
Eurographics Symposium on Geometry Processing (2005)
M. Desbrun, H. Pottmann (Editors)

Triangulating Point Set Surfaces with Bounded Error

Carlos E. Scheidegger Shachar Fleishman Cláudio T. Silva

University of Utah

Abstract

We introduce an algorithm for constructing a high-quality triangulation directly from Point Set Surfaces. Our
algorithm requires no intermediate representation and no post-processing of the output, and naturally handles
noisy input data, typically in the form of a set of registered range scans. It creates a triangulation where triangle
size respects the geometry of the surface rather than the sampling density of the range scans. Our technique
does not require normal information, but still produces a consistent orientation of the triangles, assuming the
sampled surface is an orientable two-manifold. Our work is based on using Moving Least-Squares (MLS) surfaces
as the underlying representation. Our technique is a novel advancing front algorithm, that bounds the Hausdorff
distance to within a user-specified limit. Specifically, we introduce a way of augmenting advancing front algorithms
with global information, so that triangle size adapts gracefully even when there are large changes in surface
curvature. Our results show that our technique generates high-quality triangulations where other techniques fail
to reconstruct the correct surface due to irregular sampling on the point cloud, noise, registration artifacts, and
underlying geometric features, such as regions with high curvature gradients.

1. Introduction

Point sets are now a popular modeling primitive in computer
graphics. The initial need to model surfaces out of point sets
came mostly from the emergence of affordable and accurate
scanning devices able to generate dense point sets, which are
initial representations of physical models [LPC∗00]. Still,
creating manifold surfaces out of point sets has shown to be
useful in a variety of other applications, since point sets can
be used a robust technique for representing surfaces. Among
the many advantages of point sets are their generality: every
shape can be represented by a set of points on its boundary,
where the degree of accuracy typically depends only on the
number of points.

Our motivation is that existing surface reconstruc-
tion techniques require a set of pre-processing and post-
processing steps to handle noisy data and generate high-
quality triangulations. The need for multiple steps makes
it hard to maintain proper error bounds in the complete
pipeline. For instance, for interpolatory schemes to create
a good reconstruction, they require a preprocessing step that
removes noise and makes sure each sample belongs to the
surface [BMR∗99]. If one wants an efficient, high-quality tri-
angulation, potentially expensive post-processing steps such

as remeshing and simplification become necessary. Figure 1
shows a number of different approaches to reconstructing
a surface from a noisy point cloud. Specifically, we note
that it is necessary to use pre-filtering (see insets (b), (c)
and (d)), to have the triangulation accurately represent the
surface. These use, however, an order of magnitude more
triangles than we do. If further simplification is performed,
detail is lost, as can be seen from the shrinkage in (e). Our
technique (inset (f)) produces a mesh within a user-specified
error-bound directly from the noisy data (see the triangulated
Bunny in the figure).

In our work, we use the particularly powerful MLS ap-
proach for surface reconstruction [ABCO∗01, Lev03]. One
of the strengths of MLS surfaces is the intrinsic ability to
handle noisy input. Furthermore, the MLS technique makes
it simple to approximate intrinsic properties of the surface
such as normal and curvature directly from a noisy point
cloud. One downside of the MLS approach is that it does
not directly lead to a mesh representation. Meshes are ubiq-
uitous in digital geometry processing, and triangulated mod-
els are many times only intermediate steps in more complex
systems [GSS99, LSS∗98]. Reconstructing a triangle mesh
from other surface representations is a fundamental tool.
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Figure 1: Raw range scans contain significant noise, as can be seen in inset (a), a detail of the Stanford Bunny’s left ear. Insets (b) and (c)
show direct reconstructions using cocone and powercrust, respectively. Inset (d) shows a cocone reconstruction after cleaning up the point
cloud using MLS smoothing. Inset (e) shows a QEM-based simplification of (d). Inset (f) shows our reconstruction, without any additional
preprocessing or post-processing. The triangulations in (e) and (f) have the same triangle count over the whole model. Because the tip of the
ear has high curvature, our technique samples it more densely than (e).

