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Face Recognition Problem 

The general statement of the face recognition problem can be stated as follows: Given a still or 
video image of a scene, identify or verify one or more persons in the scene using a stored database 
of faces. The solution to the problem involves face detection (a field of research in itself) from 
cluttered scenes, feature extraction from the face region, recognition or verification. There is a subtle 
difference between the concepts of face identification and verification: identification refers to the 
problem when an unknown face is presented to the system, and it is expected to report back the 
identity of the individual from a database of faces, whereas in verification, there is a claimed identity 
submitted to the system, which needs to be confirmed or rejected.  Figure 1 illustrates a typical face 
recognition procedure. 

Before the face recognition system can be used, there is an enrollment phase, wherein face images are 
introduced to the system to let it learn the distinguishing features of each face.  The identifying 
names, together with the discriminating features, are stored in a database, and the images associated 
with the names are referred to as the gallery [6].  Eventually, the system will have to identify an image, 
formally known as the probe [6], against the database of gallery images using distinguishing features.  
The best match, usually in terms of distance, is returned as the identity of the probe. 

The success of face identification depends heavily on the choice of discriminating features (Figure 
1), which is basically the focus of face recognition research.  Face recognition algorithms using still 
images that extract distinguishing features can be categorized into three groups: appearance-based, 
feature-based, and hybrid methods.  Appearance-based methods are usually associated with holistic 
techniques that use the whole face region as the input to the recognition system. In feature-based 
methods, local features such as the eyes, nose, and mouth are first extracted and their locations and 
local statistics (geometric or appearance) are fed into a structural classifier.  The earliest approaches 
to the face recognition dealt with the geometrical features of the face to come up with a unique 
signature of the face.  The geometric feature extraction approach fails when the head is no longer 
viewed directly from the front and the targeted features are impossible to measure.  The last 
category (hybrid) has its origin in the human face perception system that combines both holistic and 
feature-based techniques to identify the face.  Whatever type of computer algorithm is applied to the 
recognition problem, all face the issue of intra-subject and inter-subject variations.  Figure 2 
demonstrates the meaning of intra-subject and inter-subject variations.  

The main problem in face recognition is that the human face has potentially very large intra-subject 
variations while the inter-subject variation, which is crucial to the success of face identification, is 
small, as shown in Figure 2.  Intra-subject variation is usually due to 3D head pose, illumination, 
facial expression, occlusion due to other objects, facial hair and aging. 
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Figure 1:  Face Recognition Process, courtesy of [5], the general block diagram of a face recognition system consists of 
four processes; the face is first detected (extracted) from the given 2D then the extracted face is aligned (by size 
normalization), discriminant features are then extracted in order to be matched with users enrolled in the 
system database, the output of the system is the face ID of the given person’s image. 

 

Figure 2: Inter-subject versus intra-subject variations. (a) and (b) are images from different subjects, but their 
appearance variations represented in the input space can be smaller than images from the same subject b, c 
and d [6]. 
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Database of  Faces 

The Yale Face Database [1] consists of 165 grayscale images from 15 individuals. There are 11 
images per person, with one image per face expression or configuration: center-light, w/glasses, happy, 
left-light, w/no glasses, normal, right-light, sad, sleepy, surprised, and wink.  

The Yale database simulates the inter-subject vs. intra-subject problem in face recognition and will be 
used in this project. The database can be downloaded from 
http://cvc.yale.edu/projects/yalefaces/yalefaces.html. (Note: Use the Mozilla browser to download. 
The tar file (yalefaces.tar) can be extracted using WinRAR.) 

Task 0: Download the face databases. 

For the Yale database, the resulting files after extraction have file extensions corresponding to face 
expressions (e.g. subject01.centerlight) but are actually GIF files. Convert the images to JPEG and then 
arrange them according to the following rules:  

• subject01 images must be under the folder s1,  subject02 under s2, and so on … 
• For each subject, rename *.centerlight  to 1.jpg, *.glasses to 2.jpg, and so on … 

Task 1: Convert the images to JPEG, rename, and put them under specified folders (see Figure 3). 

 

Figure 3: Code snippet for creating new folders, renaming files, etc. 

Face Detection 

The images in the face database, unfortunately, contain both the face and a large white background 
(Figure 4).  Only the face region is needed for face recognition and a background can affect the 
recognition process. Therefore, a face detection step is necessary. 

 

i = 1; 
f = filesep; % '\' 
  
dirName = ['s', num2str(i)]; 
mkdir(dirName) % create directory 
  
% *.centerlight 
subjectName = ['subject0',num2str(i),'.centerlight']; 
im = imread(subjectName,'gif'); 
figure, imshow(im) 
imwrite(im, [dirName,f,'1.jpg'], 'jpg') 
  
% *.glasses 
subjectName = ['subject0',num2str(i),'.glasses']; 
im = imread(subjectName,'gif'); 
figure, imshow(im) 
imwrite(im, [dirName,f,'2.jpg'], 'jpg') 
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Figure 4: Uncropped images of the Yale face database. 

 

A face detection module is provided by Intel OpenCV [2].  Intel OpenCV can be readily 
downloaded (http://sourceforge.net/project/showfiles.php?group_id=22870). Download OpenCV 
(exe file) and install it on your PC. In order to use this library within Matlab framework, you will 
need to download Open CV Viola-Jones Face Detection in Matlab from Matlab Central 
(http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=19912&objectTyp
e=file). 

This zip file contains source code and windows executables for carrying out face detection on a gray 
scale image. The code implements Viola-Jones adaboosted algorithm for face detection by providing 
a mex implementation of OpenCV's face detector to be used in Matlab. Instructions for use and for 
compiling can be found in the Readme file. 

To use the Face detection program you need to set path in matlab to the bin directory of the 
downloaded zip file. "FaceDetect.dll" is used by versions earlier than 7.1 while 
"FaceDetect.mexw32" is used by later versions. The two files "cv100.dll" and "cxcore.dll" should be 
placed in the same directory as the other files. 

Matlab 7.0.0 R14 or Matlab 7.5.0 R2007b and Microsoft visual studio 2003 or 2005 are required for 
compilation. 

