

Reconstruction From Projection

Shireen Y. Elhabian Amal A. Farag Aly A. Farag University of Louisville January 2009

An Analogy

Agenda

• Reconstruction from projections (general)

- projection geometry and radon transform

- Reconstruction methodology
 - Backprojection, (Fourier slice theorem), Filtered Backprojection.
- Reconstruction examples

Introduction

• Only photography (reflection) and planar xray (attenuation) measure spatial properties of the imaged object directly.

- Otherwise, measured parameters are some how related to spatial properties of imaged object.
 - CT, SPECT and PET (integral projections of parallel rays), MRI (amplitude, frequency and phase) etc...

• **Objective:** We want to construct the object (image) which creates the measured parameters.

Problem Statement

- Given a set of 1-D projections and the angles at which these projections were taken.
- How do we reconstruct the 2-D image from which these projections were taken?
- Lets look at the nature of those projections ... ⊗

Parallel Beams Projections

Ray Geometry

- Let x and y be rectilinear coordinates in a given plane.
- A line in this plane at a distance t_1 from the origin is the given by:

 $t_1 = x\cos\theta + y\sin\theta$

where θ is the angle between a unit normal to the line and the x-axis.

What is Projection ?!!

- Let g(x,y) be a 2-D function.
- A line running through g(x,y) is called a **ray**.
- The integral of g(x,y) along a ray is called **ray integral**.
- The set of ray integrals forms a **projection** defined as :

$$P_{\theta}(t) \qquad y \qquad t$$

$$dy \qquad ds$$

$$dx$$

$$t_{1}$$

$$\theta$$

$$g(x,y) \qquad B$$

$$P_{\theta}(t_1) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) \delta(x \cos \theta + y \sin \theta - t_1) dx dy$$

Impulse sheath placed at the points constituting the ray

Radon Transform

Hifferent Projection Sample

t : projection rays

- Projections with different angles are stored in *sinogram* (*raw data*).
- Each vertical line in a *sinogram* is a projection with a different angle

→ Θ : Angles of projections

The Myth Sf

The Fourier Slice Theorem

• This theorem relates the 1D Fourier Transform of a projection and the 2D Fourier transform of the object. It relates the Fourier transform of the object along a radial line. $\nabla = (D_{i}(x)) = \int_{-i}^{\infty} D_{i}(x) = -i2\pi f t$

The Fourier Slice Theorem

• This theorem relates the 1D Fourier Transform of a projection and the 2D Fourier transform of the object. It relates the Fourier transform of the object along a radial line.

The Fourier Slice Theorem

Space Domain

Frequency Domain S(f,θ)

A Problem

• All projections contribute to low frequencies

Solution:

use filtered projection

Filtered Back-projection

Projections (raw data from the scanner)

Filter Projections

Estimate of g(x,y) Inverse Fourier Transform

Back-projection to uv-space

$$g(x, y) = \int_{0}^{\pi} \left[\int_{-\infty}^{\infty} \widetilde{f} \right] S_{\theta}(f) e^{j2\pi f t} df dt$$

$$Q_{\theta}(t) = \int_{0}^{\pi} \left[\int_{-\infty}^{\infty} \widetilde{f} \right] S_{\theta}(f) e^{j2\pi f t} df$$

of g(x,y)

Let's do it.

Tasks :-

- Scanner simulation
 - Phantom Generation
 - Projections computation
- Reconstruction from projections
- Analysis:
 - <u>Experiment 1</u>: the effect of filter type.
 - <u>Experiment 2</u>: the effect of number of projections.
 - Experiment 3: the effect of number of rays

direction

- Given the spatial support of our phantom.
- We assume that our phantom is constructed of a set of ellipses, each has the following parameters:
 - Intensity, ellipse center (x_0, y_0) , ellipse major and minor axes length (a, b), and the orientation (φ i.e. rotation angle)

function phantom img = generate phantom(ellipse parameters,rows,cols)

÷	this functi	on g	genera	ates a 2D synthetic image of ellipses, each ellipse is 🛛 🛶 д
÷	defined by	the	follo	wing parameters (ellipse_parameters)
*	Column	1:	A	the additive intensity value of the ellipse
*	Column	2:	a	the length of the horizontal semi-axis of the ellipse
÷				i.e radius in the x-direction
÷	Column	3:	b	the length of the vertical semi-axis of the ellipse
*				i.e radius in the y-direction
*	Column	4:	x0	the x-coordinate of the center of the ellipse
*	Column	5:	Δ0	the y-coordinate of the center of the ellipse
*	Column	6:	phi	the angle (in degrees) between the horizontal semi-axis
*				of the ellipse and the x-axis of the image
				Δ


```
%% now lets loop over all ellipses to find the corresponding phantom points
for i = 1 : size(ellipse parameters,1)
    % the parameters of current ellipse
    A = ellipse parameters(i,1);
    a = ellipse parameters(i,2);
   b = ellipse parameters(i,3);
    x0 = ellipse parameters(i,4);
    y0 = ellipse parameters(i,5);
    phi = ellipse parameters(i,6);
    % lets translate the phantom coordinates to be centered at the ellipe's
    % center
    cur x = x - x0;
    cur y = y - y0;
    % lets rotate the translated phantom coordinates to align the x-axis
    % with the ellipse's horizontal semi-axis and the y-axis with the
    % ellipse's vertical semi-axis
    rotation matrix = [ cosd(phi) sind(phi);
                        -sind(phi) cosd(phi)];
                                        % lets see which points in the phantom that will belong to the current
   pts = [cur x' ; cur y'];
                                       % ellipse
    pts = rotation matrix * pts ;
                                       x2 = cur x.^{2};
                                       y_2 = cur y.^2;
    cur x = pts(1,:);
                                       a2 = a^{2};
    \operatorname{cur}_{y} = \operatorname{pts}(2,:);
                                       b2 = b^{2};
                                        index = (x2./a2) + (y2./b2) <= 1;
                                       phantom img(index) = phantom img(index) + A ;
                                   end
                                   phantom_img = reshape(phantom_img,[rows,cols]);
```