In this paper, we propose a new technique for creat-
ing a triangulated mesh from a Point Set Surface (PSS)
[ABCO∗01]. This defines a large class of models that in-
cludes reconstructing a polygonal mesh from potentially
noisy point clouds without normals. In our work, we have
focused on producing a high-quality triangulation directly
from point clouds that requires no pre-smoothing. Our work
is inspired by the triangulation algorithm for implicit sur-
faces by Karkanis and Stewart [KS01]. Unlike interpolatory
algorithms that always triangulate the input points, our tech-
nique generates a high-quality triangulation by sampling the
surface at points appropriate to the local geometry, rather
than necessarily at the input point set. The algorithm couples
the machinery of MLS with the idea of advancing fronts. A
key difference of our approach is the addition of a global
guidance field to overcome the excessive locality of deci-
sions in typical advancing front algorithms. Furthermore,
since we do not resort to implicit surface definitions, we can
also straightforwardly handle surface boundaries. Our main
contributions are:

• a novel advancing-front algorithm for meshing point-set
surfaces that works directly on the noisy point cloud data
and produces a high-quality triangulation to within a user-
specified error bound;

• the idea of a global guidance field to inform the algorithm
about non-local surface features;

• a simple and robust implementation of the techniques de-
scribed;

• experimental comparison to other techniques.

2. Related work

Computational geometry approaches use Voronoi diagrams
and Delaunay triangulations as building blocks for the re-
construction [ABK98, GKS00, KSO04]. Some examples of
these are the Power Crust family [ACK01] and the cocone
family [ACDL00] of algorithms. Typically, these algorithms
treat every point in the input set as a vertex on the resulting
mesh. Although these algorithms provably produce a trian-
gulation under some assumptions, they necessarily interpo-
late at least a subset of the input points. As such, noisy point
input will give undesired results, whatever the sampling den-
sity. In fact, the denser the sampling, the worse the problem
will be. For further details, we point the interested reader to
the excellent survey of Cazals and Giesen [CG04].

A popular way of meshing surfaces is to define them im-
plicitly as the zero-set of a function in space. In this set-
ting, most algorithms subdivide the space in a sufficiently
fine way, so that by analyzing the signs of the functionals
at a few places, it is possible to detect the presence or ab-
sence of a piece of surface. The technique of Curless and
Levoy [CL96] is based on such a volumetric approach. The
zero-set of the volume is then tessellated using Marching
Cubes [LC87]. Even though recent developments such as
Dual Contouring make it possible to reconstruct sharp fea-
tures [JLSW02], most of the vertices lie on the intersections
with the grid lines. The algorithms then output skinnier tri-
angles than would otherwise be possible. Also, they cannot
naturally adapt to a guidance field without post-processing.

There is extensive previous work on defining implicit
functions from point clouds. Hoppe et al. [HDD∗92] pro-
posed one of the first ones, based on local estimations of the
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Figure 2: Without the guidance field information, pieces of the
fronts can meet one another with different triangle sizes, leading
to arbitrarily bad triangles. Also, features may be missed entirely.
The top and middle images are two different views of the same tri-
angulation, created by removing the lookahead machinery from our
implementation. The bottom image shows our implementation with
the guidance field enabled – the fronts always meet one another in
the correct resolution and no features are missed.

distance field. We can use RBFs to solve the thin-plate spline
interpolation problem [TO02]. These are slower than MPUs,
local fittings joined together smoothly by weighted aver-
aging [OBA∗03]. These implicit reconstruction algorithms
typically require an additional post-processing step to im-
prove the quality of the triangulation. Most remeshing al-
gorithms are based on reparameterization [FH04, SAG03],
and as such, are expensive to compute. Moreover, it is not
straightforward to have such algorithms work in massive
models. Ideally, we would like our reconstruction algorithm
to be able to output a good triangulation without additional
requirements.

A set of efficient meshing algorithms have been based on
advancing fronts (also called surface tracking). The main
observation is that since a surface can be seen as a collection
of localized features, each piece of the reconstruction (be
it a triangle, a spline patch, etc.) should be decided locally.
Composing these local decisions naturally leads to advanc-
ing front algorithms. Our work is based on the same prin-
ciple. In fact, many successful algorithms use this concept

Figure 3: The basic operations in front advancing algorithms. To
grow a front, we either add a new vertex to the triangulation and
grow a triangle or we use three adjacent front vertices to cut an ear.
Front merging and splitting uses an existing front vertex for triangle
growing, instead of a newly placed one.