Instructions for compiling: 

• Setup Mex compiler:  Type "mex -setup" in the command window of matlab. Follow the 
instructions and choose the appropriate compiler. The native C compiler with Matlab did 
not compile this program. MS visual studio compilers are preferred. 

 

• Change path to the /src/ directory and issue the command   

 mex FaceDetect.cpp -I../Include/ ../lib/*.lib -outdir ../bin/ 

The compiled files are stored in the bin directory. Place these output files along with 
"cv100.dll" and "cxcore.dll" and the classifier file ”haarcascade_frontalface_alt2.xml” in desired 
directory for your project and set path appropriately in matlab. 
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NOTE: compiling with Visual Studio 2005 version 8 compilier requires that a compiler sepcific dll 
be included along with the zip file. All the compiling on this zip are with visual studio 2003 version 
7.1 compiler. 

 Usage: 
 
FaceDetect (<Haar Cascade XML file>, <Gray scale Image>) 

The function returns Nx4 matrix. In case no faces were detected, N=1 and all four entries are -1. 
Otherwise, N=number of faces in the image and the vector contains the x, y, width and height 
information of the face. 
 

Task 2:  Face detection using Open CV Viola-Jones Face Detection in Matlab.  All the Yale database 
faces must be cropped automatically using face detection, such that only the face region 
remains.  The images must then be resized to 60x50, see figure 5, refer to figure 6 for code 
sample. 

 

  

Figure 5: Face detection results using Intel OpenCV. 
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Figure 6: Code snippet for using Open CV Viola-Jones Face Detection in Matlab  

 

function cropFace = faceDetectCrop(fname, show) 
  
A = imread (fname); 
if isrgb(A) 
   Img = double (rgb2gray(A)); 
else 
  Img = double(A); 
end 
  
Face = FaceDetect('haarcascade_frontalface_alt2.xml',Img); 
  
% face coordinates 
[r c] = size(Face); 
  
if (r == 1) % one face detected 
    x = Face(1);  
    y = Face(2); 
    w = Face(3); % width 
    h = Face(4) % height 
else 
    % get the row with the biggest area 
    area = zeros(1,r); 
    for i = 1:r   
        w = Face(r,3); % width 
        h = Face(r,4) % height 
        area(i) = w*h; 
    end 
     
    [y I] = max(area); 
     
    % chosen face region 
    x = Face(I,1);  
    y = Face(I,2); 
    w = Face(I,3); % width 
    h = Face(I,4); % height 
end 
    
cropFace = imcrop( A , [x y w h] ); 
  
if (show == 1) 
    figure, imshow(A) 
    hold on 
    rectangle('Position',[x y w h],'EdgeColor','r'); 
    hold off 
    figure, imshow(cropFace) 
     
end 
 
% Script M-file: mainFaceDetect.m 
clear all,clc 
close all 
  
fname = 'subject01b.jpg'; 
show = 1; 
cropFace = faceDetectCrop(fname, show); 
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Training/Test Images 

To create training and testing datasets for the experiments, the concept of K-fold cross-validation is 
utilized, as illustrated in Fig. 7. To create a K-fold partition of the dataset,  for each of K 
experiments, use K-1 folds for training and the remaining one for testing. The advantage of K-fold 
cross validation is that all the examples in the dataset are eventually used for both training and 
testing.  

Leave-one-out (see Fig. 8) is the degenerate case of K-fold cross validation, where K is chosen as the 
total number of examples. For a dataset with N examples per class (person), perform N 
experiments. For each experiment use N-1 examples for training and the remaining example for 
testing. The true error is estimated as the average error rate on test examples 

In practice, the choice of the number of folds depends on the size of the dataset. For large datasets, 
even 3-fold cross validation will be quite accurate. For very sparse datasets, we may have to use leave-
one-out in order to train on as many examples as possible. 

The goal is to arrive at a better estimate of the error rate (or classification rate). There are a specific 
number of training and test images for each experiment. Using this approach, the true error is 
estimated as the average error rate of the K experiments.  

Task 3: Create a function getTraining.m and getTest.m. The images must first be converted to single-
channel images (pgm file), with pixels scaled (0, 1) instead of (0, 255). See Fig. 9 for the 
function arguments and output. 

 

 

Figure 7. K-fold partition of the dataset. 
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Figure 8. Leave-one-out partition of the dataset. 

 

Figure 9: Code snippet for getTrain.m, getTest.m, converting to pgm and scaling to (0, 1) 

 

Feature Matching - Recognition 

It seems that we are one step ahead to talk about feature matching and recognition before feature 
extraction, however for instructional purposes we postpone discussing feature extraction to the next 
section. Recognition is a matter of comparing a feature vector of a person in the gallery (database) 
with the one computed for the probe image (person), giving a similarity score. It can be viewed as if 
the probe is ranking the gallery with this similarity score, such that the most closest person in the 
gallery having the maximum similarity score to the probe image will be ranked as one, hence the 
similarity score to each person in the gallery will be ordered in a decreasing order. A probe image is 
correctly recognized in Rank-n system if it was found in the first n-gallery images being ordered by 
the similarity score to the probe image. 

Similarity Measures 

While more elaborate classifiers exist, most face recognition algorithms use the nearest-neighbor (NN) 
classifier as the final step due to the absence of training. The distance measures of the NN classifier 
will be in terms of the L1 (1) and L2 (2) norm, and the cosine (3) distance measures. For two vectors 
x and y, the similarity measures are defined as 

trainData = getTrain( [1 2 3 4 5 6 7 8 9 10] ); 
testData = getTest( [11] ); 
  
i = 1; % iterate subject 
j = 1; % iterate images/subject 
f = filesep; 
dirName = ['s',num2str(i)]; 
im = imread([dirName,f,num2str(j),'.jpg'], 'jpg'); 
% convert to pgm 
imwrite(im, [dirName,f,num2str(j),'.pgm'], 'pgm') 
  
% scale to (0,1) 
im = im/255; 
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Task 4: Create a function that computes the similarity between two vectors ( i.e. dist = getDist(x, y, 
‘L1’) )  

Cumulative Match Score Curves (CMC) [10] 

The identification method is a closed-universe test, that is, the sensor takes an observation of an 
individual that is known to exist in the database.  The person’s discriminating features are compared 
to those stored in the database and a similarity score is developed for each comparison.  The 
similarity scores are then sorted in a descending order.  In an ideal operation, the highest similarity 
score is the comparison of that person’s recently acquired normalized signature with that of the 
person’s normalized signature in the database.  The percentage of times that the highest similarity 
score is the correct match for all individuals is called as the top match score.   

