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Abstract

We introduce a robust moving least-squares technique for recon-
structing a piecewise smooth surface from a potentially noisy point
cloud. We use techniques from robust statistics to guide the cre-
ation of the neighborhoods used by the moving least squares (MLS)
computation. This leads to a conceptually simple approach that pro-
vides a unified framework for not only dealing with noise, but also
for enabling the modeling of surfaces with sharp features.

Our technique is based on a new robust statistics method for
outlier detection: the forward-search paradigm. Using this pow-
erful technique, we locally classify regions of a point-set to mul-
tiple outlier-free smooth regions. This classification allows us to
project points on a locally smooth region rather than a surface that is
smooth everywhere, thus defining a piecewise smooth surface and
increasing the numerical stability of the projection operator. Fur-
thermore, by treating the points across the discontinuities as out-
liers, we are able to define sharp features. One of the nice features
of our approach is that it automatically disregards outliers during
the surface-fitting phase.

Keywords: moving least squares, surface reconstruction, robust
statistics, forward–search

1 Introduction

Digital scanning devices are capable of acquiring high-resolution
3D models have recently become affordable and commercially
available. Modeling detailed 3D shapes by scanning real physical
models is becoming more and more commonplace. Current scan-
ners are able to produce large amounts of raw, dense point sets.
Consequently, the need for techniques for processing point sets has
recently increased. One of the principal challenges faced today is
the development of surface reconstruction techniques which deal
with the inherent noise of the acquired dataset. When the under-
lying surface contains sharp features, the requirement of being re-
silient to noise is especially challenging since noise and sharp fea-
tures are ambiguous, and most techniques tend to smooth important
features or even amplify noisy samples. Moreover, sharp features
consist of high frequencies which cannot be properly sampled by
the finite resolution of the scanning device in the first place.

Recently, there has been substantial interest in the area of sur-
face reconstruction (or modeling) from point-sampled data. A par-
ticularly powerful approach has been the use of the moving least-
squares (MLS) technique for modeling point-set surfaces (PSS)
[Alexa et al. 2001; Amenta and Kil 2004b; Levin 2003]. One of the
main strengths of this approach is the intrinsic capability to handle
noisy input, as compared to combinatorial (or topology reconstruc-
tion) schemes [Amenta et al. 1998; Bernardini et al. 1999], which
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Figure 1: (a) Levin’s MLS surface defines a smooth surface. (b)
The robust MLS defines a piecewise smooth surface.

rely on clean (or filtered) data. MLS is based on local fitting, and it
is naturally framed as an statistical approach to surface reconstruc-
tion. Furthermore, the MLS technique makes it easy to compute a
very good approximation of the intrinsic properties of the surface
such as normal and curvature directly from a noisy point-cloud.

In this work, we introduce a piecewise smooth surface definition
that is based on Levin’s point set surfaces [Levin 2003] by defining
a projection operator that accounts for C1 discontinuities. Our work
is related to recent developments in feature-preserving smoothing
[Clarenz et al. 2000; Fleishman et al. 2003b; Jones et al. 2003]
but unlike smoothing, we define a surface rather than filtering the
geometry. Furthermore, since the PSS definition fits a high-order
polynomial to the surface, it does not shrink the object.

Points on sharp features are defined by multiple surfaces. Thus,
dealing with sharp features requires fitting a number of surfaces lo-
cally [Ohtake et al. 2003; Pauly et al. 2003]. This is a non-trivial
task since it requires the identification of discontinuities or the lo-
cus of the intersection of a number of local smooth surfaces in the
presence of noise. If the point data contains reliable normals, they
can be used to segment local surfaces [Ohtake et al. 2003]. How-
ever, using normals to assist the identification of a discontinuity
is a “chicken and egg” problem, since the definition of a normal
assumes local smoothness, and its computation in the presence of
noise or near a discontinuity is unreliable. Here and in the rest of
the paper, by discontinuities we refer to the discontinuities in the
derivative of a surface.