Figure 4: In an optimal curvature-adaptive triangulation, each tri-
angle edge subtends the same angle of the osculating circle. This
angle is user-specified and is a natural way of controlling the ap-
proximation error.

[BMR∗99, KS01]. Our algorithm is most similar to Karkanis
and Stewart [KS01], where they propose an advancing front
technique for meshing implicit surfaces. Their triangulation
technique samples the surface adaptively with respect to the
curvature, but it might miss features as shown in Figure 2.
Our work extends their ideas by using a separate guidance
field that allows us to proactively correct the triangle sizes
that sample surface, resulting in guaranteed surface cover-
age. For the most part, we use curvature as the guidance field
in our work, but any other measure of granularity could be
allowed: the field is represented by the restriction of a scalar
function in space. Additionally, we replace all the implicit
surface machinery by Point Set Surfaces [ABCO∗01], which
is defined using a projection operation. Since the advancing
front algorithm needs to “settle” vertices on the surface, the
MLS projection is a natural candidate for such an operation.
Furthermore, it allows us to reconstruct partial scans and sur-
faces with boundaries, since holes can be easily treated in the
Point-Set Surfaces framework.

Our work is related to Cheng and Shi’s [CS04], in the
sense that they propose a technique for meshing a class of
surfaces known as Molecular Skin Surfaces. We also pro-
pose an algorithm that meshes a certain, albeit more general,
class of surfaces, within a given error bound. Our technique
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Figure 5: Retroactive correction (left) may miss the surface, while
proactive correction (right) guarantees feature coverage. The con-
nected lines are the triangles, and the white points are the the trian-
gulation vertices. The colored points are a subset of the input point
cloud, where blue points indicate low curvature, and red ones in-
dicate high curvature. Locally, the vertices on the left figure look
adequate, but the vertex crossed out will be arbitrarily far away
from the surface. By querying the curvature of the surface in the
neighborhood (depicted by the red circles), the algorithm shrinks
the triangles and properly covers the feature.

is also reminiscent of Boissonnat and Oudot’s surface sam-
pling technique [BO03] in that their technique also uses a
guidance field.

3. The triangulation algorithm

Our algorithm takes as input a set of points P without nor-
mals and produces a high quality triangle mesh. Starting
with a seed triangle, its edges form the front, that is incre-
mentally extended by two types of local operations. A trian-
gle growing operation connects a new triangle to one edge
of the front and adds a new vertex. An ear-cut operation cre-
ates a triangle from three adjacent vertices on the front (see
Figure 3). Sometimes, a triangle growing step will add a new
vertex that is too close to the current triangulation. This new
vertex is then merged with an existing one, causing fronts
to either merge or split, and changing the topology of the
surface. The algorithm terminates when there are no more
fronts to be processed.

The process of obtaining a point cloud from a real-life
model through registration of a series of range scans is far
from exact. For one, the scanner has limited precision and
intrinsic noise. Not only that, but the noise for each sample is
not independent: it is usually a function of the angle between
the surface normal, the scan direction, and possibly of the
surface material. Additionally, the registration process usu-
ally fails to exactly match the different scans. In general, the
resulting point cloud does not approximate the original sur-
face, even as the sampling density increases without bound.
We use the moving least-squares (MLS) technique for spec-
ifying the underlying surface [ABCO∗01, Lev03], and trian-
gulate it to within a user-defined resolution. New vertices

Figure 6: The proactive triangle adaptation leads to a sequence
of shrinking triangles. Assuming the first triangle is small enough
sizes, the next one will also be. This means that b is an upper bound
in the querying region size.

are generated using a two-step algorithm. A vertex position
is first estimated using a vertex prediction operator. The ver-
tex is then projected on the MLS surface. The vertex pre-
diction considers the current edge length and the maximum
curvature in the triangle neighborhood to find a vertex posi-
tion that forms a high-quality triangle and also guaranteedly
covers the surface features.