An alternative way to view identification results is to take note if the top five numerically ranked 
scores contain the comparison of that person’s recently acquired normalized signature with that of 
the person’s normalized signature (features) in the database.  The percentage of times that one of 
those five similarity scores is the correct match for all individuals is referred to as the Rank-n-score, 
where n = 5.  The plot of rank-n versus probability of correct identification is called the Cumulative 
Match Score.   

Task 5: Create a function that will generate the CMC curve given the feature vectors of a set of 
probe images (testing data) and the feature vectors of the gallery (face database used in the 
training), this function will make use of the function created in task 4, noting that for each 
similarity measure, there will be a different CMC curve. 

Feature Extraction 

Despite the high-dimensionality of face images, the appearance of faces is highly constrained (e.g., 
any frontal view of a face is roughly symmetrical, has eyes on the sides, nose in the middle, etc.) 
Therefore, the natural constraints dictate that the face images are confined to a subspace (face space) 
of the high-dimensional image space.  To recover the face space, this project makes use of PCA, 
LDA and ICA, each having its own representation (basis images) of the high-dimensional face image 
space, based on different statistical viewpoints.  

The three representations can be considered as a linear transformation from the original image space 
to the feature vector space, such that Y = WTX, where Y (d x m) is the feature vector matrix, m is the 
dimension of the feature vector, X = (x1, x2,…, xm) represent the (m x n) data matrix, xi is the (m x 1) 
face vector and n is the number of face vectors used, and W is the transformation matrix. 
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Principal Component Analysis (PCA), Eigenfaces [3] 

PCA starts with a random vector x with m elements, and has n samples x(1),…, x(n). For face 
recognition, the random vector samples are the face images and the elements of x are the pixel gray 
level values. To summarize the PCA method, the algorithm uses the steps below.  The first step is to 
center the vector x by subtracting its mean, x ¬ x – E{x}. The mean-centered vector x is then 
linearly transformed to another vector y with d elements, such that d << m, leaving behind a 
compact representation of the images. The transformation from the m- to the d-dimensional space 
starts with the computation of the eigenvectors of the covariance matrix (scatter-matrix) SX, 

( )( )å
=

--=
m

i

T
iiiiX xxS

1

µµ         (4) 

where xi  and µi  are the original sample vector and overall mean, respectively. The transformation 
matrix WPCA is composed of the eigenvectors corresponding to the d largest eigenvalues, constructed 
by stacking the eigenvectors in columns.  

The eigenvectors of SX  exhibit interesting visual properties.  Consider the first 10 images for each 
subject as the training images (i.e. 1.jpg, 2.jpg… 10.jpg).  Perform PCA on the training images.  The 
resulting eigenvectors can be visualized like that of Fig. 10.  

Task 6: Consider the first 10 images for each subject as the training images (i.e. 1.jpg, 2.jpg… 10.jpg).  
Perform PCA on the training images. Visualize the first d eigenvectors like Fig. 10.  See 
Fig. 11.  

 

Figure 10:  The first 32 eigenvectors, visualized as eigenfaces. 

 

 

Eigenfaces (2 images/class)

[r c] = size(trainPlot); 
  
for i = 1:c 
    mx = max(trainPlot(:,i)); 
    mi = min(trainPlot(:,i)); 
    trainPlot(:,i) = (trainPlot(:,i)-mi)./(mx-mi); 
end 
 
eigFacePlot = reshape(trainPlot,[60 50 1 c]); 
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Figure 11: Code snippet for visualizing eigenfaces. 

Task 7: Plot the eigenvalue spectrum (Fig. 12).  This provides a visual approximation on how 
many eigenvectors to choose. 

 

Figure 12:  An example of the eigenvalue spectrum plot.  In this example, the first 100-200 eigenvectors can be chosen, 
since the remaining eigenvalues have extremely small magnitudes.  

 

Leaving-one-out cross-validation is a special case of Fig. 7, such that there is only 1 test image and the 
remaining images of the subject are considered as training.  For the Yale face database, leaving-one-out 
cross-validation consists of 11 experiments since there are 11 images each per subject. 

Task 8: Perform leaving-one-out cross-validation of the PCA algorithm using the Yale database. Use 
the three similarity measures to classify test images after transforming both test and 
training images to a lower-dimension vector.  Report the error rate for each similarity 
measure. Generate the CMC curve for each similarity measure, comment on your CMC 
curves, which measure is better? 

 Error Rate (%) 
Method L1 L2 Cosine 
PCA (Eigenface)    

Linear Discriminant Analysis (LDA), Fisherfaces [3] 

The goal of LDA is to find basis vectors that exploit class information to improve classification 
results. LDA is known as the Fisher’s Linear Discriminant (FLD) in the face recognition literature. 
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FLD solves for the transformation matrix WLDA by maximizing the ratio of the between-class scatter 
(SB) and the within-class scatter (SW).  The two scatter matrices are defined as follows 

( )( )
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S N µ µ µ µ
=

= - -å  (5) 

( )( )
1 k i

c
T
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i x X

S x xµ µ
= Î
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where µi is the mean image of class Xi, xk is a sample image, Ni is the number of samples in class Xi, 
c is the number of distinct classes, and µ is the overall sample mean. The transformation matrix 
WLDA can be computed by solving the generalized eigenvalue problem 

B WS W S Wl=   (7) 

where W is the matrix of eigenvectors in its columns and l is a diagonal matrix of eigenvalues. To 
prevent the singularity of the within-class scatter matrix, PCA is used as a preprocessing step to 
reduce the dimension of the image vectors to (m – c). LDA can then be used to reduce the vectors to 
(c – 1).  