Our work is based on a powerful, relatively recent robust sta-
tistic technique called the forward-search paradigm [Atkinson and
Riani 2000; Hadi 1992]. The basic idea in forward search is to
start from a small set of robustly chosen samples of the data that
excludes outliers. Then to move forward through the data adding
observations to the subset while monitoring certain statistical esti-
mates. We use these methods to deal with noise, outliers and sharp
features. In our work, sharp features are handled by treating the
points across sharp features as outliers. Instead of fitting a single
surface locally by the moving least-squares method, we use an it-
erative refitting algorithm, based on the forward-search algorithm,
to classify a neighborhood to multiple local surfaces. Points which
are close to more than one local surface are projected on one of its
neighboring smooth regions. The local classification along with a
new projection procedure defines a piecewise smooth surface where



each region is infinitely smooth. Based the robust projection oper-
ator, points can be resampled on the piecewise smooth surface by
the MLS projection mechanism [Alexa et al. 2001].

The main contribution of this work is a representation for piece-
wise smooth surfaces, and an algorithm to generate the represen-
tation from a noisy data set. We use a new technique from robust
statistics that is better suited to detect outliers than previous ap-
proaches and thus finds a better fit to a model. In particular, we
identify discontinuities in the presence of noise by treating adjacent
surfaces and sampling errors as outliers. A unique feature of our
reconstruction algorithm is that it synthesizes new points that re-
construct the sharp crease features, which are not part of the input
point set.

Before we go on, we would like to note upfront that in the fol-
lowing we will often use the abused term robustness. In our work
the term robustness does not simply refer to a stable computation
but rather to our methodology, which is based on robust statistics.
In technical terms, we use the term robustness to indicate that we
can handle noisy data that is composed of random additive Gaussian
noise and possibly a large number of outliers.

2 Background and related work

A main motivation of the type of work described in this paper is the
need to model real-world 3D geometry acquired by range scanners.
Typically, it is necessary to perform multiple scans to capture the
entire geometry, and to register them into a common aligned co-
ordinate system; the output of this process is a raw point set. This
point set is noisy and rough, hence the extraction of a thin piecewise
smooth surface is a non-trivial task. The whole process is usually
exacerbated by the size of the models, which may contain tens of
millions of samples or more. Ideally, a surface reconstruction al-
gorithm should be insensitive to noise, and generate a piecewise
smooth surfaces which adequately represent the sharp features.

Since the early 1990s, there has been a substantial amount of
work in this problem, most noticeably in the general areas of sur-
face reconstruction, point-based modeling, and the use of robust
statistics in computer vision. We briefly review the most related
works with a view on how they handle noise and whether they are
able to model sharp features.

2.1 Moving least-squares surfaces

A point set surfaces [Alexa et al. 2001] is a smooth surface repre-
sentation of a, possibly noisy, set of points, reconstructed based on
a moving least-squares (MLS) technique for surfaces [Levin 2003].
As an approximating scheme, moving least-squares is insensitive to
noise. The technique is attractive since the surface is reconstructed
by local computations and it generates a surface that is smooth
everywhere [Levin 2003]. Recently, different types of PSS formu-
lations have been used for surface reconstruction [Amenta and Kil
2004b; Fleishman et al. 2003a; Mederos et al. 2003; Pauly et al.
2003; Xie et al. 2003].

One appealing feature of point-based representation is the ability
to easily make topological changes to an object. Pauly et al. [2003]
introduced a point-based modeling system that exploits this quality.
Based on the PSS definition, they define an implicit function that
allows performing constructive solid geometry (CGS) operations on
objects. A CSG operation between two objects typically generates
a sharp edge. To represent these edges they add new points on the
intersection of two given surfaces. In our work, the intersecting
surfaces are not given or known a priori, but rather identified and
reconstructed in the presence of noise.

Amenta and Kil [2004b; 2004a] study the properties of the sur-
face that is defined by the PSS and the stability of the projection
procedure. Their main contribution is in showing the relationship

between PSS and extremal surfaces and thus they are able to give an
explicit definition of the PSS. Using the extremal surfaces point of
view, they define alternative surfaces for surfels. One of their con-
clusions is that previously defined PSS behaves in an undesirable
way when projecting points near edges and corners and thus they
suggest new energy functions and perform multiple iterations of the
projection until the converge to a surface in order to overcome the
problem. Our algorithm handles such sample sets in a more natural
way by fitting a piecewise smooth surface to a sample set of a piece-
wise smooth object rather than fitting a smooth surface to such data.
A benefit that we gain from such a definition is increased stability
of the projection operator.