3.1. The vertex prediction operator

Ideally, a triangulation should be adaptive: more triangles
should be used in more featureful areas. We make precise
this notion by considering curvature as a direct measure of
our interest in the surface. In this sense, an optimal triangu-
lation is one where each triangle subtends a constant solid
angle of the osculating sphere. We consider the osculating
sphere having a radius equal to the inverse of the maximum
absolute curvature κ = max(|κ1|, |κ2|). We then let the user
specify ρ , which is the angle of the osculating circle (a grand
circle of the osculating sphere) a triangle edge should opti-
mally subtend. The ideal edge length at a given point in the
surface is then L = ρ/κ . The approximation error is thus
defined by ρ (see Figure 4).

A basic curvature-adaptive technique is to locally deter-
mine the ideal edge size near the expanding triangles and
have the expanding triangles be closer to the ideal edge sizes,
either shrinking or expanding them. This works well for sim-
ple surfaces with no abrupt changes in curvature. These sim-
pler surfaces allow an algorithm to be retroactively correc-
tive: the front adapts only after “seeing” changes in surface
curvature. This assumption is central to Karkanis and Stew-
art’s algorithm: by only allowing changes in triangle size
when curvature is effectively measured, there is no guaran-
tee that features will be captured, as illustrated in Figure 5
(left). In fact, since the curvature is basically the derivative of
the normal (assuming arc-length parameterization), we can
think of the normal as being determined by the integral of the
curvature. It follows directly that for retroactively corrective
methods to work, the integral of the curvature for the “next”
triangle must be at most a certain fraction of the integral of
the curvature of the “current” triangle. Thus one must either
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Figure 7: The largest projected angle measures closeness to a
boundary.

choose an extremely small ρ or make assumptions about the
surfaces. For arbitrary surfaces such as MLS surfaces, we
want to guarantee that the integral of the curvature under
each triangle is bounded.

We introduce a general and simple way of augment-
ing advancing front algorithms with global information. We
achieve this by introducing a guidance field. This field rep-
resents the ideal edge size for a triangle in the reconstructed
surface at each point in space. The guidance field is decou-
pled both from the surface to be triangulated and from the
mesh reconstruction: it is simply a scalar function defined
on the embedding space of the triangulated surface. In our
work, we use L (x,y,z) as the guidance field. We sample
this function at every point in the point set by projecting it
on the MLS surface and determining the curvature from the
local bivariate polynomials. The function is then extended to
R3 by having the ideal edge length at any point in space be
the ideal edge length at the closest point in the point set.

As observed before, in regular front advancing algorithms
the triangle sizes on the front at a given state may look ade-
quate, but a feature that requires finer resolution is beyond
the front horizon (the “one triangle thick” area around a
front) as shown in Figure 5(a).

To adapt the triangulation to features that are to eventually
appear in the horizon, a new triangle may be made slightly
smaller than ideal. Now imagine that at some point (possi-
bly far away from the front horizon), there is a feature of
unbounded curvature. In other words, the ideal size of the
triangle in that point approaches zero. We show that front
advancing, informed by a guidance field, can always adapt
to these distant features in the surface. Not only that, but it
is possible to do so by querying the field inside a finite re-
gion, no matter how small the feature is or how large front
triangles are.

We always grow triangles with isosceles triangles, and so
the change in the triangle edge lengths is achieved by chang-
ing the base angle β , the only free parameter in the new tri-
angle. The main geometric insight is shown in Figure 6: the

Figure 8: Optimal curvature-adaptive sampling on a synthetic
cactus. ρ = π/16. Notice that the main trunk and the branch tri-
angles have different sizes, but they are in the same proportion to
the branch radius, which is precisely the curvature radius for the
regions.

edges of an infinite sequence of shrinking isosceles triangles
form a geometric series, the sum of whose terms is finite.
Additionally, we can see that by only assuming that the cur-
rent triangle size is appropriate, the following triangle will
also be, since in the limit the triangle sizes go to zero as they
get close to the point of infinite detail. This means that the
querying radius needs only be as large as b. Instead of com-
puting the sum directly, we use simple triangle geometry as
follows:

sin(2β )
b

=
sin(γ)

c
=

sin(3β )
c

, (1)

and thus

b =
sin2β

sin3β
· c = η · c. (2)

