A.N.M. Imroz Choudhury and Paul Rosen

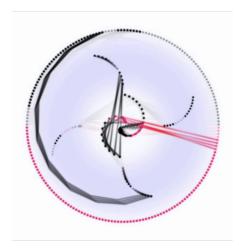
Scientific Computing and Imaging Institute School of Computing University of Utah

September 29, 2011

Introduction

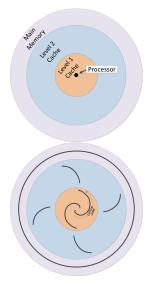
Why Visualize Memory Behavior?

- $\blacksquare Modern hardware + software \rightarrow complex interactions$
- e.g. caches: simple rules of operation, but complex behavior
- Sometimes performance is a design goal; cache performance is key to overall performance
 - \blacksquare Performance counters \rightarrow coarse-grained information
 - Memory reference trace + cache simulation instead

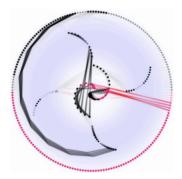

Introduction

Why Visualize Memory Behavior?

- $\blacksquare Modern hardware + software \rightarrow complex interactions$
- e.g. caches: simple rules of operation, but complex behavior
- Sometimes performance is a design goal; cache performance is key to overall performance
 - Performance counters \rightarrow coarse-grained information
 - Memory reference trace + cache simulation instead


Our approach: simulate cache, visualize what happens inside, highlight performance issues, move towards understanding memory performance L_Methods

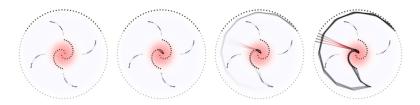
- Methods


Overview of Approach

- Collect memory reference trace
 - Modify read/write instructions at run time
 - Trace includes source code information
- Cache simulation
 - Trace records (e.g. R 0x400500f) fed through simulator \rightarrow hit or miss? eviction? etc.
- Visualization
 - Structural layout reflects cache architecture
 - Simulation results play out over layout

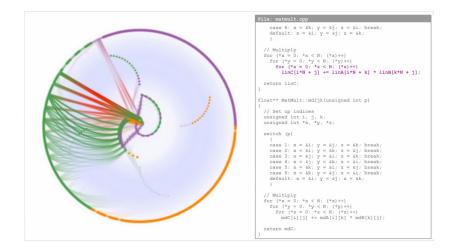
L_Methods

Visualization Visual Channels and Frequencies



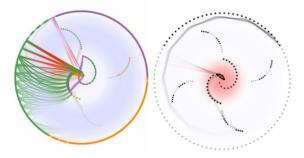
	Low frequency	High frequency				
Color	home memory region	cache miss status				
Motion	change in eviction order	change in cache level				
Structure	associativity set	change in eviction order				
Size	N/A	access				

- Methods



- Very long traces, but can't just speed up playback
- Compress time → glyph *pathlines*
- \blacksquare Compute fewer such frames \rightarrow time speeds up

L Methods


Visualization Time-Lapse Mode

- Methods

Visualization Summary View

- Expansive space behind data glyphs—display a summary statistic here
- "Cache temperature" summarizes recent cache performance, gives sense of history

Results

Matrix Multiplication

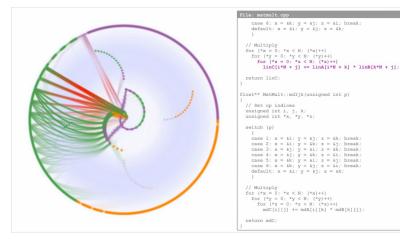
Standard Matrix Multiplication

Left matrix: efficient access

Right matrix: inefficient access

B _{1,1}	B _{1,2}	$B_{1,3}$	B _{1,4}	B _{1,5}	B _{1,6}	B _{1,7}	B _{1,8}
B _{2,1}	B _{2,2}	$B_{2,3}$	B _{2,4}	B _{2,5}	B _{2,6}	B _{2,7}	B _{2,8}
B _{3,1}	B _{3,2}	$B_{3,3}$	B _{3,4}	B _{3,5}	B _{3,6}	B _{3,7}	B _{3,8}
$B_{4,1}$	B _{4,2}	$B_{4,3}$	B _{4,4}	B _{4,5}	B _{4,6}	B _{4,7}	B _{4,8}
B _{5,1}	B _{5,2}	$B_{5,3}$	B _{5,4}	B _{5,5}	B _{5,6}	B _{5,7}	B _{5,8}
B _{6,1}	B _{6,2}	$B_{6,3}$	B _{6,4}	B _{6,5}	B _{6,6}	B _{6,7}	B _{6,8}
B _{7,1}	B _{7,2}	$B_{7,3}$	B _{7,4}	B _{7,5}	B _{7,6}	B _{7,7}	B _{7,8}
B _{8,1}	B _{8,2}	$B_{8,3}$	B _{8,4}	B _{8,5}	B _{8,6}	B _{8,7}	B _{8,8}

