Cache Ensemble Analysis for Understanding
Algorithmic Memory Performance

A.N.M. Imroz Choudhury and Paul Rosen

Abstract—We present an approach to studying ensembles of cache simulations which vary in cache features (such as size, associativity,
block replacement policy, etc.) or qualities of the program (such as choice of algorithm, data storage layouts, etc.). Through the qualities
of variation between their members, these ensembles can reflect the computational structure of programs and expose their performance
characteristics, leading to better understanding of code and performance improvements that can be valuable in conserving scarce
computing resources. We include several case studies looking at various cache performance scenarios, including some surprising
performance bottlenecks in common programming operations, demonstrating the usefulness of our approach.

Index Terms—Cache performance, ensembles, visualization.

<+

1 INTRODUCTION

The scarcity of high-performance computing resources has made per-
formance a primary design goal in many applications. Hardware per-
formance prediction [9] and software analysis [13] can be used to help
guide new hardware deployments and software optimization efforts, but
these approaches are approximate, because of the many complex inter-
actions among computer subsystems. These subsystems, including the
storage, network, functional, and memory units, are all simultaneously
dealing with important events, such as incoming messages, interrupts,
and shifting computational work loads which affect their performance.
These conditions can vary across machines, operating systems, exe-
cutions, and even from moment to moment within a particular run
producing performance uncertainties.

The processing capabilities of computers has increased significantly
faster than memory speeds, creating a imbalance in which keeping the
processors fed with data from memory remains an important challenge.
Memory caches are used to manage this speed difference, but careful
use of the cache is required to achieve high performance. This makes
the memory subsystem one major source of performance bottlenecks
and uncertainty with many contributing factors. While some factors,
such as algorithm selection, are controllable, many remain outside
of a software developer’s control, including the size and composition
of data, end user hardware, and resource sharing with other system
processes.

In this work, we present an approach for analyzing the performance
uncertainties induced by design decisions in algorithms and memory
caches, with the insight gained about memory performance eventually
leading to software optimizations. By varying execution conditions,
such as cache configuration parameters or algorithmic implementation
details, we obtain several memory reference traces and simulated caches
that, when combined, yield a simulation ensemble. Visualizing these
ensembles can yield insight about cache performance characteristics

of both software and hardware, and the relationship between the two.

Figure 1 shows example of this approach for the bubble sort algorithm
where the three graphs represent different ensembles for caches of
different (a) total size, (b) L2 size, and (c) L1 size. In this example, we
can clearly see the effect of cache size on performance as the size of
the data working set shrinks in later portions of the execution.

2 RELATED WORK

We briefly review the visualization of memory cache behavior and
ensemble data.

o A.N.M. Imroz Choudhury (roni@cs.utah.edu) and Paul Rosen
(prosen@sci.utah.edu) are with the University of Utah

H 13 - ¢ blocks, 12 - & blocks
E L1 - € blocks, L2 - 12 blocks
R @11 - 8 blocks, 12

H @11 - 10 blocks, L
HE B - 12 blocks,

WWW T e
; \

2 - 20 blocks
- 24 blocks

BRI
RLL VN '\\»«“

N\

— C—

T - 4 biocks, 12 - 8 blocks
H 1 4 blocks, 12

T2 - 24 blocks

- 24 blocks
- 24 blocks
12 - 24 blocks

WEE

Fig. 1. An overview of our approach ensembles for bubble sort run
through simulated caches which differ in size. (a)The total cache size is
varied and the simulations show equal performance until the working set
fits into the cache. (b) The size of the L2 cache is varied such that we
can see similar results to varying the total cache size. (c) Only the L1
cache size is varied and, after some time, working sets begin to fit into
L1, while the other is still only fit in L2. This graph also shows the use of
a focus-and-context technique for zooming in on the end of the graph.

2.1 Memory and Cache Visualization

High performance software is important in many situations, and cache
performance is integral component. There are several approaches to
visualizing performance data and memory cache behavior. Vampir [11]
and Tau [17] are visual profilers that collect broad runtime performance
data, producing postmortem graphs using standard information visu-
alization techniques. At the specific level of the memory subsystem
approaches are available for visualizing runtime memory allocations
along with their structural dependencies [1] and changing cache block
residency [19], tracking cache misses and plotting them to help opti-
mize software [15], visualizing the access patterns to various regions of
memory [4] and cache dynamics, including data motion between levels
of cache and evictions [5].