2.2 Surface reconstruction

The MLS is only one of many different surface-reconstruction tech-
niques. Pioneering work in surface reconstruction was done by
Hoppe et al. [1994], who introduce an algorithm that creates a
piecewise smooth surface in a multi-phase process that was based
on implicit modeling of a distance field. Smoothness is achieved
by applying subdivision techniques, and sharp features are defined
by two polygons with a crease angle that is higher than a threshold.
Another approach is to first reconstruct a mesh [Curless and Levoy
1996; Turk and Levoy 1994] and only then to apply a smoothing
process to the mesh that removes noise [Clarenz et al. 2000; Des-
brun et al. 1999; Taubin 1995]. The surface normal and viewing
direction can be used to consolidate points that were scanned mul-
tiple times [Curless and Levoy 1996; Wheeler et al. 1998].

Amenta et al. [1998] approached the problem from a compu-
tational geometry (combinatorial) viewpoint. Their approach was
the first to provided provable sampling conditions under which the
reconstructed surface was known to be homeomorphic to a smooth
compact 3-manifold. Unfortunately, in both theory and practice
their technique usually fails on both noisy (and undersampled)
models or models with sharp features. Along the same lines (and
using geometrical properties of the Delaunay triangulation), Dey
and co-workers [to appear] developed techniques that have strong
theoretical guarantees for noisy, undersampled, and models with
sharp features. Still, since those techniques interpolate the original
points, those techniques are intrinsically sensitive to noise in the
sense that they will generate a noisy surface out of a smooth model.

An alternative approach is to reconstruct a surface and denoise
the input point set in a single unified step. Interpolating a set of
points with radial basis functions (RBF) offers a smooth object rep-
resentation. Typically this requires the minimization of a thin-plate
spline energy functional. Computing an RBF interpolation is per-
formed by solving a system of equations of size up to 3N × 3N ,
where N is the number of input points. Carr et al. [2001] use a fast
solver for RBF that has a complexity of O(N log(N)). Morse et al.
[2001] use functions with local support, forming a sparse system
of equations that can be solved on O(N1.5). Since interpolating
schemes preserve the noise in the data, Carr et al. suggest an ap-
proximating variation for an RBF representation of an object. Dinh
et al. [2001] suggest using a nonsymmetric RBF function aiming
at capturing sharp features. They identify edges using covariance
analysis of a neighborhood of a point to determine the shape of the
function assigned to the point.

Ohtake et al. [2003] introduce an implicit function surface rep-
resentation defined by a blend of locally fitted implicit quadrics
(MPU). Each quadric approximates points in a local neighborhood
and thus is not sensitive to noise. To reconstruct sharp features they
identify edges and corners using normal clustering. If the variation
among the normals of a given neighborhood is too large, they clus-
ter the points into sets with similar normals, and fit a quadric to each
set separately. The intersection of these quadrics represents the lo-
cal surface. In our work we follow these ideas and represent sharp



features by the intersection of locally fitted surfaces. However, as
mentioned in Section 1, the identification of sharp features does not
assume the availability of reliable normals, we prefer using robust
methods to estimate the locus of local surfaces.

Recent advances in contouring techniques reconstruct sharp fea-
tures [Ju et al. 2002; Kobbelt et al. 2001; Varadhan et al. 2003].
These methods reconstructs a surface from volumetric data by lo-
cally analyzing the vertices of each voxel, assuming noise-free data.

2.3 Robust statistics methods

Locally fitting multiple surfaces to points in the area of disconti-
nuity can be regarded as a statistical problem of fitting a model
(estimator) to data with outliers. A statistical method is considered
to be robust if it has a large breakdown point. Loosely speaking,
a breakdown point is defined as the minimal percentage of outliers
that can be made arbitrarily large that makes the estimator go to in-
finity. For example, the breakdown point of the median of a set of
values is 50%.

Robust statistics methods have been applied to various computer
vision applications [Meer et al. 1991; Stewart 1999]. Sinha and
Schunck [1992] introduce a two-stage algorithm for discontinuity-
preserving bicubic spline 2.5D surface reconstruction. In the first
stage they remove outliers using the least median of squares (LMS)
method. In the second stage, they reconstruct the surface using
bicubic splines. Miller and Stewart [1996] use ordered statistics
to improve the breakdown point of the LMS algorithm. They fit
multiple planes to a region by robustly fitting a plane to points in a
region, removing the points that have good fit and refitting a second
plane. The method we present in this paper is in the same spirit.
However, we fit one or more higher order polynomials over 3D data,
thus we can reconstruct curved surfaces with no a priori knowledge
of the complexity of the reconstructed feature and at the same time
we also disregard outliers.