Task 9: Consider the first 10 images for each subject as the training images (i.e. 1.jpg, 2.jpg… 10.jpg).  
Perform LDA on the training images without doing the PCA preprocessing step (See Fig. 
13).  Report your experience. 

Task 10: Consider the first 10 images for each subject as the training images (i.e. 1.jpg, 2.jpg… 10.jpg).  
Perform LDA on the training images with PCA as a preprocessing step, i.e. reduce the 
dimension of the image vectors to (c – 1), where c is the number of subjects (classes).  
Visualize the first d fisherfaces like Fig. 14.  Compare the generalized eigenvalue analysis to 
that of Task 10 (See Fig. 13).  

Task 11: Perform leaving-one-out cross-validation of the LDA algorithm using the Yale database. Use 
the three similarity measures to classify test images after transforming both test and 
training images to a lower-dimensional vector.  Report the error rate for each similarity 
measure. Generate the CMC curve for each similarity measure, comment on your CMC 
curves, which measure is better? 

 Error Rate (%) 
Method L1 L2 Cosine 
LDA (Fisherface)    
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Figure 13: Code snippet for LDA (Fisherface) with PCA reduction 

Task 12:  Perform Task 7 and 11 on images that are preprocessed with histogram equalization 
(imhist.m).  Compare results. 

numPCA = numIm - numClass; 
plotEig = 0; 
PCA = compEigenface(trainData.imTrain, numPCA, plotEig); 
  
trainFisher = trainData.imTrain; 
[r c] = size(trainFisher) 
  
% mean-center 
me = mean(trainFisher,2); 
trainFisher = trainFisher - repmat(me, [1 c]); 
  
% Calculate within-class scatter matrix 
Nsize = size(trainFisher,1); 
Sw = zeros(Nsize); 
meanClass = zeros(Nsize,numClass); 
prod = zeros(Nsize); 
  
temp_im = []; 
prod = []; 
for i = 1:numClass 
     
    % generalize this to any n images/class 
    temp_im = trainFisher(:,numImClass*i-(numImClass-1):numImClass*i); 
    meanClass(:,i) = mean(temp_im,2); 
     
    % two images/class 
    temp_im = temp_im - repmat(meanClass(:,i),[1,numImClass]); 
     
    for j = 1:numImClass 
    prod = temp_im(:,j)*temp_im(:,j)'; 
    Sw = Sw + prod; 
    end 
  
end % end for 
  
% Calculate between-class scatter matrix 
Sb = zeros(Nsize); 
me = mean(trainFisher,2); % overall mean 
  
clear temp_im prod 
for i = 1:numClass 
     
    temp_im = meanClass(:,i) - me; 
    prod = temp_im*temp_im'; 
    Sb = Sb + numImClass*prod; % 2 im/class 
  
end 
clear prod temp_im 
  
P1 = PCA.eigFace; 
Sbb = P1'*Sb*P1; % PCA reduction 
Sww = P1'*Sw*P1; % PCA reduction 
clear Sb Sw 
  
[V,D] = eig(Sbb, Sww); 
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Fisherfaces

 

Figure 14: LDA Basis Images (39 Fisherfaces)   

Independent Component Analysis (ICA) 

While PCA decorrelates the input data using second-order statistics (the covariance/scatter matrix), 
which results into compressed data with minimum mean-squared re-projection error, independent 
component analysis (ICA) minimizes both the second-order and higher-order dependencies in the 
input.   

ICA is related to the blind source separation (BSS) [7], where the goal is to decompose an observed 
signal into a linear combination of unknown independent signals.  Consider a number of people 
(e.g., three) in a room speaking simultaneously, with three microphones placed in different locations 
to pick up the sound generated by the speakers.  The microphones produce three recorded time 
signals, denoted by x1(t), x2(t) and x3(t).  The three signals is a weighted sum of the speech signals 
emitted by the three speakers, denoted by s1(t), s2(t), and s3(t).  The recorded signals xi(t) can be 
expressed, in matrix form, as a linear equation: 

 

( )
( )
( )

( )
( )
( )

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

x t a a a s t
x t a a a s t
x t a a a s t

é ù é ùé ù
ê ú ê úê ú=ê ú ê úê ú
ê ú ê úê úë ûë û ë û  (8) 

where aij are parameters that depend on the distances of the microphone from the speakers.  It 
would be useful to estimate the original speaker signals si(t), using only the recorded signals xi(t) and 
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without any knowledge of the mixing parameters aij.  This problem is referred to as the cocktail-
party or the blind source separation problem. 

This leads to the formal definition of ICA, which is essentially estimating both the matrix A 
(consisting of the mixing parameters aij) and the speech signals si(t), given only the observed signals 
xi(t).  In compact matrix form, let s be the vector of unknown source signals, x be the vector of 
observed mixtures and A be the unknown mixing matrix, then the mixing model is written as 

 Asx =  (9) 

Important assumptions in the ICA problem include that the source signals must be independent 
from each other (the speakers in the cocktail-party problem are independent) and the mixing matrix 
A is invertible.  The main goal of ICA algorithms [8] is to find the mixing matrix A or the 
separating/unmixing matrix W such that 

 )(AsWWxu ==  (10) 

where u is an estimation of the independent source signals. Fig. 15 illustrates the blind-source 
separation problem, using a block diagram.   

 

Figure 15: Blind source separation model – courtesy of [5] 

Non-Gaussianity Estimation 

The fundamental restriction in ICA is that the independent components must be non-gaussian for 
ICA to be possible. To see why gaussian variables make ICA impossible, assume that the mixing 
matrix is orthogonal and the si are gaussian. Then x1 and x2 are gaussian too (by central limit 
theorem), they are uncorrelated, and of unit variance. The joint density is completely symmetric. 
Therefore, it does not contain any information on the directions of the columns of the mixing 
matrix A. This is why A cannot be estimated. Moreover, the distribution of any orthogonal 
transformation of the gaussian (x1,x2) has exactly the same distribution as (x1,x2).  Thus, in the case 
of gaussian variables, we can only estimate the ICA model up to an orthogonal transformation.  