These techniques all report on a single execution with a fixed cache
configuration. In the current work, we investigate the problem of
analyzing variation in algorithms and multiple cache configurations by
using ensembles. In particular, the ensembles are used to emphasize the
differences between configurations generating insight about program
behavior.

Data Features Software Features

Architectural Features

e Data Size
o Data Value
e Data Order

. Algorlthm
- Data Layout

e Cache Latency

e Cache Size

o Cache Associativity

e Memory Architecture

Fig. 2. Sources of cache performance uncertainty. The arrow indicates
the flow of information through running software, from the end user,
through software developers, and to the hardware that runs it.

2.2 Ensemble Visualization

Ensembles capture uncertainty by running a particular computation
multiple times using different conditions and coordinating the results.
A common example is in weather forecasting where each model is
run multiple times with different initial conditions [14, 16]. By iden-
tifying where the ensembles agree and disagree, it becomes easier
to make accurate forecasts and derive insight about why particular
models might differ in their predictions. General techniques for visual-
izing uncertainty, whether from an ensemble or another source, include
glyph-based approaches, colormaps, and overlaying uncertainty over
the domain to be visualized [12].

In the current work, the model is an abstract representation of the
levels of a cache, which the simulation outputs as changes to the state
of the cache. As such, we cannot directly apply concrete techniques and
instead opt for plotting statistics over various measures of the simulation
results. Through these approaches, we can begin to bring insight about
program behavior from differences between cache simulation ensemble
members.

3 CACHE PERFORMANCE UNCERTAINTY

There are three major sources of memory performance uncertainty,
data, software, and architectural features (Figure 2). Most of these
sources remain outside of the control of the software developer, yet
the decisions made by a software developer can effect how robustly
applications perform in uncertain conditions.

3.1 Data Features

The layout of data in memory can have a significant effect on cache
performance. In most applications, the data should be stored in the
same order that it will be accessed at runtime to promote good cache
performance. However, the runtime access pattern may be variable or
even unpredictable.

The first feature of the data which software developers must account
for is the size. For example, if a developer chooses an algorithms which
maintains a minimal memory footprint by streaming data off the disk,
they are likely to see consistent performance across multiple platforms
for data of any size. However, this might come at a significant perfor-
mance cost in cases where all data fits on-core and a non-streaming
algorithm can be used.

The values of input to a program can also affect computation. For
instance, different sorting algorithms may have very different memory
access patterns when sorting a particular kind of list, such as one
that is in reversed order or one that is already sorted. By comparing
ensembles that differ in the particular data values being operated on,
such differences and similarities may be uncovered. This is similar to
formalized ‘best/worst/average case” algorithmic analysis.

3.2 Software Features

The only aspect of runtime execution under the control of the software
developer is the design of the software. There are several software fea-
tures that can give rise to ensembles, which in turn can help developers
evaluate the memory performance characteristics of their choices.
Most computational problems can be solved in many ways, meaning
that the developer must choose one of several algorithms to execute the
solution. We demonstrate this idea by comparing different algorithms
for sorting and matrix multiplication, focusing on their memory perfor-
mance. For example, a naive matrix multiply is well suited for small

matrices while blocked matrix multiply was designed with the purpose
of improving memory performance for arbitrarily large matrices.

Aside from algorithmic differences, there are usually many ways to
layout data in memory. For instance, matrices can be stored in row-
major or column-major order. Similarly, data can be stored in multiple
arrays or interleaved in structure. The patterns of access to memory
can have a big impact on performance making data layout important to
performance analysis.

3.3 Architectural Features

The various architectural features of caches, though normally outside
the control of the developer, can still be useful to study. Varying
the configuration can provide insight about why a particular program
achieves poor performance in some scenarios and good performance
in others. In some cases the insight gleaned may even suggest how to
modify the code to be more robust to cache architectures and achieve
better performance across more platforms.

Caches are made up of several cache levels, each of which contains
a subset of the data in the next level, and which may independently
vary in their attributes. Each cache level has a size dictating how much
data the level can hold. Each level has a block replacement policy,
which determines eviction to make room for new data. Finally, levels
may have an associativity, which divides caches into subsets. We
use the variation between different cache attributes to form simulation
ensembles that in turn can expose the structures and behaviors of our
programs, leading to insights about how those programs might be
improved.