Pauly et al. [2004] presented a method for measuring the uncer-
tainty of a point set. They fit a plane to a neighborhood and mea-
sure the uncertainty of the neighborhood based on the residuals of
the points in that neighborhood. Their method, like other backward
methods cannot detect masked outliers (defined below). Backward
methods for fitting a model to noisy data work by fitting a model
to the entire sample set and then trying to delete bad samples. Un-
fortunately, as well-known in the statistics literature [Atkinson and
Riani 2000], a single or multiple outliers can influence the fitted
model in such a way that the good samples are detected as the out-
liers as demonstrated in Figure 2.

Xie et al. [2004] extended the MPU technique to handle noisy
datasets. They describe separate procedures for outlier detection
and noise removal. For outlier detection they further differentiate
between near outliers from far outliers. For the near ones they
employ a thresholding scheme. Far ones are identified by their ori-
entation algorithm. For noise removal, they use an iterative method
that defines weights for the points based on how well they fit the
surface inside versus outside a user-defined region of space.

Recently Fleishman et al. [2003b] and Jones et al. [2003] ap-
plied the bilateral filter to surface denoising, which can be regarded
as a robust statistics technique. For every point, they locally fit a
plane to the surface and apply the bilateral filter to the neighbor-
hood of the point. In these works, a single plane is fitted to a point,
this plane serves as a parametrization over which the bilateral filter
is applied. Paradoxically, a point on a sharp edge that these algo-
rithms aim to preserve resides on two planes rather than one. In
this paper, we identify these two planes and synthesize the surface
as the intersection of these surfaces.

(a) (b) (c)

Figure 2: A single outlier can cause a least squares fit to fail. In
(a) we show a set of points in 2D and the least squares fit to these
points (black). A backward method identifies the outliers with re-
spect to the initial guess, thus points in red will be erroneously
deleted. Levin’s projection can make the analogous erroneous fit
(b). Our projection ignores outliers and thus produces the expected
result (c).

3 Robust estimation

In our work we deal with fitting a surface to a set of points in 3D.
Generally, in statistics, regression deals with fitting, or estimating
a model from a sample set. The classic method for fitting a model
to data is linear regression using least-squares. However, a single
sample with a large error, an outlier, can change the fitted model ar-
bitrarily. Robust estimation techniques try to fit a model to data that
may contain outliers. In this brief review, we concentrate on meth-
ods that are most relevant to us, For more details see [Huber 1981];
some applications for computer vision are described by Black and
Sapiro [1999].

In this work, we use the forward search method for outlier iden-
tification [Atkinson and Riani 2000]. This method can deal with
multiple outliers, as well as masked outliers. Masked outliers are
outliers that cannot be identified from the statistics of a model that
is fitted to the entire sample set, that is the masked outliers influence
the fitted model in such a way that they are cannot be recognized
as the source of the misfit. Figures 2(a) and (b) shows an exam-
ple where a single outlier causes a least squares fit to produce the
undesirable result, from the figure (see caption) it is clear that any
attempt to identify the outliers based on that fit will fail.

3.1 Least median of squares

The least medians of squares (LMS) is a robust regression method
that estimates the parameters of the model β by minimizing the
median of the absolute residuals, these are defined as the difference
between the measurement and estimation: for the ith sample ri =
f(xi)− yi. That is, we search the parameters β that minimizes the
median of the residuals:

argmin
β

median
i

|fβ(xi)− yi|, (1)

and thus can reliably fit a model to data that contains up to 50%
outliers.

Equation (1) can be solved using the following random sampling
algorithm; k points are selected at random, and a model is fitted to
the points. Then the median ri,β of the residuals of the remaining
N − k points is computed. The process is repeated T times to gen-
erate T candidate models. The model with minimal ri,β is selected
as the final model. If g is the probability of selecting a single good
sample at random from our sample set, then the number of itera-
tions that are required to have a probability of success of P can be
computed by P = 1 − (1 − gk)T [Rousseeuw and Leroy 1987].
A small value of k does not use all of the available sample to fit
a model, while a larger value of k requires more iterations. If the
value of k is too large, the algorithm becomes sensitive to noise.
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Figure 3: Monitoring the forward search. The first row shows the input model with the neighborhood that is examined. The second row shows
the residual plot; each curve in these plots shows the behavior of the residual of a single sample as more and more samples are included in
the fitting. The X-axis is the number of samples that are used for fitting, and the Y-axis is the magnitude of the residual. Observe that for the
neighborhoods that contain an edge, there are a number of points with large residuals and all of them have a sharp drop in the magnitude of
their residual at some point . This is the point where samples from the “wrong” side of the edge enter the sample set. This is precisely the
point that we are interested in finding. The third row shows plots of the ith maximal residuals, where the Y-axis is the value of the maximal
residual. We use a threshold on the maximal residual (marked in orange) to automatically find the time where outliers enter the sample-set.