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$C_{2,1} \ C_{2,2} \ C_{2,3} \ C_{2,4} \ C_{2,5} \ C_{2,6} \ C_{2,7} \ C_{2,8}$
$C_{3,1} \ C_{3,2} \ C_{3,3} \ C_{3,4} \ C_{3,5} \ C_{3,6} \ C_{3,7} \ C_{3,8}$
$C_{4,1} \ C_{4,2} \ C_{4,3} \ C_{4,4} \ C_{4,5} \ C_{4,6} \ C_{4,7} \ C_{4,8}$
$C_{5,1} \ C_{5,2} \ C_{5,3} \ C_{5,4} \ C_{5,5} \ C_{5,6} \ C_{5,7} \ C_{5,8}$
$C_{6,1} \ C_{6,2} \ C_{6,3} \ C_{6,4} \ C_{6,5} \ C_{6,6} \ C_{6,7} \ C_{6,8}$
$C_{7,1} \ C_{7,2} \ C_{7,3} \ C_{7,4} \ C_{7,5} \ C_{7,6} \ C_{7,7} \ C_{7,8}$
$C_{8,1} \ C_{8,2} \ C_{8,3} \ C_{8,4} \ C_{8,5} \ C_{8,6} \ C_{8,7} \ C_{8,8}$


=

Results

Matrix Multiplication

Standard Matrix Multiplication

$A \times B = C$

Results

Matrix Multiplication

Transposed Matrix Multiplication

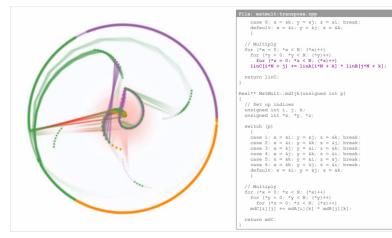
Transpose right-hand matrix?

Problem: loses generality

$A_{1,1} \ A_{1,2} \ A_{1,3} \ A_{1,4} \ A_{1,5} \ A_{1,6} \ A_{1,7} \ A_{1,8}$	
$A_{2,1} \ A_{2,2} \ A_{2,3} \ A_{2,4} \ A_{2,5} \ A_{2,6} \ A_{2,7} \ A_{2,8}$	
$A_{3,1} \ A_{3,2} \ A_{3,3} \ A_{3,4} \ A_{3,5} \ A_{3,6} \ A_{3,7} \ A_{3,8}$	
$A_{4,1} \ A_{4,2} \ A_{4,3} \ A_{4,4} \ A_{4,5} \ A_{4,6} \ A_{4,7} \ A_{4,8}$	v
$A_{5,1} \ A_{5,2} \ A_{5,3} \ A_{5,4} \ A_{5,5} \ A_{5,6} \ A_{5,7} \ A_{5,8}$	Х
$A_{6,1} \ A_{6,2} \ A_{6,3} \ A_{6,4} \ A_{6,5} \ A_{6,6} \ A_{6,7} \ A_{6,8}$	
$A_{7,1} \ A_{7,2} \ A_{7,3} \ A_{7,4} \ A_{7,5} \ A_{7,5} \ A_{7,5} \ A_{7,7} \ A_{7,8}$	
$A_{8,1} \ A_{8,2} \ A_{8,3} \ A_{8,4} \ A_{8,5} \ A_{8,6} \ A_{8,7} \ A_{8,8}$	

B _{1,1}	B _{1,2}	B _{1,3}	B _{1,4}	B _{1,5}	B _{1,6}	B _{1,7}	B _{1,8}
B _{2,1}	B _{2,2}	B _{2,3}	B _{2,4}	B _{2,5}	B _{2,6}	B _{2,7}	B _{2,8}
B _{3,1}	B _{3,2}	B _{3,3}	B _{3,4}	B _{3,5}	B _{3,6}	B _{3,7}	B _{3,8}
B _{4,1}	B _{4,2}	B _{4,3}	B _{4,4}	B _{4,5}	B _{4,6}	B _{4,7}	B _{4,8}
B _{5,1}	B _{5,2}	B _{5,3}	B _{5,4}	B _{5,5}	B _{5,6}	B _{5,7}	B _{5,8}
B _{6,1}	B _{6,2}	B _{6,3}	B _{6,4}	B _{6,5}	B _{6,6}	B _{6,7}	B _{6,8}
B _{7,1}	B _{7,2}	B _{7,3}	B _{7,4}	B _{7,5}	B _{7,6}	B _{7,7}	B _{7,8}
B _{8,1}	B _{8,2}	B _{8,3}	B _{8,4}	B _{8,5}	B _{8,6}	B _{8,7}	B _{8,8}