Let us now assume that the data vector x is distributed according to the ICA data model, i.e. a 
mixture of independent components. For simplicity, let us assume that all the independent 
components have identical distributions. To estimate one of the independent components, we 
consider a linear combination of the xi, let’s denote this by y ;  
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y = wTx      (11) 

where w is a vector to be determined, and it’s one row of the inverse of A, i.e. W.  

Define z = ATw and then we have, 

y = wTx = wTAs = zTs      (12) 

This linear combination would actually equal one of the independent components. The question is 
now: How could we use the Central Limit Theorem to determine w so that it would equal one of 
the rows of the inverse of A? In practice, we cannot determine such w exactly, because we have no 
knowledge of matrix A, but we can find an estimator that gives a good approximation. zTs is more 
Gaussian than any of the si, and it is least Gaussian (i.e. non-guassian) if it is equal to one of the si 
Maximizing the non-Gaussianity of wTx will give us one of the independent components. 

The next step is to discuss quantitative measures of nongaussianity for a random variable to be able 
to use nongaussianity in ICA estimation. The classical measure of nongaussianity is kurtosis, 
otherwise known as the fourth-order cumulant (note that the random variable here is mean-centered 
with unit variance).  The kurtosis of y is defined as: 

   ( ) { } { }( )24 2kurt 3y E y E y= -
    (13) 

Since y is of unit variance, the kurtosis equation simplifies to E{y4} – 3.  Therefore, the kurtosis can 
be considered as the normalized version of the fourth moment E{y4}.  The kurtosis for a Gaussian 
is zero because the fourth moment is equal to 3(E{y2})2.  For most nongaussian random variables, 
the value for kurtosis is nonzero.  Kurtosis can be positive or negative.  Random variables that have 
negative kurtosis are called subgaussian (flatter, more uniform, shorter tail than Gaussian), and those 
with positive values for kurtosis are referred to as supergaussian (more peaked, than Gaussian, 
heavier tail).            

Another measure for nongaussianity is the concept of negentropy, which is based on the information-
theoretic quantity of entropy.  The entropy of a random variable can be interpreted as the degree of 
information that the observation of the variable gives.  The more unpredictable (random) and 
unstructured the variable is, the larger the entropy value.  For a discrete random variable Y, the 
entropy H is defined as: 

   
( ) ( ) ( )logi i

i
H Y P Y a P Y a= - = =å

    (14) 

where ai are the possible values of Y.  The entropy definition can also be generalized to the 
continuous case and is often called the differential entropy.  The differential entropy H of a random 
variable y with density f(y) is defined as: 

   ( ) ( ) ( )logH y f y f y dy= -ò      (15) 
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A fundamental result of information theory [7] is that the Gaussian random variable has the largest 
entropy among all random variables of equal variance, which means that entropy can be used to 
measure nongaussianity.  To obtain a measure of nongaussianity that is zero for Gaussian random 
variables and always nonnegative, a slightly modified version of differential entropy is employed, 
which is called negentropy.  Negentropy J is defined as: 

   ( ) ( ) ( )gaussJ y H y H y= -      (16) 

The use of negentropy as a measure for nongaussianity is well-justified in information theory but the 
problem with it lies in it being computationally difficult to compute.  There are several 
approximations for entropy in the literature to alleviate this problem [7]. The classical method of 
approximating negentropy is using higher-order moments:  

{ } ( )223

48
1

12
1)( ykurtyEyJ +»     (17) 

The random variable y is assumed to be of zero mean and unit variance. However, the validity of 
such approximations may be rather limited. To avoid the problems encountered with the preceding 
approximation, new approximations were developed based on the maximum-entropy principle: 

( ){ } ( ){ }[ ]å
=

-»
p

i
iii vGEyGEkyJ

1

2)(     (18) 

where ki are some positive constants, and v is a Gaussian variable of zero mean and unit variance . 
The variable y is assumed to be of zero mean and unit variance, and the functions Gi are some 
nonquadratic functions. In particular, choosing G that does not grow too fast, one obtains more 
robust estimators. The following choices of G have proved very useful: 

( ) ( ) ( )2exp,coshlog1 2
21

1
1 uuGua

a
uG --==   (19) 

where 1 ≤a1≤2 is constant 

 

ICA-Estimation Approaches 

Two popular methods in estimating the ICA model are, Minimization of Mutual Information 
Maximum Likelihood Estimation. 

1. Minimization of Mutual Information 

Using the concept of differential entropy, mutual information I between m random variables can be 
define as following, 
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å
=

-=
m

i
im yHyHyyyI

1
21 )()(),...,,(      (20) 

Mutual information is the natural measure of the dependence between random variables.  Its value is 
always nonnegative, and zero if and only if the variables are statistically dependent.  When the 
original random vector x undergoes an invertible linear transformation y = Wx, the mutual 
information for y in terms of x is 

( ) ( ) ( )1,..., log detm i
i

I y y H y H= - -å x W
   (21) 

Consider the scenario when yi is constrained to be uncorrelated and of unit variance, which implies 
that E{yyT} = WE{xxT}WT = I.  Applying the determinant on all sides of the equation leads to: 

{ }( ) ( ) { }( )( )TTTT WxxEWWxxWEI detdetdetdet1det ===   (22) 

Hence detW must be constant since det E{xxT} does not depend on W. For y of unit variance, 
entropy and negentropy differ only by a constant and sign.  Therefore, the fundamental relation 
between entropy and negentropy is: 

( ) ( )1,..., n i
i

I y y C J y= -å
      (23) 

where C is a constant not dependent on W.  Thus finding an invertible transformation W that 
minimizes the mutual information is roughly equivalent to finding directions in which negentropy (a 
concept related to nongaussianity) is maximized. 