3.2 Forward search and iterative refitting

The forward search algorithm [Atkinson and Riani 2000; Hadi
1992] is a robust method that avoids the need to fix k. It begins with
a small outlier-free subset and then iteratively refines the model by
adding one sample at a time. The initial model is computed us-
ing the LMS algorithm using a small k value, typically k = p for
a model with p parameters. Then at every iteration i, the i sam-
ples with lowest residuals are used to estimate the parameters of
the model. During the forward search a number of parameters can
be monitored to detect the influential points. Typically, the forward
search will add the good-samples first and only when these are ex-
hausted, outliers will be added. Riani and Atkinson [Atkinson and
Riani 2000] suggest several statistics to be monitored. For their
purposes, these are plotted on a graph and inspected visually. They
suggest to monitor the residual-plot (Figure 3 middle), The ith Stu-
dentized residual, Cook’s distance or modified Cook distance.

The residual plot (Figure 3) is a standard method in regression
analysis for identifying outliers. The plot contains the residuals
of all of the samples on the Y axis and the X axis is the time-
step, in which new samples are added. The residual plot is then
examined manually to determine the time when outliers started to
enter the sample set and thus the classification to good samples and
outliers is a post-process. The power of the forward search can be
seen when observing the shape of the residual plot: in the example
shown in Figure 3, samples from one side of the edge are used
and the residuals on the left-hand side of the plot can be roughly
divided into two groups, one that has low residuals and are packed

at the bottom, and the other has high residuals and are scattered
above. When outliers begin to enter the sample set, there is a clear
indication in the residuals plot, the residuals of the outliers decrease
and the residuals of the good samples increase. The time that this
occurs is marked by an orange line in the maximal residuals plot
in Figure 3. In our technique we monitor the maximal residual
(Figure 3), and we show a method for setting the threshold of the
maximal residual (the exact same orange line) so that the process
is automated. During the process of the forward search, typically
a single sample is added at each iteration, thus sorting the samples
according the confidence of them being good samples; samples that
enter first to the sample-set have higher confidence.

Iterative refitting. To fit a model to a sample set S that was
sampled from multiple processes, we use an iterative refitting al-
gorithm: First, we fit a model to a subset S1 of the data, using the
forward search algorithm and identify the rest of the data as out-
liers. Next, we remove the samples that were fitted S = S\S1, and
repeat the process until S is empty. Figure 4 shows an example of
this process in two dimensions.

4 Local classification and projection

We present an algorithm that gets as input a set of points S and
classifies this set to a number of subsets, each corresponding to a
smooth region of the surface (Figures 4 and 6). This set of points
is the neighborhood of some input point x. We adapt the above
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Figure 4: The input noisy data can be interpreted as piecewise smooth surface (a) or as a smooth surface as in (b). We identify the sharp
features with the iterative refitting procedure. First, we robustly fit a surface to a small subset of the points in (c). Next, we incrementally add
points with smallest residual and refit the surface to the updated subset (d). The final fit of the forward search is shown in (e). The remaining
points are regarded as outliers to the first surface, these are used again to refit another surface (f). The result is a surface that is defined as the
intersection of the two surfaces in (g). Finally the piecewise smooth surface is reconstructed by resampling (h).

forward search algorithm to classify the point set, i.e. partition S
to subsets each of which is an outlier-free sample of a smooth re-
gions. Next, we present a projection operator which projects a given
point near the surface onto the point set surface as illustrated in Fig-
ure 5. The latter extends the basic moving least-squares projection
operator [Levin 2003] by using the classification to deal with sharp
features. The new projection operator defines a piecewise smooth
surface, rather than a surface that is smooth everywhere.

Given a sample point x and its neighborhood S. Our goal is to
locally fit a number of polynomials to points in S. The number of
polynomials is equal to the number of smooth regions that are in
the neighborhood of x. A single polynomial is fitted to points that
lie on a smooth region, and multiple polynomials for points that are
near an edge.