$\begin{array}{cccc} C_{1,1} \ C_{1,2} \ C_{1,3} \ C_{1,4} \end{array} C_{1,5} \ C_{1,6} \ C_{1,7} \ C_{1,8} \end{array}$
$C_{2,1} \ C_{2,2} \ C_{2,3} \ C_{2,4} \ C_{2,5} \ C_{2,6} \ C_{2,7} \ C_{2,8}$
$C_{3,1} \ C_{3,2} \ C_{3,3} \ C_{3,4} \ C_{3,5} \ C_{3,6} \ C_{3,7} \ C_{3,8}$
$C_{4,1} \ C_{4,2} \ C_{4,3} \ C_{4,4} \ C_{4,5} \ C_{4,6} \ C_{4,7} \ C_{4,8}$
$C_{5,1} \ C_{5,2} \ C_{5,3} \ C_{5,4} \ C_{5,5} \ C_{5,6} \ C_{5,7} \ C_{5,8}$
$C_{6,1} \ C_{6,2} \ C_{6,3} \ C_{6,4} \ C_{6,5} \ C_{6,6} \ C_{6,7} \ C_{6,8}$
$C_{7,1} \ C_{7,2} \ C_{7,3} \ C_{7,4} \ C_{7,5} \ C_{7,6} \ C_{7,7} \ C_{7,8}$
$C_{8,1} \ C_{8,2} \ C_{8,3} \ C_{8,4} \ C_{8,5} \ C_{8,6} \ C_{8,7} \ C_{8,8}$


=

Results

Matrix Multiplication

Transposed Matrix Multiplication

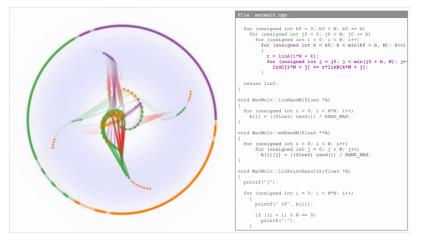
$A \times B = C$

Results

Matrix Multiplication

Blocked Matrix Multiplication

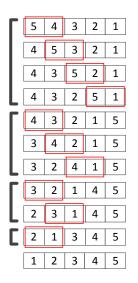
- Multiply small, cache-sized submatrices, accumulate into result
- \blacksquare Work on each cache line for longer \rightarrow better data reuse


1 44 1 44 1 44 1 44.	$A_{1,5} \ A_{1,6} \ A_{1,7} \ A_{1,8}$		$B_{1,1}$ $B_{1,2}$ $B_{1,3}$ $B_{3,4}$	$B_{1,5} \ B_{1,6} \ B_{1,7} \ B_{1,8}$		$C_{1,1} \ C_{1,2} \ C_{1,3} \ C_{1,4}$	$C_{1,5} \ C_{1,6} \ C_{1,7} \ C_{1,8}$
	$A_{2,5} \ A_{2,6} \ A_{2,7} \ A_{2,8}$	X B _{6,3} B _{6,2} B _{6,3} B _{6,4} B _{5,4} B _{5,3} B _{5,3} B _{5,4} B _{5,1} B _{6,2} B _{5,3} B _{5,4} B _{7,1} B _{7,2} B _{7,3} B _{7,4}	B _{2,1} B _{2,2} B _{2,3} B _{2,4}	$B_{2,5} \ B_{2,6} \ B_{2,7} \ B_{2,8}$		$C_{2,1} \ C_{2,2} \ C_{2,3} \ C_{2,4}$	$C_{2,5} \ C_{2,6} \ C_{2,7} \ C_{2,8}$
$A_{3,1} \ A_{3,2} \ A_{3,3} \ A_{3,4}$	$A_{\!3,5} \ A_{\!3,6} \ A_{\!3,7} \ A_{\!3,8}$		$B_{3,1} \ B_{3,2} \ B_{3,3} \ B_{3,4}$	$B_{3,5} \ B_{3,6} \ B_{3,7} \ B_{3,8}$		$C_{3,1} \ C_{3,2} \ C_{3,3} \ C_{3,4}$	
	$A_{4,5} \ A_{4,6} \ A_{4,7} \ A_{4,8}$		$B_{4,1} \ B_{4,2} \ B_{4,3} \ B_{4,4}$	$B_{4,5} \ B_{4,6} \ B_{4,7} \ B_{4,8}$		$C_{4,1} \ C_{4,2} \ C_{4,3} \ C_{4,4}$	$C_{4,5} \ C_{4,6} \ C_{4,7} \ C_{4,8}$
$A_{5,1} \ A_{5,2} \ A_{5,3} \ A_{5,4}$	$A_{5,5} \ A_{5,6} \ A_{5,7} \ A_{5,8}$		B5,1 B5,2 B5,3 B5,4	$B_{5,5} \ B_{5,6} \ B_{5,7} \ B_{5,8}$	-	$C_{5,1} \ C_{5,2} \ C_{5,3} \ C_{5,4}$	
$A_{6,1} \ A_{6,2} \ A_{6,3} \ A_{6,4}$	-,,,,-		$B_{6,1} \ B_{6,2} \ B_{6,3} \ B_{6,4}$	$B_{6,5} \ B_{6,6} \ B_{6,7} \ B_{6,8}$		$C_{6,1} \ C_{6,2} \ C_{6,3} \ C_{6,4}$	
$A_{7,1} \ A_{7,2} \ A_{7,3} \ A_{7,4}$	$A_{7,5} \ A_{7,6} \ A_{7,7} \ A_{7,8}$		$B_{7,1} \ B_{7,2} \ B_{7,3} \ B_{7,4}$	$B_{7,5} \ B_{7,6} \ B_{7,7} \ B_{7,8}$		$C_{7,1} \ C_{7,2} \ C_{7,3} \ C_{7,4}$	$C_{7,5} \ C_{7,6} \ C_{7,7} \ C_{7,8}$
$A_{8,1} \ A_{8,2} \ A_{8,3} \ A_{8,4}$	$A_{8,5} \ A_{8,6} \ A_{8,7} \ A_{8,8}$		$B_{8,5} \ B_{8,6} \ B_{8,7} \ B_{8,8}$		$C_{8,1} \ C_{8,2} \ C_{8,3} \ C_{8,4}$	$C_{8,5} \ C_{8,6} \ C_{8,7} \ C_{8,8}$	

