
Multiscale Software Visualization for Computational
Science and Engineering

1. General background. Computational Science and Engineering (CS&E) is a fast growing
and increasingly important field of research as shown by its impact in fields including medicine,
biology and bioengineering, energy, chemical engineering, climate modeling, and physics. The
scale of today’s CS&E problems was almost unimaginable ten years ago. It is not uncommon for
problems to process billions of data points over thousands of time steps. To address such massive
problems, new highly complex computer architectures and software systems have been developed.
These systems come in diverse forms—heterogeneous processing environments (e.g. CPU/GPU
hybrid environments), many-core systems (hundreds of thousands of cores), a variety of memory
configurations (i.e. shared vs. distributed memory, with various hierarchical memory schemes), and
complex network configurations connecting the nodes of a cluster. Developing, debugging, and
optimizing software for these systems is increasingly difficult as different hardware configurations
lead to complex interactions, for even the simplest piece of software. Unforeseen processing
bottlenecks and application errors can develop during execution. Given current techniques, it can
be extremely difficult to locate the source of errors due to the volume of runtime data and complex
interactions applications produce. We propose overcoming these challenges by introducing new
techniques for visualizing the evolution of running applications, enabling new forms of
analysis on complex hardware and software systems with the potential to significantly increase
productivity in all fields of CS&E, enabling more science for the time and money spent.

The impact of traditional debugging tools on software developer productivity is well-known.
Developers find that products such as GNU Debugger (GDB), Microsoft Visual Studio, NVIDIA’s
graphics hardware debuggers [7] and TotalView Debugger [13] have shortened software develop-
ment cycles. Such tools work by providing a transparent view of an application with controls for
inspecting the details of its execution. The detailed, hardware-oriented level at which these tools
operate assists in searching out the specific sources of errors.

Performance analysis (or profiling) is frequently used to understand the complex interactions
of software and hardware. Profilers such as GNU GProf, Apple Shark, and Intel VTune work
by revealing which portions of an application’s source code consume the most execution time.
Profilers can also collect information from hardware sources, giving a big-picture view of program
execution. For example, VAMPIR [6] profiles by collecting statistical performance data from
parallel programs and displaying it in summary views. Such profilers can correlate portions of
source code with their actual execution time, but generally cannot discern specific causes for
reduced application performance. While they do not produce incorrect results, such performance
degradations are still considered errors—yet the techniques for diagnosing their causes are not as
mature as the ones for finding conventional logic or design errors.

Software visualization is a new approach [12] for better understanding specific aspects of
program behavior. Examples include visualizing certain logic errors [4, 5, 10], the evolution of
running software [11], and performance-critical subsystems [1]. Most software visualizations do
not work on a large enough scale for modern supercomputers, nor do they attempt to connect
specific causes for poor performance to the programming structures that precipitate them.

2. Technical significance of the research. CS&E continues to call upon experts in High
Performance Computing (HPC) (also called petascale or exascale computing) for solving large
computational problems. The capabilities of software and hardware HPC systems have grown
exponentially while the debugging and profiling tools have not keep pace with the needs of these
systems that produce such a large volume of runtime data.

1



The overarching goal of this project is to develop new algorithms that further ad-
vance debugging and profiling techniques by visualizing hardware and software events
in a multiscale, global-to-local manner, enabling developers to observe general be-
havioral patterns in an application’s execution, then perform finer-grain investigations
to identify specific causes for that behavior. This includes summary visualizations of the
entire supercomputer, all the way down to local visualizations describing the behavior of a single
core of a single node of the supercomputing cluster (see Figure 1). For instance, visualizing the
evolution of memory interactions on a supercomputer may help determine if memory layouts and
access patterns are positively or negatively affecting performance. These new methods promote
the search for causes of application errors to a visual analysis using new visualization techniques.

As supercomputers grow more complex, the interconnection between components begins to
exhibit chaotic behaviors. Our observations of these systems has inspired our new approach to
software debugging and profiling, giving developers an intuitive understanding of system behavior
by applying new visualization techniques (see Section 3). This idea parallels medical diagnosis.
Developers are provided a high-level summary visualization of their application as it runs, much
as a physician would use an ECG or full body X-ray/CT. The developer monitors application
progress, identifying problems with overall execution and performing further examination at lower
levels of execution (e.g. an individual node of a cluster)—much like the physician orders further
detailed testing after discovering abnormalities from preliminary tests. As monitoring continues,
the developer has the option to explore yet lower levels of system interaction, or return to higher-
level summary views, until a full diagnosis and treatment plan can be determined for any errors
within the system. The governing idea is that the visualization should look as natural and intuitive
as possible, providing a faithful sense of what is occurring during program execution.

Both Dr. Johnson and Dr. Rosen are experts in visualization and scientific computing. The
software visualization subfield represents a new direction of research in which both Dr. Johnson
and Dr. Rosen are well-equipped to leverage their expertise and existing collaborations, resulting
in a significant impact in many other fields of scientific and engineering research.

