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PCA is …

• A backbone of modern data analysis.

• A black box that is widely used but poorly
understood.

PCA

PCA

OK … let’s dispel the magic behind 
this black box



PCA - Overview

• It is a mathematical tool from applied linear
algebra.

• It is a simple, non-parametric method of
extracting relevant information from confusing
data sets.

• It provides a roadmap for how to reduce a
complex data set to a lower dimension.



Background

• Linear Algebra
• Principal Component Analysis (PCA)
• Independent Component Analysis (ICA)
• Linear Discriminant Analysis (LDA)
• Examples
• Face Recognition - Application
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Variance

• A measure of the spread of the data in a data
set with mean

• Variance is claimed to be the original statistical
measure of spread of data.
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Covariance
• Variance – measure of the deviation from the mean for points in one

dimension, e.g., heights

• Covariance – a measure of how much each of the dimensions varies
from the mean with respect to each other.

• Covariance is measured between 2 dimensions to see if there is a
relationship between the 2 dimensions, e.g., number of hours studied
and grade obtained.

• The covariance between one dimension and itself is the variance
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Covariance

• What is the interpretation of covariance calculations?

• Say you have a 2-dimensional data set

– X: number of hours studied for a subject

– Y: marks obtained in that subject

• And assume the covariance value (between X and Y) is:
104.53

• What does this value mean?
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Covariance
• Exact value is not as important as its sign.

• A positive value of covariance indicates that both
dimensions increase or decrease together, e.g., as the
number of hours studied increases, the grades in that
subject also increase.

• A negative value indicates while one increases the other
decreases, or vice-versa, e.g., active social life vs.
performance in ECE Dept.

• If covariance is zero: the two dimensions are independent
of each other, e.g., heights of students vs. grades obtained
in a subject.
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Covariance

• Why bother with calculating (expensive)
covariance when we could just plot the 2 values
to see their relationship?

Covariance calculations are used to find
relationships between dimensions in high
dimensional data sets (usually greater than 3)
where visualization is difficult.
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Covariance Matrix
• Representing covariance among dimensions as a

matrix, e.g., for 3 dimensions:

• Properties:
– Diagonal: variances of the variables

– cov(X,Y)=cov(Y,X), hence matrix is symmetrical about
the diagonal (upper triangular)

– m-dimensional data will result in mxm covariance matrix
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Linear algebra

• Matrix A:

• Matrix Transpose 

• Vector a
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Matrix and vector multiplication

• Matrix multiplication

• Outer vector product

• Vector-matrix product
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Inner Product
• Inner (dot) product:

• Length (Eucledian norm) of  a vector
• a is normalized iff  ||a|| = 1

• The angle between  two n-dimesional  
vectors

• An inner product is a measure of  
collinearity:
– a and b are orthogonal iff

– a and b are collinear iff
• A set of  vectors is linearly independent  if  

no vector is a linear combination of  
other vectors.
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Determinant and Trace

• Determinant   

det(AB)= det(A)det(B)

• Trace 
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Matrix Inversion

• A (n x n) is nonsingular if  there exists B such that:

• A=[2 3; 2 2], B=[-1  3/2; 1  -1]

• A is nonsingular iff  

• Pseudo-inverse for a non square matrix, provided                            
is not singular
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Linear Independence

• A set of n-dimensional vectors xi Є Rn, are said
to be linearly independent if none of them can
be written as a linear combination of the others.

• In other words,
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Linear Independence

• Another approach to reveal a vectors
independence is by graphing the vectors.
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Span

• A span of a set of vectors x1, x2, … , xk is the
set of vectors that can be written as a linear
combination of x1, x2, … , xk .
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Basis

• A basis for Rn is a set of vectors which:

– Spans Rn , i.e. any vector in this n-dimensional space
can be written as linear combination of these basis
vectors.

– Are linearly independent

• Clearly, any set of n-linearly independent vectors
form basis vectors for Rn.