Results

Matrix Multiplication

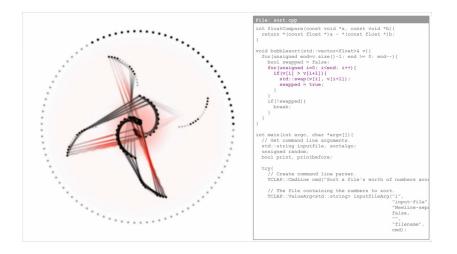
Blocked Matrix Multiplication


$A \times B = C$

- Results

Sorting

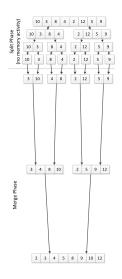
Bubble Sort



- Sorts list by repeated, shrinking sweeps that swap one element to correct place
- Known for slow algorithmic complexity, O(n²)
- Interesting cache performance—dramatic increase when working set fits into cache

Results

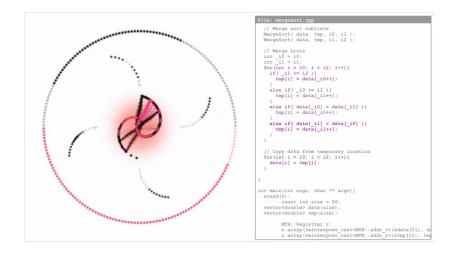
Sorting


Bubble Sort

Results

Sorting

Merge Sort


• Better run time: $O(n \log n)$

 $\blacksquare \ {\rm Recursive \ execution \ structure} \to {\rm more} \\ {\rm complex \ cache \ behavior} \\$

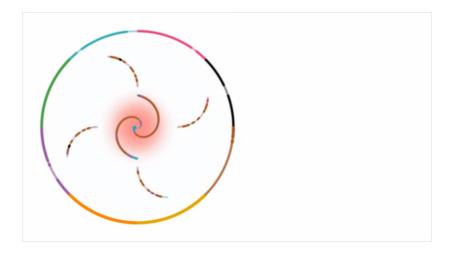
Results

Sorting

Merge Sort

Results

Material Point Method


Material Point Method (MPM)

- Particle-based simulation method for mechanical engineering problems
- Particles carry several attributes, stored in several arrays
- Tends to show hallmark "streaming" access pattern

Results

Material Point Method

Material Point Method (MPM)

- Conclusions

- Memory reference trace \rightarrow Cache simulation \rightarrow Structured visualization of cache internals
- Visual design assigns meaning to several visual channels
- Resulting visuals and patterns convey memory behavior

Conclusions

- Exploration of unused or underused visual channels, e.g. low-frequency motion
- Expansion of techniques to other systems where performance is important

Thank you!