Though we focus on these particular features in our simulations, the
variability in real-world cache systems is much larger. For example,
programmable GPUs have a complex memory system including a large
global memory and smaller banks of shared memory, visible subsets
of threads. Some supercomputers have a “non-uniform memory archi-
tecture”, in which accesses to different parts of the memory space may
result in drastically different access times. Supercomputing clusters
lack an explicit memory subsystem at the cluster level, instead relying
on transfers of data between individual nodes to carry out their work.
Our ensembles approach would certainly apply to such systems as well,
as they have their own modes of variability, such as network topology,
interconnect speed, etc., though these systems are significantly more
complex to model.

4 VISUALIZING CACHE SIMULATION ENSEMBLES

This work is mainly interested in directly comparing simulation results
by varying some parameter or quality of the simulations. Using straight-
forward visualization have been valuable in deriving insights about our
case studies. Our approach plots performance as a function of time for
all the ensemble members, on the same set of coordinate axes. Such a
plot easily transmits the degree of agreement or dispersion between the
ensemble members, and allows for quickly judging the difference in
performance between several ensemble members. Clustering, which
indicates insensitivity to the changing simulation parameters, is also
easily visible.

Data Collection. We use Pin [10], a dynamic binary rewriting
framework, to collect a memory reference trace—a record of all mem-
ory transactions made by a program at runtime. That memory trace
record is then used as input to a home-grown cache simulator, which
yields performance data. The cache simulator reports hit and miss in-
formation as memory transactions occur. That information is then used
for the visualizations. To emphasize the much larger cost of accessing
more distant memory, the hit level data is weighted by time to yield a
cache service time for that simulation step. We used typical values for
a real-world cache of 3 CPU cycles for L1 access, 15 cycles for L2 [6],
and a much larger 300 cycles for main memory.

Ensemble Plots. In our plots, each ensemble member is rep-
resented by a curve showing the cache access time as a function of
simulation time. There are few cache levels with little natural continuity
from one reference trace record to the next, leading to high-frequency
plots as cache misses are mixed in with cache hits. A moving average

is applied to the data to help reduce these effects and better investigate
trends in the data.

Standard Deviation Plots. In some cases, we plot the standard de-
viation over the data as lighter-colored envelopes extending above and
below the mean. This statistic is meant to capture the high frequency ac-
tivity within the averaging window. In practice, high frequency activity
generally means more cache misses, which inflates both the mean and
the standard deviation, due the high access time to main memory. The
standard deviation is therefore a redundant encoding of the information
carried by the mean, and only serves to reinforce the qualities of the
ensemble (for example, in Figure 1).

Difference Plots. Alternatively, it can be useful to investigate the
general difference between ensemble members, as opposed to within
a single member. In such cases, the standard deviation of the member
values is a measure of dispersion or disagreement among the members
(e.g. Figure 7), or single ensemble member can be used as a baseline
value to find an optimal configurations (e.g. Figure 6 (d-f)). Gener-
ally speaking, other types of plots are also possible, but we leave an
investigation of the full power of statistical techniques to future work.

Time Matching. When the ensembles differ in, for example,
choice of algorithm, the ensemble members may represent different
numbers of total memory accesses. For example, Figure 5 compares
bubble and insertion sort which have similar computational structure
but engage in numbers of memory accesses. In order to effectively
visualize the differences between the simulations, they can be trans-
formed into a common timeframe. This is done by using the source
code to identify milestones at which to synchronize the simulations.
For instance, bubble and insertion sort are synchronized at the ends of
the sweeps through the data. This casts the simulation time into “source
code time,” in which source code is taken as the measure of elapsed
logical time. Figure 5 has vertical lines to indicate the synchronization
points. The insertion sort has been stretched to fit in the same timeframe
as bubble sort, which is reflected in the relative size of the color-coded
circular glyphs at the bottom.

User Control. Several aspects of plotting naturally fall under user
control, mediated by user interface elements. For instance, the size of
the moving average window can be changed at plotting time, giving
users control over the smoothing effect of averaging and allowing
them to search for performance features at different scales. We also
use a focus-plus-context technique (Figure 1(c)) for zooming in on a
section of the graph while deemphasizing the remainder, allowing for
examination of details while still keeping a handle on the larger context.

5 CASE STUDIES

We now illustrate our approach with several case studies, using various
kinds of ensembles. Our case studies are divided into four groups: data
features, algorithmic features, architectural features, and second-order
ensembles.