Orthogonal/Orthonormal Basis
• An orthonormal basis of an a vector space V with an inner product, is a set

of basis vectors whose elements are mutually orthogonal and of magnitude 1 (unit
vectors).

• Elements in an orthogonal basis do not have to be unit vectors, but must be mutually
perpendicular. It is easy to change the vectors in an orthogonal basis by scalar
multiples to get an orthonormal basis, and indeed this is a typical way that an
orthonormal basis is constructed.

• Two vectors are orthogonal if they are perpendicular, i.e., they form a right angle, i.e.
if their inner product is zero.

• The standard basis of the n-dimensional Euclidean space Rn is an example of
orthonormal (and ordered) basis.
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Transformation Matrices
• Consider the following:

• The square (transformation) matrix scales (3,2)

• Now assume we take a multiple of (3,2)
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Transformation Matrices
• Scale vector (3,2) by a value 2 to get (6,4)

• Multiply by the square transformation matrix

• And we see that the result is still scaled by 4.

WHY?

A vector consists of both length and direction. Scaling a
vector only changes its length and not its direction. This is
an important observation in the transformation of matrices
leading to formation of eigenvectors and eigenvalues.

Irrespective of how much we scale (3,2) by, the solution
(under the given transformation matrix) is always a multiple
of 4.
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Eigenvalue Problem
• The eigenvalue problem is any problem having the

following form:
A . v = λ . v

A: m x m matrix
v: m x 1 non-zero vector
λ: scalar

• Any value of λ for which this equation has a
solution is called the eigenvalue of A and the vector
v which corresponds to this value is called the
eigenvector of A.
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Eigenvalue Problem
• Going back to our example:

A . v = λ . v

• Therefore, (3,2) is an eigenvector of the square matrix A
and 4 is an eigenvalue of A

• The question is:
Given matrix A, how can we calculate the eigenvector
and eigenvalues for A?
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Calculating Eigenvectors & Eigenvalues

• Simple matrix algebra shows that:

A . v = λ . v

Û A . v - λ . I . v = 0

Û (A - λ . I ). v = 0

• Finding the roots of |A - λ . I| will give the eigenvalues
and for each of these eigenvalues there will be an
eigenvector

Example …
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Calculating Eigenvectors & 
Eigenvalues

• Let

• Then:

• And setting the determinant to 0, we obtain 2 eigenvalues:
λ1 = -1 and λ2 = -2
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Calculating Eigenvectors & Eigenvalues

• For λ1 the eigenvector is:

• Therefore the first eigenvector is any column vector in
which the two elements have equal magnitude and opposite
sign.
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Calculating Eigenvectors & Eigenvalues

• Therefore eigenvector v1 is

where k1 is some constant.

• Similarly we find that eigenvector v2

where k2 is some constant.
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Properties of  Eigenvectors and 
Eigenvalues

• Eigenvectors can only be found for square matrices and
not every square matrix has eigenvectors.

• Given an m x m matrix (with eigenvectors), we can find
n eigenvectors.

• All eigenvectors of a symmetric* matrix are
perpendicular to each other, no matter how many
dimensions we have.

• In practice eigenvectors are normalized to have unit
length.

*Note:	covariance	matrices	are	symmetric!



Now … Let’s go back

PCA



Nomenclature
• m : number of rows (features/measurement types) in a dataset matrix.

• n : number of columns (data samples) in a dataset matrix.

• X : given dataset matrix (mxn)

• xi : columns/rows of X as indicated.

• Y : re-representation (transformed) matrix of dataset matrix X (mxn).

• yi : columns/rows of Y as indicated

• P : transformation matrix

• pi : rows of P (set of new basis vectors).

• Sx : covariance matrix of dataset matrix X.

• Sy : covariance matrix of the transformed dataset matrix Y.

• r : rank of a matrix

• D : diagonal matrix containing eigen values.

• V : matrix of eigen vectors arranged as columns.



Example of  a problem

• We collected m parameters about 100 students:
– Height

– Weight

– Hair color

– Average grade

– …

• We want to find the most important parameters that 
best describe a student.



