UNNAMED PHD THESIS

by

A.N.M. Imroz Choudhury

A dissertation submitted to the faculty of
The University of Utah
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

School of Computing
The University of Utah

March 2012

Copyright (© A.N.M. Imroz Choudhury 2012

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

A.N.M. Imroz Choudhury

This dissertation has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair: Paul A. Rosen, Steven G. Parker

David M. Beazley

Erik L. Brunvand

Christopher R. Johnson

Mike Kirby

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of AN.M. Imroz Choudhury in its final form and
have found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the Supervisory Committee and is ready for submission to
The Graduate School.

Date Paul A. Rosen, Steven G. Parker
Chair, Supervisory Committee

Approved for the Major Department

Al Davis
Chair/Dean

Approved for the Graduate Council

Ann W. Hart
Dean of The Graduate School

ABSTRACT

Signal relay and adaptation in response to cAMP stimuli in the cellular slime mold
Dictyostelium discotdeum are a model system for the study of signal transduction.
Calcium dynamics in different cell types, especially in deutosome eggs and cardiac
cells, have attracted a lot of interest lately. This thesis attempts to develop some

general theories about second messenger dynamics.

To my parents

Hello

v

CONTENTS

ABSTRACT . . ii

LIST OF FIGURES. vii

LIST OF TABLES xi

ACKNOWLEDGEMENTS xii
CHAPTERS

1. INTRODUCTION 1

1.1 Outline. 1

1.2 Dissertation Roadmap 2

1.2.1 MTV Paper 2

1.2.2 Waxlamp Paper 2

1.2.3 Topology Paper 3

1.2.4 Uncertainty Paper 3

2. BACKGROUND. i 5

3. RELATED WORK, 6

4. VISUALIZING REFERENCE TRACES WITH MTV 7

4.1 Introduction and Background 7
4.1.1 Cache Basics 8
4.1.2 Memory Reference Traces 9

4.2 Related Work 10
4.2.1 Performance Analysis Tools.................. ... 11
4.2.2 Cache Simulation............. 11
4.2.3 Cache Visualization 12
4.2.4 Execution Trace Visualization 12

4.3 Memory Reference Trace Visualization 13
4.3.1 System Overview, 13
4.3.2 Visual Elements. 14

4.3.2.1 Data Structures 14
4.3.2.2 Address Space 15
4.3.2.3 Cache View 16
4.3.3 Orientation and Navigation 17
4.3.3.1 Memory System Orientation 17

4.3.3.2 Source Code Orientation 17

4.3.3.3 Time Navigation and the Cache Event Map 19

4.4 Examples 20
4.4.1 Loop Interchange 21
4.4.2 Matrix Multiplication 22
4.4.3 Material Point Method 23
4.5 Conclusions and Future Work 26
5. ABSTRACT REFERENCE TRACE VISUALIZATION 28
5.1 Introduction........ 28
5.2 Related Work. 30
5.2.1 Memory Behavior Visualization.................. 30
5.2.2 Organic Visualization 32
5.3 System Overview 33
5.4 Visualizing Reference Traces 35
5.4.1 Structured Cache Layout 36
5.4.2 Data Glyph Behavior.......................... 38
5.4.3 Time-Lapse Mode 41
5.4.4 Summary VIewS. 42
5.5 Results and Discussion. 43
5.5.1 Matrix Multiply o oo 43
5.5.2 Sorting Algorithms, 45
5.5.3 Material Point Method 48
5.6 Conclusions and Future Work 50

6. TOPOLOGICAL ANALYSIS AND VISUALIZATION
OF MEMORY REFERENCE TRACES 51
7. ENSEMBLE UNCERTAINTY IN MEMORY REFERENCE
TRACES 52
8. RESULTS AND DISCUSSION 53
9. CONCLUSION 54
REFERENCES 55

vi

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

LIST OF FIGURES

Screenshot of the Memory Trace Visualizer...............