4.1 Initial robust estimator

As described in Section 3.1, the LMS algorithm randomly selects a
number of points, fits a model, and computes the median of resid-
uals. The LMS, as a statistical method, assumes that the samples
(points) are independent, and requires a large number of iterations
to achieve a high probability of finding a good estimator. We take
advantage of the geometric prior that the points sample a surface to
significantly accelerate the process and improve its stability in this
geometric setting. That is to say that we iterate over all the points
in S and fit a surface to the small neighborhood of each point, fol-
lowing the assumption that neighborhoods sample a single surface.

To fit a polynomial to a set of points in 3D space, it must reside
over a parameter domain. We define the parametric domain of a
point using eigenvector analysis of the points in its neighborhood
Q. Then a polynomial is fitted to the points in Q and the median
of residuals of the points in S is computed. Since we expect that
more than a single surface fits S, instead of using the median, we
use a kth ordered-statistics to grade a polynomial [Miller and Stew-
art 1996]. This simply means that the residuals are sorted and we
examine the value of the kth residual.

4.2 Forward search on point sets

To find a subset of points that lie on a smooth region, we apply the
forward search algorithm, fitting a bivariate polynomial of degree
two. First we compute a robust estimator for a small number of

points using the algorithm described above. The result is a reference
plane and an initial set of points Q.

The second step of the forward search is to iteratively add one
point to the set Q at each iteration. At the ith iteration, we use the
i points with the lowest residuals, until the largest residual ri > rt,
where rt is the threshold of maximal tolerated residual. Again we
use the geometric prior by setting the candidate points for Qi to be
the points in Qi−1 and their immediate neighbors. Figure 4(c–e)
illustrates the process.

The threshold of maximal tolerated residual is globally com-
puted for the entire model. Following the mechanism suggested
by Fleishman et al. [2003b], the user marks a small region on the
surface that is known to be smooth, the system fits a polynomial to
that region and measures the largest residual to set the value of rt.
Following is a pseudocode of the forward search algorithm:

[Estimator, Q] = Fwd(PointSet S) {
[ParameterDomain, Q] = LMS(S, p)
f o r ( i = p + 1 ; i < size(S) ; + + i ) {

Candidates = (Q ∪ ImmediateNeighbors(Q)) ∩ S
Estimator = LeastSquareF it(ParameterDomain, Q)
i f (ri > rt) b r e a k ;
R = Residuals(Estimator, Candidates)
Sort(R) and Candidates respectively
/ / Q holds the i points with smallest residual
Q = Candidates(1 . . . i)

}
}

4.3 Defining the piecewise smooth surface

The moving least-squares projection operator [Levin 2003] as-
sumes that the surface is smooth everywhere, thus it reconstructs
a smooth surface as in Figure 1(a). Using the classification process
described above, we define a projection operator that projects a
point onto the piecewise smooth surface. This classification allows
us to project points on a locally smooth region rather than a surface
that is smooth everywhere, thus defining a piecewise smooth sur-
face. Furthermore, by treating the points across the discontinuities
as outliers, we are able to define sharp features.

Given a point x, we first analyze its neighborhood. If the neigh-
borhood is determined to be smooth, we project it using Levin’s
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Figure 5: Projection on the surface near an edge is performed by
projecting the input point x on the two surfaces, verifying that is
on the surface and choosing x1, the point that is closest to x. Some
points do not project to a valid point on the surface as in (b), thus we
project them to the edge. Determining whether a region is convex or
concave is done by checking the position of the point that is closest
to the two lines (c1,n1) and (c2,n2) with respect to the normals
n1,n2 (c). (d) shows different regions of space and where points
from those regions project to.

method. Otherwise we classify the neighborhood of the point to
subsets of smooth regions of the surface and discard outliers. Then
we project the point on the closest smooth region of the surface.

Determining whether a neighborhood is smooth or not, is per-
formed by locally fitting a polynomial to the neighborhood and
measuring the maximal residual of the points in the neighborhood.
If the maximal residual is smaller than the threshold rt as defined
in Section 4.2 then the neighborhood is defined as smooth.

If the neighborhood is not smooth, we use a subset of the neigh-
borhood that is sampled from a smooth region of the surface. We
apply the procedure that was described in Section 4.2 to obtain a
subset of the neighborhood that samples a smooth region. Then
we apply the iterative refitting algorithm to obtain the rest of the
smooth regions of the neighborhood. The result is a classification
of the neighborhood to one or more subsets as in Figure 4(g). In the
case that there is only one subset, the rest of the points are outliers
and we simply discard them and project the point as if it were a
smooth region.