5.1
5.1.1

Triangle mesh rendering is a primitive action in many graphics applica-
tions. Meshes are often composed of point data describing vertices and
indices describing edges and faces. The order of the indices determines
the access order of the vertices directly effecting cache performance
during triangle processing [20]. Figure 3 shows the cache performance
during input assembly, using the indices to sweeping through the ver-
tices for the Utah Teapot model. Ensemble members differ only in the
order of the indices. The poorest performing run uses a deliberately
shuffled dataset, while the middling performance is randomized, and
the best member uses a sorted ordering. The initial part of the ensem-
ble, in which all three algorithms give the same performance, comes
from loading the data into memory. The remainder demonstrates how
important good triangle ordering is to this application—a deliberately
poor sorting order performs only slightly worse than a randomized list
of triangles, while sorting the triangles, as expected, improves the cache
performance roughly four times.

Comparing Data Features
Data Order: Rendering Triangle Meshes

Shuttled
[Randoni zed

Fig. 3. Triangle rendering with input data ordered different ways. Ran-
domized data (orange) and an adverse shuffling (green) perform poorly,
with a roughly fourfold improvement upon sorting the data (blue).

5.1.2 Data Layout: Material Point Method

The material point method (MPM) [18] is a method for simulation of
mechanical engineering problems, in which solid bodies are discretized
into collections of particles that move, in response to forces, over a
background grid. The grid nodes interpolate particle data to compute
gradients. Each particle represents a bit of material, carrying attributes
such as mass and velocity. The particles can be stored in memory as
an array of structures, each storing the attributes of one particle, or in
parallel arrays, each storing one attribute from every particle. There is
a similar choice of storage policy for the data on the grid nodes as well.

Figure 4 shows an ensemble of the various policies, for both par-
ticles and grid nodes. Simulation time is partitioned into the phases
of the MPM timestep, so that different performance behaviors can be
correlated to source code. The ensemble shows two distinct cache
behaviors—stretches of relatively good performance interrupted by
bursts of poor performance. The better performance reflects process
of the grid nodes, which can always be done in a fixed order, leading
to sweeping access patterns with heavy data reuse. The short bursts re-
flect processing of the particles as they interact with nearby grid nodes.
Since particles can move about the domain, such processing represents
scattered accesses to the grid nodes, implying much poorer data reuse
and therefore performance. Such bursts are short because the particles
are much fewer than the grid nodes. However, the bursts also show a
large variance in performance due to storage policy. In addition to the
already scattered nature of memory access during the bursts, the struct
storage policy tends to spread out these accesses across memory, further
compounding the poor data reuse, leading to even worse performance.

parallel-parallel
1lel

=]
a
a

/

/
®

Fig. 4. Data storage policies for MPM. Particle and grid node data can
each be stored in an array of C-style structures or in several parallel
arrays. This ensemble shows all four combinations, with “parallel-parallel”
being seen to perform the best.

5.2 Comparing Algorithm Features
5.2.1 Number of Memory Accesses: Sorting

Bubble and insertion sort both work by making repeated shrinking
sweeps of the list to be sorted, leaving the largest of the remaining
elements in its correct position at the end of each sweep. Figure 5
compares bubble and insertion sort, which have similar computational
structure, but use memory differently. Bubble sort uses many write
operations, as it uses repeated swaps to move elements, whereas inser-
tion sort only performs a single swap per sweep, moving the largest
element into place. While bubble sort appears to have much better
cache performance than insertion sort (because all of its extra writes
result in cache hits), insertion sort may actually have better overall
performance simply because it performs fewer memory accesses.

In Figure 5, the traces have been time-matched to the ends of their
sweep operations (top), with attendant scaling of the average access
times (bottom). When accounting for bubble sort’s extra memory

accesses, insertion sort appears to have better memory performance
overall. This analysis demonstrates how a simple report of “cache hit
rates” may be misleading when comparing alternate approaches that
compute the same result.

o @ Bebble Sort
EJ 1hbextion Soxt

Fig. 5. While the bubble and insertion sort algorithms have similar
computational structure, bubble sort makes many more in-cache memory
accesses, giving the appearance of better cache performance (top).
When the traces are appropriately scaled (bottom), bubble sort is seen to
actually take longer because of its higher volume of memory accesses.

5.2.2 Data Access Patterns: Matrix Multiplication

Matrix multiplication is an important operation in many scientific pro-
grams. The naive algorithm for matrix multiply computes dot products
of the rows of the left-hand matrix and columns of the right-hand ma-
trix, introducing a cache-unfriendly access pattern for one matrix or
the other depending the data storage orientation (row or column major).
A simple solution is to store the left-hand matrix in row-major and
the right-hand matrix in column-major order, transposing its access
pattern to a cache-friendly one. Figure 6(a) shows that the “transposed
multiply”” has dramatically better cache performance.