A portion of a reference trace (left) and its visualization. The
access pattern is stride-1 in region v1 (top), and stride-2 in

region v2 (bottom).

A single memory region visualized as a linear sequence in
memory (right) and as a 2D matrix (left). The read and
write accesses are indicated by coloring the region line cyan
or orange. Corresponding cache hits and misses are displayed
in blue and red. Fading access lines indicate the passage of

CIME. . .,

Left: A visualization of the entire process address space.
Right: A single memory region and the cache (labeled L1

and L2). ...

The source code corresponding to the current memory ac-
cess is highlighted, providing a direct relationship between

memory access and source code.. L.

The cache event map provides a global view of the cache
simulation by showing the cache status for each time step,
and a clickable time navigation interface. The time dimension
starts at the upper left of the map and proceeds across the

image in English text order.

Striding a two dimensional array in different orders produces

a marked difference in performance.

Naive matrix multiply (top) and blocked matrix multiply

(bottom).

MPM Horizontal (top) and Vertical (bottom).............

10

16

24

5.1

5.2

2.3

Matrix multiply in various incarnations. The standard algo-
rithm shows good cache behavior for the left-hand matrix
but poor behavior for the right-hand matrix. One solution is
to operate on a transposed-storage version of the right-hand
matrix, which results in better cache behavior, but a loss of
generality in the allowed matrix operations. A common solu-
tion between the two is matrix blocking, in which submatrices
are operated on to accumulate the final result piece by piece.
By operating on small submatrices that fit into the cache,
we can improve the cache performance of the multiply while
keeping the generality of the standard matrix multiplication

algorithm.

Left: Our visualizations are structured schematically as
concentric rings representing the main memory and levels of
cache. The central point represents the CPU. Increasingly
distant from the center are the L1 and L2 caches, with
main memory as the farthest ring. Right: Against this
backdrop, point glyphs representing data items move from
place to place to indicate residency in the various levels of
the memory hierarchy. In the cache levels, the glyphs arrange
themselves into groupings indicating the associative cache
sets, with data on the verge of eviction appearing nearer the

boundaries between the levels.

The common pattern of array initialization, as visualized
in our system at three points in time. The red streak lines
indicate cache misses for references to the green array. The
data comes into L1 and is initialized with a series of write
operations. As the next batch of data comes in, the initialized
data becomes “stale” and moves slowly first out of L1 to
L2, then out of L2 back into main memory. The bundle of
red cache miss lines is seen to rotate through the array as
the array items stream through, visually characterizing this

pattern of access.

Viil

35

37

5.4

2.5

2.6

Demonstration of the effect of history pathlines on the visual-
ization. These four images are of the exact same simulation
time, varying only in the amount of history accumulated into
the fading trails. In (a) we see only the current animation
frame, with no sense of history. In (b) we see the last 16
frames, which show that L1 hits have been taking place in
the recent past. In (c) there is evidence of a recent cache
miss, and an associated eviction event, while in (d) we see
these same events in heavier detail. Note that while the same
set of events is visible in (c¢) and (d), the longer history trail
in (d) tends to obscure the L1 activity that is clearer in (b).
By providing an interactive control for this feature, the user
can select the amount of history that is appropriate for the

current visual analysis task.

A schematic view of the cache properties of matrix multiply.
Top: The standard algorithm computes dot products of rows
of the left hand matrix with columns of the right hand matrix.
This requires pulling the indicated cache lines into the cache.
Unfortunately, as the columns of the right hand matrix are
accessed, the upper lines will tend to be evicted, causing them
to be pulled in again for each column, leading to poor cache
performance. Middle: One simple idea for optimizing the
multiplication is to compute with the transpose of the right-
hand matrix, accessing its rows rather than its columns during
the computation. The access patterns for both matrices
become spatially coherent, but at the cost of restricting where
the transposed matrices may be used. Bottom: By blocking
the matrix multiply, we can bring in fewer numbers of cache
lines at a time, operating on the full set of data present before
bringing in a new block on which to operate. The results
are eventually accumulated in the output matrix, and the
correct product is computed with better cache behavior than
the standard algorithm. Blocking retains some of the locality
of the transposed approach, while also keeping the generality

of the standard matrix multiply.