When we identify two or more subsets, the surface is defined
as the intersection of the smooth surfaces defined by the different
neighborhoods. Our new projection works by first projecting x on
one surface and then use the other surfaces to check if the point
belongs to the intersection or not. In case the two points belong to
the intersection, we pick the one that is closest to x as shown in
Figure 5(a). In case none of the points belong to the intersection as
in Figure 5(b), we iterate on this process until we converge to the
edge as Pauly et al. [2003]. Figure 5(d) shows the regions of space
and their target projection. Note that unlike Pauly et al., we are
not strictly seeking for a point on the intersection of two surfaces,
but rather a point on the surface that may or may not be on the
intersection curve of the two surfaces.

To check if a point that was projected on one surface agrees with
the other surface, we first determine if the neighborhoods form a
convex or concave region and then use this information to make in-
side/outside tests. To determine if the region is convex or concave,
we compute the normal to the centroid of each subsets. The nor-
mals are oriented based on the input approximated normal; these

(a) (b)

(c) (d)

Figure 6: Examples of classified regions and projections. (a) shows
Levin’s projection of a point near a corner. (b) shows the three
surfaces near the corner that were identified by the algorithm and a
projection on the surface that is defined by them. (c) and (d) shows
similar results for an edge with curved region and a different type
of corner.

can be the vector from the point toward the scanner or any other
approximation that maintains the consistency of orientation. Then
we find the point that is closest to the two rays that are defined by
these representative points and their normals (Figure 5(c)). If that
point is inside the object then the region is convex, otherwise it is
concave. Note that for corners where three surfaces meet there are
more involved cases, yet the same principle applies. In Figure 6 we
show three examples of classification to regions and projection of a
point using those classifications.

5 Results

We have implemented the technique presented in the previous sec-
tion and tested it on a large number of different scenarios. We report
here on three particular ones: a clean synthetic model, a synthetic
model with added random noise and the raw output of two differ-
ent scanners: a CyberwareTM and 3rdtech DeltasphereTM scanners.
The new projection procedure is an order of magnitude slower than
the classic MLS projection procedure. Clearly any application that
uses the robust projection should separate the classification part of
the algorithm from the projection part of the algorithm and thus
amortize the cost of the classification.

Figure 1(a) shows a reconstructed surface by Levin’s projection
operator. Naturally, in this reconstruction the edges are smoothed
out. In Figure 1(b), we show the surface that is reconstructed by the
new projection operator.

To test the ability of the procedure to handle both features and
noise, we have added uniformly distributed random noise to the
fandisk model. The noise is uniformly distributed in the range of
0.2% of the bounding box of the model. In Figure 7 we show the
noisy input model on top, and the reconstructed model in the middle
and bottom of the figure.



Figure 7: Reconstruction of the fandisk model. On the top is the
fandisk model corrupted with random noise of 0.2% of the bound-
ing box of the object. Normals to the points were computed using
an eigenvector analysis of the covariance matrix using eight nearest
neighbors. In the middle is the same model that was resampled with
the our method. On the bottom is the same reconstructed model
color-coded with the normals to the points.

In Figure 8 we show the reconstruction of a drill that is scanned
by a CyberwareTM scanner. The complex geometry of the model
leaves some undersampled regions and generates outliers as can be
seen in Figure 8(a). We compare Levin’s reconstruction in Fig-
ure 8(b) to the robust projection (c). In (d) we color-coded the ob-
ject by the number of surfaces that are in the neighborhood of the
point, except for the points that were projected to the edge that are
colored with yellow. An interesting thing to note about the color-
codes is the points that are colored with green; these were identified
as single smooth region with some outliers; in this example, most
of the green points are inside a smooth neighborhood, but close to
an edge. This happens since the points on the other side of the edge
were identified as outliers.

In Figure 9 we show a resampling of an object that is the raw
output from a DeltasphereTM scanner. The scanned model in ex-
tremely noisy and contains outliers, as can be seen on (a) and (d).
We resampled the object and show the result as a smooth render-
ing, comparing Levin’s reconstruction and the robust reconstruction
in (b) and (c) respectively. In (d) we superimposed the resampled
model over the input model to show the non-shrinking thin recon-
struction of the noisy model.