Mixing data storage orders means that swapping a left-hand and
right-hand matrix will lead to extremely poor access patterns. The
more general cache-friendly solution is to use matrix blocking, in which
submatrices are repeatedly multiplied, accumulating their products into
the final result. The block sizes are chosen so they fit into cache,
improving the reuse of the appropriate entries. Figure 6(a) also shows
the relative performance of blocked matrix multiply compared to the
naive algorithm and transposed algorithms. Interestingly enough, our
results show that blocking performs worse than the transposed multiply.
This is puzzling and counterintuitive, as blocking is known to be an
efficient technique for matrix multiplication.

5.2.3 Effect of Associativity: Matrix Multiplication

When a program’s access patterns show certain kinds of regularity, the
cache may perversely end up exclusively using a limited number of
its associative sets, leaving others idle, and leading to an increased
miss rate. This is exactly the behavior we observe in blocked matrix
multiplication. Our example uses a 16x 16 matrix, with blocks of size
4 x4, giving the starting address of each block the same modulo-4
address, thereby causing the start of every block to map to the same
associative set in any cache using four sets (as our simulated cache
does), roughly quadrupling the miss rate, and slashing performance
in half (Figure 6(b)). — i don’t think this is exactly true

The visualization and analysis suggest a simple fix, stagger the
mapped sets in each block of the matrix by simply inserting some
amount of padding after in each row. With rows of 16 elements,
amounts of padding from zero to fifteen excess elements per row are
possible. Studying how much padding to use in this case is a prime
example of the usefulness of cache ensembles. Figure 6(c) includes
an ensemble member for each of the sixteen options. Figure 6(d-f)
show differential versions of Figure 6(c), each one subtracting out a
particular curve from all the ensemble members, allowing for direct
comparison of value. As expected, a padding of two elements does
a better job of staggering the block addresses than a padding of four.
Padding with six extra elements does even a better job of redistributing

the addresses throughout the sets of the cache, and seems to be the best
solution in this case.

5.3 Comparing Architectural Features
5.3.1 Cache Size: Sorting

The size of a cache is a very important parameter—generally speaking,
a larger cache suffers fewer cache misses, due to less contention for
space. Simulation ensembles in which the cache size varies can be
used to expose the size of the working set of an application, the total
amount of memory the application requires during a given phase of
its run. For example, consider the bubble sort ensemble in Figure 1.
Each ensemble shows the average cache service time as a function of
simulated cache time, while each curve represents a single ensemble
member differentiated by size (total size for (a), L2 size for (b), and L1
size for (c)). Bubble sort works by making repeated, shrinking sweeps
over the list to be sorted. At some point during each run, the working
set becomes small enough to fit entirely inside the cache, at which point
the cache performance improves dramatically. The effect of a changing
cache size can be seen in this ensemble as the location of the sudden
drop off in access time.

The pattern in Figure 1 is well-known and occurs in simple analyses
of working set size in standard reference texts [7]. A more complex
example can be seen in merge sort (Figure 7, top), which first works on
small sublists, assembles them into larger sublists, and then recursively
assembles those into yet larger sublists, etc. This algorithm therefore
admits different working set sizes at different times during its run. By
forming an ensemble of merge sort running with several different cache
sizes, these working set sizes become visible. The relative distribution
of the performance values may give insights about when relatively good
or bad memory performance can be expected from such an algorithm.
Figure 7 shows several peaks during the sort, corresponding to various
sizes of sublists. The poor cache performance results from the incoher-
ent access pattern of having to access two sublists simultaneously. The
spectrum of cache sizes differentiates the various sizes of sublists, i.e.
the varying working set size of the application. As the working set be-
comes large, the ensemble members begin to disagree in a regimented
way about the cache performance. In fact, this notion generalizes to
the standard deviation of the ensemble members (Figure 7, bottom),
which summarizes the disagreement between the members, which in
turn reflects the size of the working set in this case.