• Each student has a vector of  data 
which describes him of  length m:

– (180,70,’purple’,84,…)

• We have n = 100 such vectors. 
Let’s put them in one matrix, 
where each column is one 
student vector. 

• So we have a mxn matrix. This 
will be the input of  our problem.

Example of  a problem



Example of  a problem
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Every student is a vector that 
lies in an m-dimensional 
vector space spanned by an 
orthnormal basis.

All data/measurement vectors 
in this space are linear 
combination of  this set of  
unit length basis vectors.



Which parameters can we ignore?

• Constant parameter  (number of  heads)
– 1,1,…,1.

• Constant parameter with some noise - (thickness of  
hair) 
– 0.003, 0.005,0.002,….,0.0008 è low variance

• Parameter that is linearly dependent on other 
parameters (head size and height)
– Z= aX + bY



Which parameters do we want to keep?

• Parameter that doesn’t depend on others (e.g. 
eye color), i.e. uncorrelated è low covariance.

• Parameter that changes a lot (grades)

– The opposite of  noise

– High variance



Questions

• How we describe ‘most important’ 
features using math?

– Variance

• How do we represent our data so that 
the most important features can be 
extracted easily?

– Change of  basis



Change of  Basis !!!
• Let X and Y be m x n matrices related by a linear transformation P.

• X is the original recorded data set and Y is a re-representation of that
data set.

PX = Y

• Let’s define;

– pi are the rows of P.

– xi are the columns of X.

– yi are the columns of Y.



Change of  Basis !!!
• Let X and Y be m x n matrices related by a linear transformation P.

• X is the original recorded data set and Y is a re-representation of that
data set.

PX = Y

• What does this mean?

– P is a matrix that transforms X into Y.

– Geometrically, P is a rotation and a stretch (scaling) which again
transforms X into Y.

– The rows of P, {p1, p2, …,pm} are a set of new basis vectors for
expressing the columns of X.



Change of  Basis !!!
• Lets write out the explicit dot

products of PX.

• We can note the form of each
column of Y.

• We can see that each coefficient of
yi is a dot-product of xi with the
corresponding row in P.

In other words, the jth coefficient of yi is a projection onto the
jth row of P.

Therefore, the rows of P are a new set of basis vectors for
representing the columns of X.



• Changing the basis doesn’t change the data – only its 
representation.

• Changing the basis is actually projecting the data 
vectors on the basis vectors.

• Geometrically, P is a rotation and a stretch of  X.

– If  P basis is orthonormal (length = 1) then  the 
transformation P is only a rotation

Change of  Basis !!!



Questions Remaining !!!
• Assuming linearity, the problem now is to find the

appropriate change of basis.

• The row vectors {p1, p2, …,pm} in this transformation
will become the principal components of X.

• Now,
– What is the best way to re-express X?

– What is the good choice of basis P?

• Moreover,
– what features we would like Y to exhibit?



What does “best express” the data 
mean ?!!!

• As we’ve said before, we want to filter out noise
and extract the relevant information from the
given data set.

• Hence, the representation we are looking for will
decrease both noise and redundancy in the data
set at hand.



Noise …
• Noise in any data must be low or – no matter the analysis

technique – no information about a system can be extracted.

• There exists no absolute scale for the noise but rather it is
measured relative to the measurement, e.g. recorded ball
positions.

• A common measure is the signal-to-noise ration (SNR), or a ratio of
variances.

• A high SNR (>>1) indicates high precision data, while a low
SNR indicates noise contaminated data.



• Find the axis rotation that 
maximizes SNR = maximizes 
the variance between axis.

Why Variance ?!!!



Redundancy …

• Multiple sensors record the same dynamic information.

• Consider a range of possible plots between two arbitrary measurement
types r1 and r2.

• Panel(a) depicts two recordings with no redundancy, i.e. they are un-
correlated, e.g. person’s height and his GPA.

• However, in panel(c) both recordings appear to be strongly related, i.e.
one can be expressed in terms of the other.