Bubble sort, a sorting algorithm in which progressive sweeps
swap the remaining largest element to the correct location.
Because the sweeps become progressively shorter, the size of
the working set continuously decreases until it fits first within
L2, and then within L1, leading to good cache behavior at

the end of the algorithm.

1X

46

5.7

2.8

Left: A schematic view of how merge sort works. In the top
half, the sorting function is recursively called on each half of
the input. This step simply sets up a tree of computation that
will accomplish the sorting, without any memory access. In
the lower half, atomic lists of a single element are combined
anti-recursively by merging, resulting in progressively larger,
sorted sublists. This stage involves comparisons and move-
ment of elements to a temporary working store, before they
are copied back to the input array. Each depicted merging
phase matches with a snapshot of our visualization on the
right. Right: Visualization of the memory behavior of the
merge phase. This has roughly the opposite cache behavior
as bubble sort—it begins its memory transactions with small
lists that fit entirely in the cache, forming progressively larger
lists that eventually overspill the cache levels, leading to

poorer cache characteristics near the end of the algorithm. . .

The material point method (MPM), a particle-based mechan-
ical engineering simulation, in action. Left: Computation of
momentum from the mass and velocity data (in the black
and green arrays). The algorithm tends to sweep through the
values in order, resulting in good cache performance. Middle:
Computation of the particle stress update (brown data array)
near the end of the timestep, from various data, including
the constitutive model (blue data array). MPM is made up
of several phases which tend to access the data in order. The
resulting visual pattern is that of data moving into L1, being
operated upon a limited number of times, and then slowly
migrating first to L2 and then back into main memory, as
newer data comes into L1 to be operated upon in turn. Right:
This example shows a bigger MPM simulation and a larger

47

cache to demonstrate the scalability of our visualization system. 49

LIST OF TABLES

5.1 Visual channels engaged in our system..................

ACKNOWLEDGEMENTS

I wish to acknowledge joint work with coauthor Hans G. Othmer, part
of which appears with minor modification as Chapter 2 and Chapter 4.
These materials are included with permission of the publishers.

Professor Kenneth W. Spitzer and Mr. Timothy J. Lewis provided me
with much information and fruitful discussions during the development
of the models presented in Chapter 6. I also want to express my deep
appreciation for the patient help received from Dr. Nelson H. F. Beebe
and Mr. Pieter J. Bowman on my computational work and the preparation
of the manuscript.

The research in this thesis was supported in part under NIH Grant

#GM123456.

oposal intro for extra ideas

CHAPTER 1

INTRODUCTION

1.1 Outline

Abstraction enables productivity, greatness—sometimes have to peel

abstraction layers back to inspect implementation layers.

If “correctness” includes “runs in a short time”, for instance, cannot

blindly rely on abstractions.

One major abstraction—memory as linear array of addressable elements—
hides a lot of machinery (cache) and circuitry in name of complicity,

uniformity

Can represent failure of performance

Poor use of cache in single-threaded process.

— Cache invalidation protocol in multi-threaded process.

Ignorant remote access (done transparently via access abstraction)

in NUMA machines.

— Other architectures—poor communication patterns in MPI pro-
grams; too much CPU-to-GPU transfer, etc., user of memory on

GPUs.

Memory behavior—simple rules give rise to complex behavior, yet

important for correctness and performance.

Analysis/simulation for gross numerical results (refer to Christiaan

chapter, if possible).

e Visualization for understanding events—reasons for poor cache be-

havior.
e Thesis statement

— Notes for construction:

x Vis makes activity concrete in the form of wvisible patterns,
granting deeper understanding of program/memory behavior,
and enabling both the display of petential memory per-
formance problems, and in many cases suggesting possible

solutions.