~ 4 blocks, 12 -
1 - 6 blocks, I2 -

Doooo|
EEEEE
&

2

- 10 blocks, L2 -
- 12 blocks, L2 -

Fig. 7. Merge sort with different cache sizes. Top: The blue curve rep-
resents a simulation of a very small cache which cannot hold even the
smallest merge lists. The peaks of poor performance in this member
reflect the computational structure of the algorithm. With its fuller spec-
trum of cache sizes, the ensemble differentiates different working set
sizes by disagreement between the its members. Bottom: The standard
deviation of the ensemble members. The value falls to zero when all of
the members agree, with positive values denoting disagreement. This
statistic therefore summarizes the degree of disagreement, and therefore
the working set sizes of the algorithm.

5.3.2 Block Replacement Policy: Diffusion Equation

The block replacement policy has an important impact on cache per-
formance since it selects the block to evict when new blocks enter the

W

M Padding 6 [J Padding 12
H Padding 7 [JPadding 13
B bty o (Elabhing 1f

Padding 9| B Padding 15

(b) The effect of cache associativity on blocked matrix multiplication.

(e) Differential view with paddmg of four.

B I Padding 0 [Padding 6 [] Padding 12

ng 7 [Padding 13
ng 8 [J Padding 14
ng 9 [0 Padding 15

[=]
g
O
o
E

. rades

[Paddin
o

. ating
addan

g
AN ‘J‘MW(\V\F '/L'v ’J Wif" ;

,.r m\

nn\n AE s A \l

(c) The effects of padding on blocked matrix multiplication.

(f) Differential view with padding of six.

Fig. 6. Cache performance analysis of matrix multiplication. (a) The naive algorithm (orange) performs the worst, due to cache-unfriendly access
patterns. The other members show different algorithms with better performance, but surprisingly, blocked multiply algorithm does not perform as well
as expected. (b) Highlighting the effect of cache associativity on block matrix multiplication, accounting for the reduced performance. (c) Various
padding inserted at the ends of the matrix rows helps redistribute cache activity around the associative sets. (d-f) The same data appearing in (c), but
with the curves for padding amounts of two, four, and six subtracted uniformly out, respectively, with a padding of six seeming to offer the best gain.

cache. The best block replacement strategy, known as OPT [2], is im-
possible to implement in practice !, an implementable approximation
must be used instead. A commonly used policy, least-recently used
(LRU), evicts the block which was least recently accessed. LRU works
well in practice, and is so common that Hill’s groundbreaking work on
analysis of caches and cache behavior [8], assumes it as a base feature
of caches. However, there are cases where LRU is not the best policy,
due to the structure of computations. Forming ensembles in which the
replacement policy varies, it is possible to see the effect of different
policies on the miss rate of a program. In general, OPT and its inverted,
pessimal counterpart PES (which evicts the soonest-needed block, to
cause as many replacement misses as possible) bound the performance
of replacement policies, giving some idea of how much damage could
be caused by the replacement policy.

Figure 8, top, shows an example of a case in which LRU may not
be the best option. The program in this case is a diffusion equation
solver that repeatedly sweep a data array, updating values using finite
differences. For repeated sweeps of this type, most-recently used (MRU)
is the optimal replacement strategy [3]. Figure 8 bears this out, as the
ensemble member for the MRU cache closely matches that of the OPT
cache.

The replacement strategy is out of the control of the developer. This
means the diffusion equation solver is stuck with LRU, but the analysis
suggests a possible corrective course of action. The trouble with LRU
is that it tends to evict blocks that will be needed in the near future—
if we were to reverse the order of updates periodically, we could try
to “trick” LRU into behaving more like MRU. The program can be
modified to use “pingpong” sweeps, proceeding from the first element
to the last, then make the next sweep from last to first. By reversing
the direction at intervals, LRU now tends to throw out blocks that will
be needed furthest in the future. Figure 8, bottom, shows that LRU
with the pingpong strategy performs about as well as MRU did with the
original program: i.e., we found an optimal setting under the constraint
of having to use LRU in the cache. This is a case where investigating
the possibilities—even when they are out of our reach in practice—led
to a vastly improved practical solution.

'Both OPT and PES block replacement strategies require full knowledge of
future accesses to perform evictions.

oo
9
g2

P LY A Y ST R YT

Fig. 8. Diffusion equation solver with different block replacement policies.
Top: LRU performs poorly in this example, due to the repeated sweeping
access pattern used in this algorithm. Bottom: By recasting the algorithm
with an alternating “pingpong” sweep pattern, LRU now performs near-
optimally.