3. Description of methods. To provide summary visualizations of performance-critical subsys-
tems, we will employ techniques from organic visualization [2]—the idea that visual elements
can self-organize into representations of the evolution of a whole system, with special cues for
noteworthy events, such as changes in motion, size, color, or proximity of elements (see Figure
2). We believe that such techniques will be expressive and informative when the visual elements
are adapted to abstractions of software and computer system components. We will design a suite
of techniques to enable visual analysis for many scales of computer hardware, from computing
clusters communicating over a network, down to the internals of a single-processor core.

Collecting runtime data from applications is another important component of this work. The
most common approach is to insert additional instructions (known as instrumentation) into soft-
ware to collect this data. The instrumentation can be performed manually (by hand during
development), statically (automatically during compile time) [9], or dynamically (automatically
during run time) [3].

Together, these two frameworks—one for collecting runtime data from applications, and the
other for designing, testing, and deploying visualization strategies—can be used to reconstruct
an application’s behavior. The open and challenging problem remains how to connect these
two separate frameworks to allow for visual investigation of how various aspects of applications
interact, arranging the data to reflect performance characteristics and highlighting noteworthy
performance-related events. By combining these two frameworks, we begin to achieve the goal of
clearly conveying high-level logic and performance errors and their underlying causes to develop-

2



ers, enabling them to eliminate these errors and streamline their software for our ever-accelerating
supercomputing age.

4. Impact of this research. This project has the potential to redefine the way in which software
developers debug and profile their applications, making software development more efficient.
Debugging enables faster software development cycles, more stable software, and software that
is more likely to produce correct results. Profiling helps produce optimized software, enabling
it to process larger datasets, deliver results faster, and address more computationally complex
problems.

Impact in HPC. Providing a platform for optimizing parallel software is an important problem
in HPC. Supercomputers are expensive to run, requiring a huge initial investment, long-term
support staff, and a high electrical needs for the hardware itself, along with large scale cooling
needs. Inefficient software makes poor use of computing resources, wasting money, time, and
energy. The ability to improve utilization would save millions of dollars, conserve valuable research
hours, and reduce the environmental impact of supercomputer energy usage.

Impact in CS&E. Simulation is an increasingly important branch of science and engineering.
This work aims to shorten both the development time and run time of such simulation software—
in essence, enabling more science for the time and money spent. As a further benefit to users
of time-shared supercomputers, results are delivered faster, decreasing waiting time for access to
such resources, and thus increasing resource efficiency. Finally, better optimized software allows
for processing larger, more complex data sets, enabling scientists and engineers to both calculate
more accurate solutions to problems and attack harder problems once thought too complex for
available computing capabilities.

5. Specific goals, objectives and anticipated results. We divide our project goals into three
categories—short, medium, and long-term goals.

Our short-term goal within the next year is to collect initial results for pursuing extramural
funding opportunities. This includes developing algorithms that enable meaningful summary visu-
alization of memory and cache performance for desktop level single-core software. These summary
visualization algorithms would require the developer to manually instrument the programs, but
would automatically produce the visualization from application runtime data. As a further proof
of concept, we will perform case studies on various small, but commonly used, algorithms to
verify the efficacy of our proposed techniques.

Our medium-term goal (1–3 years) is to develop algorithms to extend our summary visual-
ization techniques to multiple hierarchical scales for system-wide examination down to minute
subsystem examination. For example, our approach would show a summary visualization of the
entire memory hierarchy and allow a developer to examine lower-level components such as individ-
ual memory cache lines. We plan to make our entire system automatic by developing algorithms
for collecting program data. We further hope to collaborate with other members of the SCI
Institute, the University, and the boarder CS&E community in performing case studies on larger
software projects.

The long-term goal of our project (3–5 years) will be to extend support for our techniques to
supercomputers with hundreds of thousands of nodes, heterogeneous processing environments,
and diverse memory architectures, such as MPI and NUMA environments. One successful tradi-
tion of the SCI Institute is the production and publishing of software by its researchers and staff
developers. We plan to continue this practice by transforming our techniques into powerful tools
that will be distributed as publicly available software packages, making our techniques accessible
to the CS&E and HPC communities at large.

3



6. Extramural Support. High Performance Computing and Computational Science and Engi-
neering continue to be well-funded areas of research. We plan to use this seed grant funding
for pursuing preliminary results which will lead to future extramural funding from any number of
fields. The scope of this project primarily qualifies it for HPC solicitations, but also for many
computer systems, computer graphics, and visualization solicitations as well. Our exact plan of
action depends upon the timing and quality of our preliminary results, but some solicitations we
will pursue are as follows:

• NSF “Computer and Network Systems (CNS): Core Programs,” NSF 10-573, due annually
between September and December based upon proposal size. Under Computer Systems
Research, the solicitation specifically states: “Understanding highly parallel computing sys-
tems also requires innovative methodologies and tools for quantitative and qualitative char-
acterization, evaluation, monitoring and prediction of system behavior at different levels,
including the implications of workloads in multi-core system design.” This statement seems
to target just the sort of innovative algorithms we plan on developing.