1.2 Dissertation Roadmap
1.2.1 MTYV Paper
— “Literal” visualization—sets baseline for all vis work/analysis.

— Literal metaphors, w/only “array” abstraction (matrix as well—
FUTURE WORK IDEA: incorporate other geometry into visual

encoding—circle, etc.)
— see patterns
— (other summary points from paper)

— Introduces cache simulation as way to drive analysis/visualization
(cache behavior is fundamental to understanding program perfor-

mance).

1.2.2 Waxlamp Paper
— Shed “literal” view in favor of more abstraction.

— Shift setting from memory to cache—retain abstraction of “place-

ment” in memory (i.e. in the outer ring of the radial display).
— Access patterns still visible, but deemphasized.
— New focus—data motion within cache.

— New patterns:

* bulk miss rates localized in time
% eviction order visible

* program idioms— “sweeping”, “pounding (on a short stretch

of memory)” become visible

— Abstract design lends itself to other devices, scales (GPU? MPI?

other onboard systems such as I/O? etc.).

1.2.3 Topology Paper

Forget about cache simulation.
— Focus on reference trace.

— Trace is linear, yet program flow (and programs themselves) are

non-linear.

— Recurrence important in understanding memory behavior—maps
to program structure at multiple scales, and to operations that
hardware can try to optimize (pre-fetching), and to similar
patterns across time or space (restructuring of programs for

better cache use, vectorization, etc.).
— Use topology to extract circulat structure, aka recurrent behavior.

— Yields visualization laying out linear trace out in space, encoding

time in a spatial dimension also.
— New insight into trace behavior (examples from paper).

— Ancillary vis for other methods (add cache simulation back in,

or use as global “map” for other methods, etc.).

1.2.4 Uncertainty Paper

— Longer view—look at multiple traces to yield information from

their ensemble behavior.
— Vary cache features to learn about algorithms.

ion—Vis workshop submission)

— Model higher-level phenomena? (future work)

CHAPTER 2

BACKGROUND

Lorem ipsum blah blah blah.

CHAPTER 3

RELATED WORK

Lorem ipsum blah blah blah.

CHAPTER 4

VISUALIZING REFERENCE TRACES
WITH MTV

Lorem ipsum blah blah blah.

4.1 Introduction and Background

Processor performance is improving at a rate in which memory perfor-
mance cannot keep up. As such, careful management of a program’s mem-
ory usage is becoming more important in fields such as high-performance
scientific computing. Memory optimizations are commonplace, however,
the most efficient use of memory is not always obvious. Optimizing a
program’s memory performance requires integrating knowledge about
algorithms, data structures, and CPU features. A deeper understanding
of the program is required, beyond what simple inspection of source code,
a debugger, or existing performance tools can provide. Attaining good
performance requires the programmer to have a clear understanding of
a program’s memory transactions, and a way to analyze and understand
them.

The deficit between processor and memory speeds has been increasing
at an exponential rate, due to a differing rate of improvement in their
respective technologies. The speed gap represents a “memory wall” [31]
computer development will hit when the speed of computing becomes
wholly determined by the speed of the memory subsystem. The primary
mechanism for mitigating this diverging speed problem is the careful and
efficient use of the cache, which works as fast temporary storage between

main memory and the CPU. Current software practices, however, stress the

value of abstraction; programmers should write correct code to accomplish
their goals, and let the compiler and hardware handle performance issues.
Unfortunately, not all optimizations can be accomplished solely by the
compiler or hardware, and often the best optimizations, such as source code
reorganization, can only be completed by the programmer [5]. Therefore,
optimizing high-performance software must involve the programmer, which
in turn requires the programmer to have information about a program’s

interaction with memory and the cache.