5.4 Second-Order Ensembles

We have also experimented with combining members of an ensemble in
meaningful ways to yield a new, second-order ensemble that offers its
own insights about program behavior. Consider the ensemble of varying
cache sizes in Figure 1. As discussed previously, this ensemble tells
us something about the application working set over the program’s run.
However, we might also consider the varying sizes to reflect how much
of the cache is alloted to the program during its run. Real computer
systems are forced to share resources—for example, two concurrent
programs must share the available cache. While one of them runs, it
may evict blocks that belong to the other, inducing cache misses when
the other program is scheduled to run again.

In some sense, this situation is reflected in the cache size ensemble.
When a thread is scheduled to run, it may appear as though its cache
allotment has been (temporarily) reduced—i.e., the performance profile
will seem to have jumped from one ensemble member to a different
one reflecting a smaller cache. To model such a situation, we can
combine different ensemble members in a particular way. For example,
we can take pairs of ensemble members whose cache sizes add up
to some constant value; all such pairs of members can represent a
two-thread model sharing a cache of that combined total size. Each

pair can be combined into a single performance curve representing
two concurrent threads, and these combined pairs are then members
of a new, second-order ensemble. Additionally, each second-order
member is plotted with a light gray envelope behind it, representing
the maximum deviation from the plotted value when the two first-order
members are shifted from each other by some fixed amount of time.
This represents the possible scheduling orders for the two threads, while
the envelope bounds the performance of such orders. When many such
envelopes are plotted over each other, the plotted color is a darker
gray wherever many envelopes overlap. The darkness indicates how
likely that regime of performance is to occur, in essence, bounding the
performance of a bundle of ensemble members.

Figure 9 (a) shows such an ensemble. The values in each curve
come from pooling the access time data from the pair of atomic en-
semble members and treating it as though it came from a single run.
The interesting feature in this example is the cluster formed by the
large majority of ensemble members. Only when the size allocation is
extremely lopsided (representing a “starvation” for one of the threads)
does the performance change significantly, with most of the members
forming a tight band of relatively well-performing curves. The essential
insight is that this program seems to be robust to changes in its cache
allocation—if it were made to be multithreaded, the cache would not
present much of an obstacle to high performance.

The process generalizes to more threads, resulting in an ensemble
like the one in Figure 9 (b). Here, we have combined four of the atomic
ensemble members to create a varying four-way breakdown of the total
cache space. There are too many ensemble members to enumerate
their cache size breakdowns, but there are clearly four groupings of
ensemble members forming four clusters. On further inspection, it
turns out that these four clusters can be identified by the number of
starvations present. The pink cluster, with the worst performance,
allocates just eight cache blocks to three of the threads, allowing the
rest of the cache to the fourth. Similarly, the blue cluster allocates two
such small threads, the orange cluster only one, and the green cluster
represents the optimal case where no single thread receives such a small
allocation. It may seem obvious that starving a single thread leads to
poor performance, but the real insight in this example is the stability
of performance with respect to such extreme allocations. As long as
no thread receives the minimal amount of allocation, the performance
for all other combinations remains in a narrow band, which in turn
indicates a kind of cache stability.

This is just one example of a higher-order ensemble that can be used
to model and reason about more complex behaviors possible within
computer systems. It is not meant to be an accurate model of the
actual execution of such a behavior, but rather a way to reason about
what might be expected of, for instance, cache performance, when
such execution is set up. Due to the many uncertainties of concurrent
execution, formulating a model of concurrent multithreaded execution
using data from a single-threaded run is a powerful approach, and
it therefore suggests that other complex systems behavior might be
modeled from such data.

6 CONCLUSION

We have demonstrated an approach to investigating cache performance
uncertainty by using cache simulation ensembles and techniques from
information visualization to display them. By varying different features,
we are able to elucidate reasons for poor performance, and suggest meth-
ods of changing the software to eliminate such performance problems.
Our case studies clearly show some surprising results in unexpected
places, and suggest practicable solutions to such problems where they
arise.

One major avenue of future work lies in refining and improving
our ideas about modeling multicore execution. Though the model we
presented in this paper is not meant to be accurate, it will be useful
to confirm some of our findings about, for example, robustness of
multicore programs to varying cache allocation. Another area of future
work is in designing specific visual encodings for the various types of
patterns we have found in this initial work. It is promising that just with
basic information visualization techniques, we are able to glean some

¥ 68 blocks

Fig. 9. Modeling multithreaded cache contention in matrix multiply, with
(a) two threads and (b) four threads. This is a second-order ensemble
formed from members of a simple cache size ensemble, by combining
multiple first-order members whose sizes sum to a given total cache size.
This ensemble therefore expresses the relative performance of differing
allocations of available cache, modeling the sort of cache contention that
might occur in a multithreaded code.

insight about program performance; with dedicated, pattern-specific
visualization solutions, we expect that our methods will become even
more useful.