There are several consequences of this simple geometric
result. The guidance field needs to be checked only inside a
sphere of radius η · c. This is enough for the triangulation to
adapt to arbitrarily small features. Also, the radius is propor-
tional to the triangle size, meeting our expectations that the
algorithm should be more “conservative” when using larger
triangles. Still, the search radius is surprisingly small. This
can be seen by taking η to be a function of β . Even though
we have limβ→60◦ η = ∞, η decreases very quickly. For ex-
ample, β = 55◦ gives η ≈ 3.63. If we were to only slightly
change β to 50◦, we would have η ≈ 1.96, almost halving
the querying radius. This allows trading off triangle quality
for efficiency, while still guaranteeing feature coverage. One
can see this querying of the curvature field as a way to have
the triangle sizes enforce an analog to a Lipschitz condition
along arcs of the surface, with β then controlling the corre-
sponding Lipschitz number. Given an adequately sized edge
in which to grow a new triangle, the following procedure re-
turns a point on the MLS surface in a way that guarantees
feature coverage and triangle quality:
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Figure 9: The ρ parameter controls the quality of the reconstruction: a sequence of wavy torus triangulations using different ρ values (from
left to right, ρ = π/30,π/10,π/4)

VERTEX-PREDICT(EDGE e,FIELD F)

1 c← ||e||
2 b← c ·η
3 mp←MIDPOINT(e)
4 i← FIELD-MIN-IN-SPHERE(F , Sphere(mp, b))
5 Let t be a triangle with edge lengths c, i, i
6 Clamp i so that base angle of t ∈ [60−β ,60+β ]
7 Let p be a point lying on the plane of the adjacent triangle

over edge, so that the vertices of e and p form a triangle t
8 return MLS-PROJECT(p)

3.2. The advancing front algorithm

The seeding of the triangulation happens at a random spot,
picked by taking a random point of the point cloud and pro-
jecting in on the MLS surface. There is no previous triangle
from which we are growing a new one, so we have a free pa-
rameter for the triangle edge length. We then force an equi-
lateral triangle and look for an edge size appropriate for the
region. We achieve that by interpreting the curvature query
at a point as a function f : R→ R. We then use bracketing
and interval bisection to find the best initial size for the tri-
angle. The best triangle will be the one whose query returns
its own size, that is, a fixpoint of f . This forms the inductive
basis of the inductive argument described above.

From the initial triangle, we advance the front through
ear cutting and triangle growing. These operations do not
change the topology of the surface. Eventually, a front may
meet with itself, causing a front split and the creation of a
topological hole over the surface. When we have more than
one front, two of the fronts may meet with one another, caus-
ing a front merge and the creation of a topological handle
on the surface. If a front has only three vertices, we close
it with a triangle, closing a hole. We call splits, merges and
front closures topological events. When there are no more
fronts to be advanced, the algorithm terminates. Pseudocode
for the main loop follows:

TRIANGULATE(FIELD F)

1 fronts← FIRST-FRONT()
2 while | front-set |> 0
3 do current← first[fronts]
4 if |current |= 3
5 then CLOSE-FRONT(current)
6 fronts−= current
7 continue
8 e← BEST-EDGE(current)
9 if CAN-CUT-EAR(e)

10 then CUT-EAR(e)
11 continue
12 p← VERTEX-PREDICT(e,F)
13 if not TRIANGLE-TOO-CLOSE(e,p)
14 then GROW-TRIANGLE(e)
15 else front← CLOSEST-FRONT(e,p)
16 if front = current
17 then fronts+ = SPLIT(current-front)
18 else MERGE(current, front)
19 fronts−= front

CAN-CUT-EAR() returns true if it is possible to form a
good triangle by connecting the edge e to any of the adjacent
edges. We allow ear cuts to happen when all the angles in the
resulting triangle are less than 70 degrees. If this is not the
case, then triangle growing is performed. TRIANGLE-TOO-
CLOSE() checks to see whether the added point is closer than
allowed to the existing triangulation. We define this distance
as half the ideal edge length at the point p. If it is the case,
then a topological event will necessarily occur.

We note that front edges that are created through CUT-
EAR and GROW-TRIANGLE are always of adequate size.
Edges created by topological events, on the other hand,
might not be. This happens because SPLIT and MERGE do
not choose the position of the vertices in the operations: they
use vertices that are already present in the triangulation. The
resulting configuration is one where some edges in the front
are closer to their ideal edge length than others.