Covariance Matrix
• Assuming zero mean data (subtract the mean), consider the

indexed vectors {x1, x2, …,xm} which are the rows of an mxn
matrix X.

• Each row corresponds to all measurements of a particular
measurement type (xi).

• Each column of X corresponds to a set of measurements from
particular time instant.

• We now arrive at a definition for the covariance matrix SX.

where



Covariance Matrix

• The ijth element of the variance is the dot product between the
vector of the ith measurement type with the vector of the jth
measurement type.

– SX is a square symmetric m×m matrix.

– The diagonal terms of SX are the variance of particular
measurement types.

– The off-diagonal terms of SX are the covariance between
measurement types.

where



Covariance Matrix

• Computing SX quantifies the correlations between all possible
pairs of measurements. Between one pair of measurements, a
large covariance corresponds to a situation like panel (c), while
zero covariance corresponds to entirely uncorrelated data as in
panel (a).

where



Covariance Matrix

• Suppose, we have the option of manipulating SX. We will
suggestively define our manipulated covariance matrix SY.

What features do we want to optimize in SY?



Diagonalize the Covariance Matrix

Our goals are to find the covariance matrix that:

1. Minimizes redundancy, measured by covariance. (off-diagonal), 
i.e. we would like each variable to co-vary as little as possible 
with other variables. 

2. Maximizes the signal, measured by variance. (the diagonal)

Since covariance is non-negative, the optimized covariance matrix 
will be a diagonal matrix.



Diagonalize the Covariance Matrix
PCA Assumptions

• PCA assumes that all basis vectors {p1, . . . , pm}
are orthonormal (i.e. pi · pj = δij).

• Hence, in the language of linear algebra, PCA
assumes P is an orthonormal matrix.

• Secondly, PCA assumes the directions with the
largest variances are the most “important” or in
other words, most principal.

• Why are these assumptions easiest?



Diagonalize the Covariance Matrix
PCA Assumptions

• By the variance assumption PCA first selects a normalized direction in
m-dimensional space along which the variance in X is maximized - it
saves this as p1.

• Again it finds another direction along which variance is maximized,
however, because of the orthonormality condition, it restricts its
search to all directions perpendicular to all previous selected directions.

• This could continue until m directions are selected. The resulting
ordered set of p’s are the principal components.

• The variances associated with each direction pi quantify how principal
each direction is. We could thus rank-order each basis vector pi
according to the corresponding variances.

• This pseudo-algorithm works, however we can solve it using linear
algebra.



Solving PCA: Eigen Vectors of  
Covariance Matrix

• We will derive our first algebraic solution to PCA using
linear algebra. This solution is based on an important
property of eigenvector decomposition.

• Once again, the data set is X, an m×n matrix, where m is the
number of measurement types and n is the number of data
trials.

• The goal is summarized as follows:

– Find some orthonormal matrix P where Y = PX such
that is diagonalized. The rows of P are the
principal components of X.



• We begin by rewriting SY in terms of our variable of choice P.

• Note that we defined a new matrix A = XXT , where A is symmetric

• Our roadmap is to recognize that a symmetric matrix (A) is diagonalized by
an orthogonal matrix of its eigenvectors

• A symmetric matrix A can be written as VDVT where D is a diagonal matrix
and V is a matrix of eigenvectors of A arranged as columns.

• The matrix A has r ≤ m orthonormal eigenvectors where r is the rank of the
matrix.

Solving PCA: Eigen Vectors of  
Covariance Matrix



• Now comes the trick. We select the matrix P to be a matrix where each
row pi is an eigenvector of XXT .

• By this selection, P = VT. Hence A = PTDP.

• With this relation and the fact that P−1 = PT since the inverse of
orthonormal matrix is its transpose, we can finish evaluating SY
as follows;

• It is evident that the choice of
P diagonalizes SY. This was the
goal for PCA.

• Now lets do this in steps by
counter example.

Solving PCA: Eigen Vectors of  
Covariance Matrix
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PCA Process – STEP 1

• Subtract the mean from each of the dimensions

• This produces a data set whose mean is zero.