We define a sharp feature at the intersection of multiple surfaces,
thus we can reconstruct an edge where some of the data is missing
as shown in Figure 10. This is a unique property of our technique
compared to other surface reconstruction techniques.

Implementation and parameters. In our implementation we
handle regions that have up to three surfaces that meet at a single
point such as corners of a cube (e.g, Figure 6(b)). The parame-

(a) (b) (c) (d)

Figure 8: Reconstruction of a drill scan by a CyberwareTM scanner.
(a) the input point-set; note the missing data near and the roughness
of the data. (b) reconstruction using Levin’s projection. (c) recon-
struction using the robust MLS. (d) points are colored by the num-
ber of surfaces that lie near them: blue for smooth regions, green
for a single surface with outliers, red for two surfaces, magenta for
three surfaces and yellow for points that are projected to the edge.

ters are a threshold on the largest allowed residual that is set as
described in Section 4.2 and the minimal neighborhood size for a
surface Ls. From that we set the neighborhood size of a point to
be Ns = 6Ls, since a point near a corner that is at the intersection
of two concave surfaces and a convex surface (as in Figure 6(d))
has approximately three times more points on the convex region,
we need five times Ls and we add a few more points as to compen-
sate for uneven sampling and outliers. The kth ordered statistics
(Section 4.1) for the initial robust estimator is also set to Ls.

The forward search algorithm as described in Section 4.2 adds a
single sample at each iteration and solves a least squares system at
each iteration. In the tests that are presented here, we allow adding
multiple points at each iteration as long as their residual is within
the allowed tolerance and the maximal number of points that we
add is not more than 40% of the current size of Q.

Limitations. Noisy data is always prone to ambiguity between
a noisy smooth region and a sharp feature. The presented algo-
rithm declares a smooth region as smooth whenever a polynomial
of degree two can be tightly fitted to the local neighborhood. If
the sampling density or the signal-to-noise ratio are too low, we
may classify smooth regions as containing a sharp feature and vice
versa as shown in Figure 11. Furthermore, the reliability of the po-
sition of the reconstructed edge decreases as the two sides of the
edge tend toward being co-linear.

The presented projection operator defines a piecewise smooth
surface, however the curve of the edge that is defined by the op-
erator may not be smooth since the classification at one point may
differ slightly from one point to another. Extending the projection
operator such that the edge of the curve will be piecewise smooth
as well is among our future goals.

6 Summary and conclusions

We have presented a method to locally classify smooth regions
in point-sampled objects, using this classification, we have pre-
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Figure 9: A reconstruction from a raw DeltasphereTM scan of a
pipe. (a) input data. (b) a reconstruction using Levin’s projection.
(c) a reconstruction using the robust projection. (d) The recon-
structed surface (blue) is superimposed over the input data (red);
note the thin reconstruction from the noisy data.

sented a projection operator that defines a piecewise smooth sur-
face. With the projection operator we have presented applications
for resampling and reconstructing piecewise smooth surfaces from
noisy data. We believe that the forward search and the local clas-
sification will have numerous other applications. For example, the
classification can be used as a basis for grouping points in the MPU
[Ohtake et al. 2003] method.

The method uses tools from robust statistics to operate well in
the presence of noise, identifies outliers and ignore them. The main
tool that we use is the forward-search algorithm which has a sig-
nificant advantage in detecting outliers over commonly used “back-
ward” methods. Our use of non-planar estimator allows us to han-
dle complex shapes and suppress the shrinking effect that is inher-
ent in plane-fitting based surface fitting and denoising algorithms.
Our approach to deal with sharp features is based on the simple
observation that a sharp point is defined by more than a single lo-
cal surface. The classification to local smooth neighborhoods leads
to moving least squares operator that considers points only from
smooth neighborhoods, while avoiding samples across sharp fea-
tures. Amenta and Kil [2004b] observed that the point-set surfaces
projection operator may be unstable near sharp features. The local
classification to smooth regions presented in this work improves the
stability of the projection operator near sharp features and outliers.

In our experiments we found that the second degree polynomials
is effective in the lack of a prior. However, if some prior is given,
the faithfulness of the reconstruction can significantly increase. In
some applications, one has higher-level priors; for example it might
be known in advance that the scanned surface consists of a conic
section, or that it has a circular boundary. Improving the robustness
with given priors is a topic for future work.
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