We solve this by keeping each front as a data structure that
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Figure 10: Triangulations of the Igea model, perturbed with uniform noise equal to 2% of the bounding box diagonal. Even with significant
noise, the technique successfully reconstructs the model.

combines doubly linked lists and a priority queue. Through
the linked list interface we traverse the front efficiently, and
through the priority queue we extract the best edge at each
step of the main loop. The best edge is one whose ratio of
length to ideal length is closest to one. To further avoid bad
triangles, we introduce the notion of deferred edges. Every
edge whose expansion would introduce a topological event
can potentially introduce a bad triangle. So every time a reg-
ular edge would create a topological event, we defer this
event by lowering the edge priority below all regular ones.
This allows good edges to try and cover the surface in the
best way possible.

We keep the triangulation spatially coherent by allow-
ing the algorithm to work only on a given neighborhood
at a time. All edges that are outside this working space are
marked as frozen and ignored until the neighborhood is fully
triangulated.

3.3. Point sets with boundaries

The final feature of our algorithm is the ability to reconstruct
surfaces with boundaries. To do so, we define a notion of
anisotropy of a neighborhood in a point-set. Similarly to Lin-
sen’s method [Lin01], we observe that near the boundaries
of a scan, neighborhoods of a given point tend not to distrib-
ute evenly around the point that will be projected. We define
the anisotropy of a neighborhood based on a best-fitting lo-
cal plane. We take all lines from neighborhood points to the
reference point and project them on the local plane. Sorting
these lines radially gives one angle for each pair of consec-
utive projected lines. The closer the reference point is to a
boundary, the larger the largest of the angles will be, as il-
lustrated by Figure 7.

The procedure NEW-POINT is then updated to check for
points whose largest angle is above a certain threshold (we
use 150◦). If a point to be expanded is outside the point set,
the corresponding front edge is marked as a boundary edge.
When all edges in a front are marked as boundary, that whole

Figure 11: Arbitrary guidance fields can be used to add ad-
ditional triangles where necessary on the resulting triangu-
lation. The algorithm is otherwise unchanged.

front is reported as a boundary of the point-set. Finally, we
must consider boundaries as interesting features: if only sur-
face curvature is considered, holes in very flat areas may be
skipped over. Our solution is to include anisotropy informa-
tion in the guidance field: if the angles are too large, we just
set the ideal edge length to the radius of curvature of the
boundary curve. This is an example of the generality of our
informed approach: we only add the boundary information
to the guidance field, and the rest of the algorithm remains
unchanged.

4. Results

We implemented the algorithm described above and all MLS
machinery in C++, on a Red Hat Linux system with a Pen-
tium 4 processor running at 2.8 GHz and 1.5 GB of main
memory. Our technique requires little memory: besides ac-
celeration structures such as a kd-tree and an octree, the only
data residing on memory are the points, the guidance field,
the partial triangulation and the current fronts. During our
testing, our implementation never used more than 200MB of
main memory.

We report here typical results of our algorithm. The first
example shows the optimal curvature-adaptive sampling on
a synthetic cactus dataset. The two insets in Figure 8 show
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Time Mem Output
Input ρ |P| Prep. Run (MB) ktri.

Cactus π/16 3.3k 2.7s 63.6s 5 21
π/8 20.3s 5 7
π/4 9.4s 5 3

Torus π/16 30k 44.8s 80.8s 13 24
π/8 32.5s 13 8
π/4 22.5s 13 3

Igea π/16 276k 403s 892s 29 91
π/8 357s 29 32
π/4 100s 29 11

Bunny π/16 760k 90m 90m 160 172

Table 1: Summary of results of our algorithm.

that the triangulation took almost exactly the same number
of triangles to complete the main trunk and the branches,
even though they have different diameters. Our second ex-
ample illustrates how ρ can be effectively used to control
the approximation error of the reconstruction. We use a syn-
thetic undulating torus, in which the different curvature fea-
tures are very clear (see Figure 9).

We ran experimental comparisons with two widely-
known surface reconstruction codes: powercrust and cocone.
The reconstructions were run directly from the registered
Stanford Bunny point cloud. There are two main issues with
interpolatory reconstructions: they assume no noise and they
have no notion of triangle quality. As can be seen in Figure 1,
this has significant impact on the reconstructed models. Fig-
ure 10 shows several triangulations of the Igea model, with
noise equal to 2% of the bounding box diagonal artificially
added. Our technique handles noise gracefully and doesn’t
significantly degrade the original model.