2. Maximum Likelihood Estimation 

To derive the likelihood of the noise-free ICA model, a well-known result on the density of a linear 
transform is used.  According to the result, the density px of the mixture vector (the ICA model), x = 
As is 

( ) ( ) ( )Õ
=

==
n

i
iisx sfWsfWxf

1

detdet      (24) 

where W = A-1, and fi denote the densities of the independent components si.  The density px can 
also be expressed as a function of x and W = (w1, w2 … wn)T, that is, 

( ) ( )Õ
=

=
n

i

T
iix xwfWxf

1

det       (25) 

Assuming that there are T observations of x, denoted by x(1), x(2), …, x(T), and after some 
manipulations, the final equation for the log-likelihood is: 
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( ) WTtxwfL
T

t

n
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T
ii detlog)(log

1 1

+=åå
= =

    (26) 

The problem with this approach is that density functions fi must be estimated correctly, otherwise 
ML estimation will give a wrong result.  

ICA Gradient Ascent 

This algorithm is based on maximizing the entropy of the estimated components. Assume that we 
have n mixtures x1, …, xn of n independent components/sources s1, …, sn : 

  xj = aj1s1+ aj2s2+…+ ajnsn    for all j     (27) 

Assume that the sources has a common cumulative density function (cdf) g and probability density 
function (pdf) ps. Then given an unmixing matrix W which extracts n components u = (u1, …, un )T 
from a set of observed mixtures x, the entropy of the components U = g(u) will be, by definition: 

( ) ( ) ( ) WupExHUH
n

i
is lnln

1
+

þ
ý
ü

î
í
ì

+= å
=

    (28) 

where  ui = wi
Tx is the ith component, which is extracted by the ith row of the unmixing matrix W. 

This expected value will be computed using m sample values of the mixtures x.  By definition, the 
pdf ps of a variable is the derivative of that variable’s cdf g: 

( ) ( )i
i

is ug
du
dup =        (29) 

Where this derivative is denoted by g’(ui) = ps(ui), so that we can write: 

( ) ( ) ( ) WugExHUH
n

i
i ln'ln

1
+
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ý
ü

î
í
ì

+= å
=

    (30) 

We seek an unmixing W that maximizes the entropy of U. Since the entropy H(x) of the mixtures x 
is unaffected by W, its contribution to H(U) is constant, and can therefore be ignored. Thus we can 
proceed by finding that matrix W that maximizes the function: 

( ) ( ) WugEUh
n

i
i ln'ln

1
+

þ
ý
ü

î
í
ì

= å
=

     (31) 

Which is the change in entropy associated with the mapping from x to U. We can find the optimal 
W* using gradient ascent on h by iterartively adjusting W in order to maximize the function h. In 
order to perform gradient ascent efficiently, we need an expression for the gradient of h with respect 
to the matrix W. We proceed by finding the partial derivative of h with respect to one scalar element 
Wij of W, where Wij is the element of the ith row and jth column of W. The weight Wij determines 
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the proportion of the jth mixture xj in the ith extracted component ui. Given that u = Wx, and that 
every component ui has the same pdf g’. The partial derivative of h with respect to the ijth element in 
W is: 

( ) ( ) [ ]ijT
n

i
ji

ij

WxuEUh
W

-

=

+
þ
ý
ü

î
í
ì

=
¶
¶ å

1
y      (32) 

If we consider all the element of W, then we have: 

( ){ }TT xuEWh y+=Ñ -       (33) 

Where hÑ  is an n x n Jacobian matrix of derivatives in which the ijth element is 
ijW

h
¶

¶ . Given a 

finite sample of N observed mixture values of xk for k = 1,2,…,N and a putative unmixing matrix 
W, the expectation can be estimated as: 

( ){ } ( )[ ] kk
N

k

TkkT Wxuwherexu
N

xuE == å
=1

1 yy    (34) 

Thus the gradient ascent rule, in its most general form will be: 

constantsmall a   ishh wherehWW oldnew Ñ+=    (35) 

Thus the rule for updating W in order to maximize the entropy of U = g(u) is therefore given by:  

( ) ÷
ø

ö
ç
è

æ
-+= å

=

-
N

k

TkkT
oldnew xu

N
WWW

1
][tanh2h

   (36) 

Preprocessing for ICA 

1. Centering 

The most basic and necessary preprocessing is to center the data matrix X, that is, subtract the mean 
vector, µ = E(X) to make the data a zero-mean variable.  With this, s can be considered to be zero-
mean, as well. After estimating the mixing matrix A, the mean vector of s can be added back to the 
centered estimates of s to complete the estimation.  The mean vector of s is given by A-1 µ, where µ 
is the mean vector of the data matrix X. 

2. Whitening 

Aside from centering, whitening the observed variables is a useful preprocessing step in ICA.  The 
observed vector x is linearly transformed to obtain a vector that is white, which means its 
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components are uncorrelated (zero covariance) and the variance is equal to unity.  In terms of 
covariance, the covariance of the new vector x~  equals the identity matrix,  

{ } IxxE T =~~      (37) 

There are several ways to whiten the data set, one popular method for whitening is to use the eigen-
value decomposition (EVD) of the covariance matrix { } TT VDVxxE = , where V is the orthogonal 
matrix of eigenvectors of E{xxT} and D is the diagonal matrix of its eigenvalues, D = diag(d1, ...,dn). 

Whitening can now be done by: 

xVVDx T2
1~ -

=       (38) 

where the matrix D−1/2 is computed by a simple component-wise operation as D−1/2 = diag(d1
−1/2 , 

...,dn
−1/2 ). 

Whitening transforms the mixing matrix into a new one, 

sAAsVVDxVVDx TT ~~ 2
1

2
1

===
--     (39) 

Here we see that whitening reduces the number of parameters to be estimated.  Instead of having to 
estimate the n2 parameters that are the elements of the original matrix A, we only need to estimate 
the new, orthogonal mixing matrix A~  which contains n(n−1)/2 degrees of freedom. Thus one can 
say that whitening solves half of the problem of ICA. For simplicity of notation, we denote the 
preprocessed data just by x, and the transformed mixing matrix by A, omitting the tildes. 

Because whitening is a very simple and standard procedure, much simpler than any ICA algorithms, 
it is a good idea to reduce the complexity of the problem this way. It may also be quite useful to 
reduce the dimension of the data at the same time as we do the whitening.  Then we look at the 
eigen values dj of E{xxT} and discard those that are too small, as is often done in the statistical 
technique of principal component analysis (PCA). This has often the effect of reducing noise. 
Moreover, dimension reduction prevents over-learning, which can sometimes be observed in ICA. 