• Subtracting the mean makes variance and covariance
calculation easier by simplifying their equations.

• The variance and co-variance values are not affected by
the mean value.

• Suppose we have two measurement types X1 and X2,
hence m = 2, and ten samples each, hence n = 10.
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PCA Process – STEP 1

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
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PCA Process – STEP 2
• Calculate the covariance matrix

• Since the non-diagonal elements in this covariance matrix
are positive, we should expect that both the X1 and X2
variables increase together.

• Since it is symmetric, we expect the eigenvectors to be
orthogonal.
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PCA Process – STEP 3

• Calculate the eigen vectors V and eigen values D
of the covariance matrix
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PCA Process – STEP 3
Eigenvectors are plotted as 
diagonal dotted lines on the 
plot. (note: they are 
perpendicular to each other). 

One of  the eigenvectors goes 
through the middle of  the 
points, like drawing a line of  
best fit. 

The second eigenvector gives 
us the other, less important, 
pattern in the data, that all the 
points follow the main line, 
but are off  to the side of  the 
main line by some amount.
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PCA Process – STEP 4
• Reduce dimensionality and form feature vector

The eigenvector with the highest eigenvalue is the principal
component of the data set.

In our example, the eigenvector with the largest eigenvalue
is the one that points down the middle of the data.

Once eigenvectors are found from the covariance matrix,
the next step is to order them by eigenvalue, highest to
lowest. This gives the components in order of significance.
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PCA Process – STEP 4
Now, if you’d like, you can decide to ignore the components
of lesser significance.

You do lose some information, but if the eigenvalues are
small, you don’t lose much

• m dimensions in your data
• calculate m eigenvectors and eigenvalues
• choose only the first r eigenvectors
• final data set has only r dimensions.
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PCA Process – STEP 4
• When the λi’s are sorted in descending order, the proportion

of variance explained by the r principal components is:

• If the dimensions are highly correlated, there will be a small
number of eigenvectors with large eigenvalues and r will be
much smaller than m.

• If the dimensions are not correlated, r will be as large as m
and PCA does not help.
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PCA Process – STEP 4
• Feature Vector

FeatureVector = (λ1 λ2 λ3 … λr)

(take the eigenvectors to keep from the ordered list of eigenvectors, and form a matrix
with these eigenvectors in the columns)

We can either form a feature vector with both of the
eigenvectors:

or, we can choose to leave out the smaller, less significant
component and only have a single column:
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PCA Process – STEP 5

• Derive the new data

FinalData = RowFeatureVector x RowZeroMeanData

RowFeatureVector is the matrix with the
eigenvectors in the columns transposed so that the
eigenvectors are now in the rows, with the most
significant eigenvector at the top.

RowZeroMeanData is the mean-adjusted data
transposed, i.e., the data items are in each column,
with each row holding a separate dimension.
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PCA Process – STEP 5

• FinalData is the final data set, with data items in
columns, and dimensions along rows.

• What does this give us?

The original data solely in terms of the vectors we
chose.

• We have changed our data from being in terms
of the axes X1 and X2, to now be in terms of
our 2 eigenvectors.



68

PCA Process – STEP 5
FinalData (transpose: dimensions along columns)
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PCA Process – STEP 5
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Reconstruction of  Original Data
• Recall that:

FinalData = RowFeatureVector x RowZeroMeanData

• Then:
RowZeroMeanData = RowFeatureVector-1 x FinalData

• And thus:
RowOriginalData = (RowFeatureVector-1 x FinalData) +

OriginalMean

• If we use unit eigenvectors, the inverse is the same
as the transpose (hence, easier).
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Reconstruction of  Original Data

• If we reduce the dimensionality (i.e., r < m),
obviously, when reconstructing the data we lose
those dimensions we chose to discard.

• In our example let us assume that we considered
only a single eigenvector.

• The final data is Y1 only and the reconstruction
yields…
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Reconstruction of  Original Data

The variation along 
the principal 
component is 
preserved.

The variation along 
the other component 
has been lost. 
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