In this work, we use curvature information in the guidance
field. Still, nothing in our algorithm precludes using differ-
ent data. The user might want to specify additional detail on
certain parts of the mesh if, for example, some numerical
simulation will be performed in the triangles. We illustrate
this possibility in Figure 11, where a completely arbitrary
guidance field is specified. Note that the field is quite discon-
tinuous, but the algorithm gracefully adapts ahead of time so
that triangle quality is kept.

5. Discussion

The only two user-specified parameters are ρ and τ . The
smoothing factor τ is related to the MLS projection proce-
dure, and should be directly proportional to the amount of
smoothing or denoising to be applied. This factor τ relates
the MLS h value to the neighborhood radius (see Appendix
A). The remaining parameter ρ specifies the quality of the
reconstruction in terms of the subtended angle of the oscu-
lating circle. Then, the Hausdorff distance ε between trian-

gle mesh and the surface patch under it can be shown to be
at most r(1−

√
1+8cosρ/3), where r is the curvature ra-

dius. This provides a way of computing a upper bound on
the Hausdorff error for the entire surface. Appendix B con-
tains the proof.

Instead of writing the error in terms of a user-specified
ρ , we can let the user fix the maximum allowed Haus-
dorff error ε , and make ρ vary as a function of ε and r:
ρ = cos−1(9/8(1− ε/r)2− 1). Our algorithm will then re-
construct the surface with guaranteed quality.

Another feature of our algorithm is that it is eminently
local. Only a small neighborhood of points is necessary
to perform the MLS projection, and only a small number
of triangles are necessary to check against possible self-
intersections. This means that domain subdivision is a very
attractive alternative for parallelization. A recent avenue of
research is the use of streaming models, where only a small,
bounded portion of the entire model is stored in memory at
any given time. It seems possible to adapt our triangulation
technique to use streaming techniques, so that huge meshes
can be handled by appropriate out-of-core extensions.

5.1. Limitations

Our current implementation naively computes the curvature
field by computing an MLS projection for every input point.
Typically, half the time is spent with the MLS projections
at this precomputation step. If we could determine cheaper
to compute, conservative bounds on the curvature, we could
forego this expensive precomputation. Our approach relies
heavily on MLS surfaces. MLS surfaces provide easy access
to extensive curvature information, and thus provide most
of the properties in our algorithm. At the same time, the
MLS formulation generates C∞ surfaces, and this comes at a
price. For example, our algorithm cannot handle sharp fea-
tures, because they do not actually exist on MLS surfaces.
A possible solution is to trace the edges of the model using
a recent MLS surface definition [FCOS05] that accounts for
sharp features, initialize the algorithm with these edges as
fronts and then use the algorithm as described in the paper.
Another limitation is that we do not make use of the full cur-
vature tensor. This may result, for coarser triangulations, in
edges misaligned with the principal curvatures, and visual
artifacts.

There are very few theoretical results on MLS surfaces
that are usable in practice. And thus it should be pointed out
that our guidance field samples the surface densely, however,
there is no guarantee that the sampled curvatures contain the
local critical values, and so the curvature field may not be
strictly an upper bound on the curvature. Since we are inter-
ested in densely sampled point sets, we can expect the field
to be very close to it.
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6. Summary

We presented a novel algorithm to directly triangulate Point
Set Surfaces. Our algorithm produces high-quality triangu-
lations with bounded error, even for noisy input data, and is
capable of generating meshes with user-specifiable approxi-
mation errors.

We would like to explore the informed front triangulation
technique introduced here in other contexts. Storing the full
curvature tensor is also promising for anisotropic meshing.
Finally, an important extension of this algorithm would be
the proper treatment of sharp edges. This would increase
significantly the types of surfaces that can be triangulated
by our technique.
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Appendix A: The MLS projection

