and the border edges are those between the light and dark regions.

From this discussion, it is evident that if we can determine which faces of Q are visible from p and
which are not, then we will know enough to find the border edges and therefore construct the cone,

and we will know which faces to discard. We now need a precise defimition of \'isibi].ity.

Definition 26: .4 face said o be visible from p if and only if some point X interior to f is visible from p, that

15, PX does not intersect Q except at X: px N Q= {x }

Note that under this definition, seeing only an edge of a face does not render the face visible, and
faces seen edge-on are also considered invisible. Whether a trangle face (a,b,c) is visible from

p can be determined from the signed volume of the tetrahedron (a, b, c,p). It is visible if and only
if the volume is strictly negative.

We can now outline the algonithm based on the wisibility calculation. Of course many details remain
to be explained, but the basics of the algonithm should be clear.

Algorithm: 3D Incremental Algorithm

Initialize H3 to tetrahedron (pg, Py, P2, P3)-
Fori=4,..,n—1do
For each face f of H;_; do
Compute the volume of tetrahedron determined by f and p;
Mark f visible if and only if volume < 0
If no faces are visible
Then Discard p; (it is inside H;_4)
Else
For each border edge e of H;_; do
Construct cone face determined by e and p;
For each visible face f do
Delete f
Update H;

Thanks