Centering and whitening combined is referred to as sphering, and is necessary to speed up the ICA 
algorithm.  Sphering removes the first and second-order statistics of the data; both the mean and 
covariance are set to zero and the variance are equalized.  When the sample data inputs of the ICA 
problem are sphered, the full transformation matrix WI is the product of the sphering matrix WZ 
and the matrix learned by the ICA W, that is, 

    ZI WWW =       (40) 
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ICA for Face Recognition - Architecture I 

There are two fundamentally different architectures for applying ICA to face recognition, which will 
be named Architecture I and II [9]. In Architecture I, the face images in the data matrix X are 
considered to be a linear mixture of statistically independent basis images S combined by an 
unknown mixing matrix A.  The goal of the ICA algorithm is to solve the weight matrix W, which is 
used to recover the set of independent basis images.  Figure 16 illustrates the Architecture I for face 
recognition.  The face images are considered variables and the pixels the observations for the 
variables in Architecture I.  The source separation, therefore, occurs in the face space.   

 

Figure 16: ICA Architecture I [8]. The goal in this architecture is to find statistically independent basis images. 

Bartlett [9] uses PCA as a preprocessing step before the main ICA algorithm to project the data into 
a subspace of a certain dimension, which also happens to be the number of independent 
components produced by ICA.   

Task 13:  Construct the data matrix X using the face images used in the training stage. 

Task 14:  Perform data centering and whitening on the constructed data matrix X, see Fig. 17. 

 

Figure 17:  Code snippet for ICA pre-processing 

%% Preprocessing - data sphering 
Mu = mean(x);  
covM = cov(x); 
  
%% 1. Centering 
% subtract the mean from the observed mixture 
x = x - repmat(Mu,[N,1]) 
 
%% 2. Whitening 
% get decorrelating matrix (whitening matrix) 
whitening_matrix = 2*inv(sqrtm(covM));              
  
% decorrelate mixes so cov(x')=4*eye(n); 
x = x * whitening_matrix;      

S 
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Task 16:  Apply ICA Gradient Ascent algorithm on the data matrix X by using the eigenvectors 
from the PCA (the first d eigenvectors) of X to produce the statistically independent 
basis images. see Fig. 19. Plot the change in entropy versus iterations. Comment on your 
results. Visualize the ICA basis images, like Fig.18. Generate the CMC curve for each 
similarity measure, comment on your results. 

ICA Arch I Basis Images

 

Figure 18:  ICA Architecture I Basis Images  
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Figure 19:  Code snippet for ICA Gradient Ascent 

To summarize Architecture I in terms of matrix notation, let R be the (pxm) matrix containing the 
first m eigenvectors from the PCA preprocessing step (the eigenvectors are stacked column-wise) 
and p is the number of pixels in an image.  The convention in ICA is that the rows of the input 
matrix are the variables and the columns contain the observations, which means that the input to the 
ICA algorithm is RT.  The m independent basis images in the rows of U are computed as U = WRT, 
where W is weight matrix estimated from ICA.  The (nxm) ICA coefficients matrix B for the linear 
combination of independent basis images in U is computed as follows [8].  Let C be the (nxm) 
matrix of PCA coefficients. C can be solved as 

    C = X R è X = C RT     (41) 

From U = WRT and the assumption that W is invertible, RT in terms of U and W is: RT = W-1U.  
Therefore, 

    X = (C W-1)U = B U     (42) 

The rows of B contain the coefficients for linearly combining the basis images to comprise the face 
images in the corresponding rows of X.  X is the reconstruction of the original data with minimum 
squared error as in PCA. 

%% Initializations 
% Initialise unmixing matrix W to identity matrix. 
W = eye(n,n); 
  
% Initialise u, the estimated source signals. 
u = x*W; 
  
maxiter = 10000;  % Maximum number of iterations. 
eta = 1;      % Step size for gradient ascent (learning rate). 
  
% Make array hs to store values of function and gradient magnitude. 
hs = zeros(maxiter,1); 
gs = zeros(maxiter,1); 
  
%% Begin gradient ascent on h ... 
for iter = 1:maxiter 
    % Get estimated source signals, u. 
    u = x*W; % wt vec in col of W.   
    % Get estimated maximum entropy signals U = cdf(u). 
    U = tanh(u); 
    % Find value of function h.  
    % h = log(abs(det(W))) + sum( log(eps+1-U(:).^2) )/N; 
    detW = abs(det(W)); 
    h = ( (1/N)*sum(sum(U)) + 0.5*log(detW) ); 
    % Find matrix of gradients @h/@W_ji ... 
    g = inv(W') - (2/N)*x'*U; 
    % Update W to increase h ...  
    W = W + eta*g; 
    % Record h and magnitude of gradient ... 
    hs(iter) = h;  
    gs(iter) = norm(g(:)); 
end; 
 
% the estimated independent components 
u = x*W;  
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ICA for Face Recognition - Architecture II 

Architecture II is based on the idea of finding image filters that produce statistically independent 
outputs from natural scenes.  The basis images in Architecture I are statistically independent, but the 
coefficients that represent the input images in the new space defined by the basis images are not.  
The role of pixels and images are changed from Architecture I, that is, the pixels are variables and 
the images are observations.  The source separation is performed on the pixels (instead of the face 
space in Architecture I), and each row of the solved weight matrix W is an image.  In this 
architecture (Fig. 20), the ICA algorithm is done on the PCA coefficients rather than the input 
images to reduce the dimensionality of the image vectors.  In matrix notation, the statistically 
independent coefficients are computed as U = W CT and the actual basis images are obtained from 
the columns of RA. 

 

Figure 20:  ICA Architecture II [8]. The goal of this architecture is find statistically independent coefficients for face 
representation. 

Task 17:  Repeat tasks 13-16 but with different data matrix X which is constructed to follow 
Architecture II. 