ellispes_parameters =

1.0000	0.6900	0.9200	0	0	0
-0.8000	0.6624	0.8740	0	-0.0184	0
-0.2000	0.1100	0.3100	0.2200	0	-18.0000
-0.2000	0.1600	0.4100	-0.2200	0	18.0000
0.1000	0.2100	0.2500	0	0.3500	0
0.1000	0.0460	0.0460	0	0.1000	0
0.1000	0.0460	0.0460	0	-0.1000	0
0.1000	0.0460	0.0230	-0.0800	-0.6050	0
0.1000	0.0230	0.0230	0	-0.6060	0
0.1000	0.0230	0.0460	0.0600	-0.6050	0

Scanner Simulation – Projections Generation

- To be able to study different reconstruction techniques, we first needed to write a program that take projections of a known image.
- Basically, we take the image (which is just a matrix of intensities), rotate it, and sum up the intensities.
- In MATLAB this is easily accomplished with the 'imrotate' and 'sum' commands.
- But first, we zero pad the image so we don't lose anything when we rotate.

```
%% after padding the image, do the following to generate the projections
thetas = 0:180;
no_of_rays = 300;
projections = zeros(length(thetas),no_of_rays);
for i = 1 : length(thetas)
    rotated_phantom = imrotate(padded_phantom_image, theta(i), 'bilinear','crop');
    projections(:,i) = (sum(rotated_phantom))';
end
```

Scanner Simulation – Projections Generation from 0 to π

Scanner Simulation – Projections Generation from 0 to 2π

Reconstruction From Projections

• Given the projections, we first filter them as shown below.

```
% number of rays, which corresponds to number of samples in the discretized
% 1D projection
N = size(projections,1);
% sampling the frequency w = 2*pi*f
w = -pi : (2*pi)/N : pi-(2*pi)/N; % -pi to pi
% shifting the response to 0 to 2*pi
filter response = fftshift(abs(w));
% number of projections
nProjections = size(projections,2);
filtered projections = zeros(size(projections));
for i = 1:nProjections
   % filter in the frequency domain
    S f = fft(projections(:,i));
    filtered S f = S f.*filter response';
    % return to t-theta domain
    filtered projections(:,i) = ifft(filtered S f);
end
% Remove any remaining imaginary parts
filtered projections = real(filtered projections);
```

Reconstruction From Projections

• Given the angles where the projections were taken, and the filtered projections, the following will reconstruct an estimate of the original image.

Experiment One

Studying the effect of using different filter types compared to the unfiltered case.

Reconstruction using unfiltered projections

Reconstruction using <u>Ramp</u> filter

Reconstruction using <u>LPF</u> filter

 50

 100

 101

 102

 103

 104

 105

 106

 107

 108

 109

 100

 100

 100

 100

 100

 100

 100

theta

Reconstruction of the projection at 0 degrees

Recontruction using 1 projections

Filtered Projections using Linear Low-Pass Filter

Reconstruction using <u>Butterworth</u> filter

theta

Filtered Projections using Butterworth Filter (Low-Pass Filter)

Reconstruction using <u>Sinusoidal</u> filter

Reconstruction using <u>Ramp</u> filter vs unfiltered case

Reconstructed - unfiltered

Reconstruction using <u>LPF</u> filter vs unfiltered case

Reconstructed - unfiltered

Reconstruction using <u>Butterworth</u> filter vs unfiltered

case

Reconstructed - butterworth filter

Reconstruction using <u>Sinusoidal</u> filter vs unfiltered case

Reconstructed - unfiltered

Experiment Two

Studying the effect of reconstruction using different number of projections

Reconstruction using different number of projections

Using sinusoidal filter and number of rays equal to image number columns

Quantifying the reconstruction error Mean square error using different number of projections Mean Square Error Number of Projections

Experiment Three

Studying the effect of reconstruction using different number of rays

Reconstruction using different number of rays

Using sinusoidal filter and fixed number of projections

Quantifying the reconstruction error

Thank You