This paper presents the Memory Trace Visualizer (MTV), a tool that
enables interactive exploration of memory operations by visually presenting
access patterns, source code tracking, cache internals, and global cache
statistics. A screenshot of MTV can be seen in Figure 4.1. A memory
reference trace is created by combining a trace of the memory operations
and the program executable. The user then filters the trace by declaring
memory regions of interest, typically main data structures of a program.
This data is then used as input to the visualization tool, which runs a
cache simulation, animates the memory accesses on the interesting regions,
displays the effect on the whole address space, and provides user exploration
through global and local navigation tools in time, space, and source code.
By exploring code with MTV, programmers can better understand the
memory performance of their programs, and discover new opportunities

for performance optimization.
4.1.1 Cache Basics

A cache is fast, temporary storage, composed of several cache levels,
each of which is generally larger, but slower than the last. In turn, each
cache level is organized into cache blocks or lines which hold some specific,
fixed number of bytes. A given memory reference hits if it is found in any
level of the cache. More specifically, the reference hits to Ln when the
appropriate block was found in the nth cache level. A reference misses if

it is not found in a cache level, and must therefore retrieve data from main

AL T _

Figure 4.1. Screenshot of the Memory Trace Visualizer.

memory. When many references are hitting in a given level of the cache,
that level is warm; conversely, if references miss often (or if the cache has
not yet been used and thus contains no data from the process), it is cold.

Collectively this quality of of a cache is called its temperature.

4.1.2 Memory Reference Traces

A memory reference trace is a sequence of records representing all mem-
ory references generated during a program’s run. Each record comprises a
code denoting the type of access (“R” for a read and “W” for a write) and
the address at which the reference occurred. A reference trace carries all
information about the program’s interaction with memory and therefore
lends itself to memory performance analysis. Figure 4.2, left, shows a small
portion of an example trace file, which demonstrates that such a dataset

is nearly impossible to inspect directly.

Collecting a reference trace for a program requires running the program,

10

4L40

S00Zed
500360
S002ed
500370
S002E0
500360
Soozfa
S0RDE20
S0RD300
S0D3ad
S0D303
S003k4
500310
S5003c0
500313
5003ca
500320
S003@d
So032a
S003L0

ol i i Ol B B e B B B B B B R - - e B B

Figure 4.2. A portion of a reference trace (left) and its visualization. The access
pattern is stride-1 in region v1 (top), and stride-2 in region v2 (bottom).
intercepting the load and store instructions, decoding them, and storing
an appropriate reference record in a file. Several tools exist for this task.
Pin [11] runs arbitrary binary instrumentation programs, including ones
that can intercept load and store instructions, along with the target address.
Apple provides the Computer Hardware Understanding Development
(CHUD) Tools [2], which can generate instruction traces, and from them,
reference traces. Our software examines both an instruction trace (as
generated by CHUD) and the program executable, and produces a reference

trace that includes source code line number information.

4.2 Related Work

To better understand performance, researchers have developed tools to
provide analysis of overall program performance and the effects of program
execution on caches, while cache and execution trace visualization methods

provide insight into specific program behaviors.

4.2.1 Performance Analysis Tools

Shark [2] is Apple’s runtime code profiler, from its CHUD suite, which
collects information from hardware performance counters as a program
runs. It also measures the amount of time spent by the program in each
function and on each line of source code. All of this information is displayed
textually, allowing a user to search for performance bottlenecks. While
Shark does allow the user to count cache misses, it does not focus on the
memory subsystem enough to enable a much deeper investigation into
memory behavior.

VAMPIR [13] and TAU [21] are examples of systems that display the
events encoded in an execution trace from a parallel program, while also
computing and displaying associated performance measurements. Such
tools operate at a high level, identifying bottlenecks in the communication
patterns between computing nodes, for example. They do not observe

low-level behavior of programs occurring at memory and thus occupy a

role different from that of MTV.