Correlation-based Pattern Recognition [4] 

Correlation is a natural metric for characterizing the similarity between a reference pattern r(x, y) and 
a test pattern f(x, y), and not surprisingly, it has been used often in pattern recognition applications. 
Often, the two patterns being compared exhibit relative shifts and it makes sense to compute the 
cross-correlation c(tx, ty) between the two patterns for various possible shifts tx and ty as in (43); 
then, it makes sense to select its maximum as a metric of the similarity between the two patterns and 
the location of the correlation peak as the estimated shift of one pattern with respect to the other 

òò --= dxdyyxryxfc yxyx ),(),(),( tttt    (43) 
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where the limits of integration are based on the support of I(x, y).  The correlation operation in (43) 
can be equivalently expressed as 

( )),(),(

),(),(),(

21
*

21
1

)(
21

*
21

21

wwRwwF

dxdyewwRwwFc yx wwj
yx

-

+

Á=

= òò tttt
  (44) 

where F(w1,w2) and R(w1,w2) are the 2D FTs of f(x, y) and r(x, y).  Equation (43) can be interpreted as 
the test pattern F(x, y) being filtered by a filter with frequency response H(w1,w2) = R*(w1,w2) to 
produce the output c(tx, ty).  The goal is to design a suitable filter H(w1,w2) that will determine which 
class the test image belongs to (Fig. 21). 

 

Figure 21: Block diagram of the correlation process. 

The filter that will be considered in this project is the minimum average correlation (MACE) filter.  
The MACE filter design can be summarized as follows.  We will now briefly explain the MACE 
filter design.   

Suppose we have n training images, each of size (d x d).  First, the 2-D FTs of these training images 
are computed and resulting complex arrays are vectorized into columns of a (d2 x n) complex valued 
matrix X. We also use a (d2 x d2) diagonal matrix D whose diagonal entries are the average power 
spectrum of the n training images. Since D is diagonal, we need to store only its diagonal entries and 
not the complete matrix. The filter is represented by a column vector h with d2 elements. Finally, the 
filter h is required to produce prespecified values ui at the correlation origin in response to the 
training images i = 1, 2, . . . , n and these constraints can be expressed as follows: 
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uhX =+      (45) 

where u = [u1 u2 … uN]T and superscripts T and + denote the transpose and conjugate transpose, 
respectively.  The closed form equation for the MACE filter h is  

( ) uXDXXDh 111 --+-=    (46) 

 

Figure 22:  Code snippet for MACE filter design. 

The correlation outputs exhibit sharp, high peaks for the authentic and no such peaks for the 
impostors (Fig. 23).  The peak sharpness can be quantified by the peak-to-sidelobe ratio (PSR) 
defined in Fig. 23, where peak is the largest value in the correlation output and mean and std are the 
average value and the standard deviation of the correlation outputs in an annular region (size 20 x 
20) centered on the peak but excluding the peak region (a 5 x 5 region). 

Task 18:  Duplicate the filter responses in Fig. 21 for authentic and and impostor images, with the 
PSR values. 

 

% Read training data 
for i = 1:nsamples 
    imstr = [path,f,num2str(i),'.pgm']; 
    im = double(imread(imstr, 'pgm')); 
     
    im = imresize(im, [64 64],'bilinear'); 
     
    [r,c] = size(im); 
    % stack into col matrix 
    Xi = fft2(im); 
    X(:,i) = Xi(:); 
     
    % perform FFT 
    Di = Di + X(:,i).*conj(X(:,i)); 
     
end 
  
fprintf('Starting to analyze data\n'); 
  
Dave = abs(Di/nsamples); 
u = ones(nsamples,1); 
Dinv = diag(1./Dave); 
h = Dinv*X*inv(X'*Dinv*X)*u; 
% h = X*inv(X'*X)*u; 
  
h = reshape(h, [d d]); 
im = double(imread('.\mike\5.pgm', 'pgm')); 
im = imresize(im, [64 64], 'bilinear'); 
  
fprintf('Performing correlation\n'); 
imf = fft2(im); 
corr = abs(ifftshift(ifft2((imf.*conj(h))./abs(imf.*conj(h))))); 
figure, mesh(corr) 
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Task 19:  Perform leaving-one-out cross-validation of the correlation pattern recognition approach 
(MACE filters) using the Yale database.  

 

Task 20: Compare the results of PCA, LDA, ICA and correlation pattern recognition (MACE 
filters) using their CMC curves with different distance measures. 

 

 

Figure 23: Correlation outputs for authentic and impostor inputs. 

 

References 

[1] Yale Face Database, < http://cvc.yale.edu/projects/yalefaces/yalefaces.html > 

[2] Intel OpenCV, < http://www.intel.com/technology/computing/opencv/ > 

[3] P. Belhumuer, J. Hespanha, and D. Kriegman, “Eigenfaces vs. fisherfaces: Recognition using 
class specific linear projection,” IEEE Trans. Pattern Analysis and Machine Intelligence, 19(7): 
711-720, 1997 

[4] B. V. Kumar, M. Savvides, and C. Xie, “Correlation Pattern Recognition for Face Recognition,” 
Proc. of the IEEE, Nov. 2006 



University of Louisville                                               CVIP Lab 
Electrical and Computer Engineering                                               Fall 2009 

 

Page 30 of 30 

[5] Ham Rara, DIMENSIONALITY REDUCTION TECHNIQUES IN FACE RECOGNITION, 
Master thesis, CVIP Lab, University of Louisville, March 24, 2006 

[6] X. Lu, “Image Analysis for Face Recognition,” Personal Notes, May 2003, http://www.face-
rec.org/interesting-papers/General/ImAna4FacRcg_lu.pdf 

[7] A. Hyvarinen, J. Karhunen, and E. Oja, “Independent Component Analysis,” Wiley, 2001 

[8] B. Draper, et. al., “Recognizing faces with PCA and ICA,” Computer Vision and Image 
Understanding 91 (1-2), 115-137 

[9] M.S. Bartlett, J.R. Movellan, and T.J. Sejnowski, “Face recognition by independent component 
analysis,” IEEE Transactions on Neural Networks 13 (2002) 1450-1464 

[10] D. M. Blackburn, “Face Recognition 101: A Brief Primer,” < http://www.frvt.org/ 
DLs/FR101.pdf > 
 

 