• NSF “Computing and Communication Foundations,” NSF 10-572, due annually between
September and December based upon proposal size. The Software and Hardware Founda-
tions cluster of the solicitation requests: “SHF cluster encourages proposals that transcend
traditional areas, import ideas from other fields, or capture the dynamic interactions be-
tween the architecture, language, compiler, systems software, and applications layers.”
Software visualization, as we plan to use it, fits this description of cross-cutting technology
leveraged against new problems.

• U.S. Army Engineer Research & Development Center “Broad Agency Announcement,”
2010. The High Performance Computing and Networking (ITL-3) cluster solicits proposals
involving many issues we plan to address, including heterogeneous computing clusters and
managing resource utilization.

• As High Performance Computing continues to be a popular field of research, other fund-
ing agencies (e.g., Department of Defense and Department of Energy) also request high-
performance computing proposals in some of their solicitations.

Dr. Johnson has an extensive history of success in receiving external support for his research.
Dr. Rosen has yet to receive any external support.

4



7. References

[1] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L. Su, and
Samuel Z. Guyer. Heapviz: interactive heap visualization for program understanding and
debugging. In Proceedings of the 5th international symposium on Software visualization,
SOFTVIS ’10, pages 53–62, New York, NY, USA, 2010. ACM.

[2] Benjamin Jotham Fry. Organic information design. Master’s thesis, Massachusetts Institute
of Technology, May 2000.

[3] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. pages 190–200, Chicago, IL, June 2005.
Programming Language Design and Implementation (PLDI).

[4] Emerson Murphy-Hill and Andrew P. Black. An interactive ambient visualization for code
smells. In Proceedings of the 5th international symposium on Software visualization, SOFT-
VIS ’10, pages 5–14, New York, NY, USA, 2010. ACM.

[5] Colin Myers and David Duke. A map of the heap: revealing design abstractions in runtime
structures. In Proceedings of the 5th international symposium on Software visualization,
SOFTVIS ’10, pages 63–72, New York, NY, USA, 2010. ACM.

[6] W.E. Nagel, A. Arnold, M. Weber, H.-Ch. Hoppe, and K. Solchenbach. VAMPIR: Visual-
ization and analysis of MPI resources. Supercomputer, 12(1):69–89, January 1996.

[7] NVIDIA Corp. NVIDIA introduces industry’s first debugger and profiler for GPU computing.
http://www.nvidia.com/object/io_1239219734947.html, April 2009.

[8] Michael Ogawa and Kwan-Liu Ma. code swarm: a design study in organic software visualiza-
tion. IEEE Transactions of Visualization and Computer Graphics, 15(6):1097–1104, October
2009.

[9] P. Pereira, L. Heutte, and Y. Lecourtier. Source-to-source instrumentation for the optimiza-
tion of an automatic reading system. J. Supercomput., 18:89–104, January 2001.

[10] George G. Robertson, Trishul Chilimbi, and Bongshin Lee. Allocray: memory allocation
visualization for unmanaged languages. In Proceedings of the 5th international symposium
on Software visualization, SOFTVIS ’10, pages 43–52, New York, NY, USA, 2010. ACM.

[11] C. Stolte, R. Bosch, P. Hanrahan, and M. Rosenblum. Visualizing application behavior on
superscalar processors. In Information Visualization, 1999. (Info Vis ’99) Proceedings. 1999
IEEE Symposium on, pages 10 –17, 141, 1999.

[12] Alexandru Telea. Introduction to the special issue of selected papers from softvis’2008.
Information Visualization, 8(2):85–86, Summer 2008.

[13] TotalView Technologies. Case studies. http://www.totalviewtech.com/support/case_
studies.html?via=resources, October 2010.

5



8. Appendix A

Software VisualizationApplication

S
u

p
e

rc
o

m
p

u
te

r 
(3

-n
o

d
e

 c
lu

s
te

r)

Figure 1: Overview of our proposed system. A scientific or engineering application would be
executed on a supercomputer. We will then provide algorithms which will visualize the runtime
data produced at multiple scales: from a system-wide summary visualization, to a mid-scale single
node visualization, down to a single processor visualization. Example visualizations from Ogawa
and Ma [8].

Figure 2: Example of an organic visualization showing a comparison of usage of different version
control systems. Each system forms its own colored “galaxy,” while developers (white dots)
may move between them as they work on different projects. The relative size of the “galaxies”
encodes the volume of activity within each system, while motion encodes particular activities as
they occur [8].

6