4.2.2 Cache Simulation

The fundamental way to process a reference trace is to use it as input to
a cache simulator [26], yielding miss rates for each cache level. Simulation
gives a good first approximation to performance, but it summarizes the
data in a trace rather than exposing concrete reasons for poor performance.
Such a summary illustrates a reference trace’s global behavior, but in
order to understand a program’s performance characteristics, programmers
require more fine-grained detail, such as the actual access patterns encoded
in the trace, as well as the specific, step-by-step effects these patterns
cause in a simulated cache.

Valgrind [15] is a framework for investigating runtime memory behav-
ior, including a tool called Cachegrind, a cache simulator and profiler.
Cachegrind runs a program and simulates its cache behavior, outputting

the number of cache misses incurred by each line of program source code.

11

While it provides useful information about local performance characteristics
in a program, it does not generate a record of cache events that can be
used to construct a visualization. To this end, we have written a special
purpose cache simulator that describes the cache events occurring in each
step of the simulation. With this information, we can perform step-by-step

visualization of cache internals.

4.2.3 Cache Visualization

The Cache Visualization Tool [28] visualizes cache block residency,
allowing the viewer to understand, for instance, competition amongst
various data structures for occupancy in a specific level of the cache.
KCacheGrind [30] is a visual front end for Cachegrind, including visu-
alizations of the call graph of a selected function, a tree-map relating
nested calls, and details of costs associated with source lines and assembler
instructions.

Cache simulation can be used to produce a static image representing
cache events [33]. For each time step, a pixel in the image is colored
according to the status of the cache (blue for a hit, red for a miss, etc.). The
resulting image shows a time profile for all the cache events in the simulation.
This method visualizes the entire sequence of events occurring within the
cache, which can lead to identification of performance bottlenecks.

YACO [17] is a cache optimization tool that focuses on the statistical
behavior of a reference trace. It counts cache misses and plots them in
various ways, including time profiles. The goal is to direct the user to
a portion of the trace causing a heavy miss rate. YACO also plots miss
rate information with respect to individual data structures, demonstrating

which areas in memory incur poor performance.

4.2.4 Execution Trace Visualization
FEzxecution traces are related to reference traces but include more general
information about a program’s interaction with functional units of the

host computer. JIVE [19] and JOVE [20] are systems that visualize Java

12

programs as they run, displaying usage of classes and packages, as well
as thread states, and how much time is spent within each thread. These
systems generate trace data directly from the running program and process
it on the fly, in such a way as to minimize runtime overhead. Stolte et al.
[23] demonstrate a system that visualizes important processor internals,
such as pipeline stalls, instruction dependencies, and the contents of the

reorder buffer and functional units.

4.3 Memory Reference Trace Visualization

The novelty of the memory reference trace visualization presented in
this work lies in the display of access patterns as they occur in user-selected
regions of memory. Much of the previous work focuses on cache behavior
and performance, and while this information is incorporated as much
as possible, the main focus is to provide an understanding of specific
memory regions. To this end, MTV provides the user with an animated
visualization of region and cache behavior, global views in both space and

time, and multiple methods of navigating the large dataspace.

4.3.1 System Overview

MTV’s fundamental goal is to intelligibly display the contents of a
reference trace. To this end, MTV creates on-screen maps of interesting
regions of memory, reads the trace file, and posts the read/write events to
the maps as appropriate. In addition, MTV provides multiple methods
of orientation and navigation, allowing the user to quickly identify and
thoroughly investigate interesting memory behaviors.

The input to MTV is a reference trace, a registration file, and cache
parameters. A registration file is a list of the regions in memory a user
wishes to focus on and is produced when the reference trace is collected,
by instrumenting the program to record the address ranges of interesting

memory regions. A program can register a region of memory by specifying

its base address, size, and the size of the datatype occupying the region.

13

14

Figure 4.3. A single memory region visualized as a linear sequence in memory (right)
and as a 2D matrix (left). The read and write accesses are indicated by coloring the
region line cyan or orange. Corresponding cache hits and misses are displayed in blue
and red. Fading access lines indicate the passage of time.