For the sake of completeness, we briefly review the MLS
projection [Lev03]. The main idea is to define a projection
procedure that takes a point r in 3D space and project it to
the surface r′ = P(r). The surface is then defined as the set
of points that project to themselves. This is achieved by first
fitting a reference plane H = (q,n) to the neighborhood of
r; q is a point on the plane and n is the (unit length) nor-
mal to the plane. The reference plane is defined as one that
minimizes the following energy function:

min
q ∑

i
〈n,pi−q〉2 θ(||pi−q||), (3)

where pi is the ith neighbor of r, n = r−q
||r−q|| and θ(·) is

a smooth monotonically decreasing function. Equation 3 is
minimized using gradient descent. The second step of the
projection procedure is to locally fit a bivariate polynomial
of low degree g over H. Let (ui,vi,wi) be the coordinates
of pi in a coordinate system that is defined by H, then g is
the polynomial that minimizes the following weighted least
squares error:

∑
i

(g(ui,vi)−wi)
2

θ(||pi−q||). (4)

The projection is then defined as P(r) = q+g(0,0)n.

The weight function has a scale parameter h, that de-
termines the amount of smoothing that is applied to the
data. We determine the local feature size of each point
and thus set h as a function of the local feature size as

in Pauly et al. [PKKG03]. That is the local feature size
of a point L(x) is defined as the radius of the k near-
est neighbors to x. The scale is then defined as h(x) =
τ ·weighted average(L(Nbhd(x))), where τ is the only pa-
rameter that is defined by the user which determines the
amount of smoothing or denoising to apply.

In Equation 3 we look for a local minimum on the surface
that is closest to r. In order to robustly find the expected local
minimum, we must find a good initial value for the optimiza-
tion, i.e. we need to define q0. Our heuristic for finding such
an initial value has two terms, one for points that are close
to the surface qnear and another that is for far points q f ar.
Let c0 be the centroid of the neighborhood of r and let n0 be
the normalized eigenvector that corresponds to the smallest
eigenvalue of the covariance matrix of the neighborhood of
r, then qnear is set to the projection of r on the plane that is
defined by c0 and n0, i.e. qnear = r−〈n0,r− c0〉n0. We set
q f ar = c0, and finally q0 = α ·qnear +(1−α) ·q f ar, where
α is set to one for r = c0 and zero when ||r− c0||= Lc0.

Appendix B: Bounded Hausdorff Distance

Theorem B.1 Let emax be the length of the largest edge of
the triangulation. Then the Hausdorff distance between the
MLS surface and the triangulated mesh is bounded from
above by emax

3−
√

1+8cosρ

3
√

2−2cosρ
.

Proof The Hausdorff distance between two surfaces A,B ⊂
R3 is defined as ε(A,B) = maxa∈A(minb∈B ||a− b||). Given
a triangle T on the mesh reconstruction and the patch of
surface “over” the triangle, we first locally approximate the
MLS as a sphere S whose radius is the radius of curvature of
the patch. This is valid as long as ρ is small. Then, since
the sphere touches the triangle at the vertices, the points
that give the maximum distance to the MLS surface (and
the Hausdorff distance ε(S,T ), assuming S is restricted to
the portion “over” the triangle) are the barycenter of the
triangle and its closest point on the osculating sphere S.
We know ρ gives the angle subtended by the edges on the
grand circles of S. If S has radius r, so do the grand cir-
cles. Then, the edges of the triangle have length at most
2r sin(ρ/2), and the distance from T to the center of S is
given by r− ε(S,T ). The barycenter of T , one of its ver-
tices and the center of S form a right triangle with sides
r− ε(S,T ), 4/3r sin(ρ/2) and hypotenuse r. Solving this
gives ε(S,T ) = r · (1−

√
(1+8cosρ)/3).

The Hausdorff distance for each patch is proportional to
the radius of the osculating sphere. From that, it immedi-
ately follows that the Hausdorff error for the entire surface is
given by the sphere-triangle Hausdorff distance of the largest
sphere. Substituting r for the corresponding largest triangle
edge length and simplifying gives the expression stated in
the theorem.

c© The Eurographics Association 2005.



Scheidegger, Fleishman and Silva / Triangulating Point Set Surfaces

Figure 12: This figure shows three different triangulations of the Stanford Bunny with the triangle vertices color-coded with the smallest angle.
The image on the left shows the trianglation obtained by cleaning the raw point cloud through MLS smoothing and the running cocone on the
output; the image on the middle shows a QEM-based simplification of the previous triangulation. The right image shows our triangulation, with
as many triangles as the model depicted in the previous one. Our algorithm generates better triangles, and distributes them more efficiently on
the surface.
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