Uncertainty analysis has turned out to be an illuminating approach
to cache performance analysis, making us think about program per-
formance analysis in new ways, leading to hopefully more and more
insights that will help run our programs more efficiently and effec-
tively, increasing the value we derive from them. We see no reason
this approach cannot be applied to other areas of performance anal-
ysis, hopefully delivering insights about even larger systems and the
programs that run on them.

REFERENCES

[1] E. E. Aftandilian, S. Kelley, C. Gramazio, N. Ricci, S. L. Su, and S. Z.
Guyer. Heapviz: interactive heap visualization for program understanding
and debugging. In Proceedings of the 5th international symposium on
Software visualization, pages 53-62, 2010.

L. A. Belady. A study of replacement algorithms for a virtual-storage

computer. IBM Syst. J., 5(2):78-101, 1966.

[3] H.-T. Chou and D. J. DeWitt. An evaluation of buffer management strate-
gies for relational database systems. In A. Pirotte and Y. Vassiliou, editors,
VLDB’85, Proceedings of 11th International Conference on Very Large
Data Bases, August 21-23, 1985, Stockholm, Sweden, pages 127-141.
Morgan Kaufmann, 1985.

[4] AN.M. I. Choudhury, K. C. Potter, and S. G. Parker. Interactive vi-
sualization for memory reference traces. Computer Graphics Forum,
27(3):815-822, May 2008.

[5] AN.M. L. Choudhury and P. Rosen. Abstract visualization of runtime
memory behavior. In VISSOFT 2011, 2011.

[6] A. Fog. The microarchitecture of intel, amd and via cpus: An
optimization guide for assembly programmers and compiler makers.
http://www.agner.org/optimize/microarchitecture.pdf, August 2011.

[7] J.L.Hennessy and D. A. Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers, third edition, 2003.

M. Hill and A. Smith. Evaluating associativity in cpu caches. Computers,

IEEE Transactions on, 38(12):1612 —1630, dec 1989.

D. J. Kerbyson, A. H. J., A. Hoisie, F. Petrini, H. J. Wasserman, and

M. Gittings. Predictive performance and scalability modeling of a large-

scale application. In Proceedings of the 2001 ACM/IEEE conference on

Supercomputing (CDROM), Supercomputing *01, pages 37-37, New York,

NY, USA, 2001. ACM.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood. Pin: building customized program analysis

tools with dynamic instrumentation. In PLDI, pages 190-200, 2005.

W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach.

VAMPIR: Visualization and analysis of MPI resources. Supercomputer,

12(1):69-80, January 1996.

A.T. Pang, C. M. Wittenbrink, and S. K. Lodh. Approaches to uncertainty

visualization. The Visual Computer, 13:370-390, 1996.

C. Y. Park. Predicting program execution times by analyzing static and

dynamic program paths. Real-Time Syst., 5:31-62, March 1993.

[2

[

[8

=

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux, V. Pascucci,
and C. Johnson. Ensemble-vis: A framework for the statistical visualiza-
tion of ensemble data. In Data Mining Workshops, 2009. ICDMW ’09.
IEEE International Conference on, pages 233 —240, dec. 2009.

B. Quaing, J. Tao, and W. Karl. Yaco: A user conducted visualization
tool for supporting cache optimization. In Proceedings of HPCC, pages
694-703, 2005.

J. Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn, and R. Moorhead.
Noodles: A tool for visualization of numerical weather model ensemble
uncertainty. /[EEE Transactions on Visualization and Computer Graphics,
16:1421-1430, 2010.

S. S. Shende and A. D. Malony. The tau parallel performance system. Int.
J. High Perform. Comput. Appl., 20:287-311, May 2006.

D. Sulsky, Z. Chen, and H. Schreyer. A particle method for history-
dependent materials. Computer Methods in Applied Mechanics and Engi-
neering, 118(1-2):179 — 196, 1994.

E. van der Deijl, G. Kanbier, O. Temam, and E. Granston. A cache
visualization tool. Computer, 30(7):71-78, July 1997.

S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha. Cache-oblivious
mesh layouts. ACM Trans. Graph., 24:886-893, July 2005.