The registration serves to filter the large amount of data present in a
reference trace by framing it in terms of the user-specified regions. For
the cache simulation, the user supplies the appropriate parameters: the
cache block size in bytes, a write miss policy (i.e., write allocate or write
no-allocate), a page replacement policy (least recently used, FIFO, etc.),
and for each cache level, its size in bytes, its set associativity, and its write

policy (write through or write back) [10].

4.3.2 Visual Elements
MTV’s varied visual elements work together to visualize a reference
trace. Some of these elements directly express data coming from the trace,

while others provide context for the user.

4.3.2.1 Data Structures

MTYV displays a specified region as a linear sequence of data items,
surrounded by a background shell with a unique, representative color
(Figure 4.3, right). Read and write operations highlight the corresponding
memory item in the region using cyan and orange, colors chosen for their

distinguishability. A sense of the passage of time arises from gradually

fading the colors of recently accessed elements, resulting in “trails” that

indicate the direction in which accesses within a region are moving.

Additionally, the result of the cache simulation for each operation is
shown in the lower half of the glyph, using a red to blue colormap (see

Section 4.3.2.3).

To further aid in the understanding of the program, the region can be
displayed in a 2D configuration, representing structures such as C-style 2D
arrays, mathematical matrices, or a simulation of processes occurring over
a physical area (Figure 4.3, left). The matrix modality can also be used
to display an array of C-style structs in a column, the data elements of
each struct spanning a row. This configuration echoes the display methods
of the linear region, with read and write operations highlighting memory
accesses. The matrix glyph’s shell has the same color as its associated
linear display glyph, signifying that the two displays are redundant views

of the same data.

4.3.2.2 Address Space

By also visualizing accesses within a process address space, MTV offers
a global analog to the region views (Figure 4.4, left). As accesses light
up data elements in the individual regions in which they occur, they also
appear in the much larger address space that houses the entire process. In
so doing, the user can gain an understanding of more global access patterns,
such as stack growth due to a deep call stack, or runtime allocation and
initialization of memory on the heap. On a 32 bit machine, the virtual
address space occupies 4GB of memory; instead of rendering each byte
of this range as the local region views would do, the address space view
approximates the position of accesses within a linear glyph representing

the full address space.

15

16

OxfEEEFEEE (4CR)

0x50000000 CUB) I I I I
| |
0xl” @ 0x4 @) Ox8 ®)
0x8 ® 2x10 16)

0x@0 @

S 0 OB

Figure 4.4. Left: A visualization of the entire process address space. Right: A single
memory region and the cache (labeled L1 and L2).

4.3.2.3 Cache View

In addition to displaying a trace’s access patterns, MTV also performs
cache simulation with each reference record and displays the results in
a schematic view of the cache. As the varying cache miss rate serves as
an indicator of memory performance, the cache view serves to connect
memory access patterns to a general measure of performance. By showing
how the cache is affected by a piece of code, MTV allows the user to
understand what might be causing problematic performance.

The visualization of the cache is similar to that of linear regions with
cache blocks shown in a linear sequence surrounded by a colored shell
(Figure 4.4). The cache is composed of multiple levels, labeled L1 (the
smallest, fastest level) through Ln (the largest, slowest level). The color
of the upper portion of the cache blocks in each level corresponds to the
identifying color of the region which last accessed that block, or a neutral

color if the address does not belong to any of the user-declared regions.

The cache hit/miss status is indicated in the bottom portion of the memory
blocks by a color ranging from blue to red—blue for a hit to L1, red for a
cache miss to main memory, and a blend between blue and red for hits to
levels slower than L1. To emphasize the presence of data from a particular
region in the cache, lines are also drawn between the address in the region
view and the affected blocks in the cache. Finally, the shells of each cache
level reflect the cache temperature: the warmer the temperature, the

brighter the shell color.

4.3.3 Orientation and Navigation
Combining a cache simulation with the tracking of memory access
patterns creates a large, possibly overwhelming amount of data. Reducing
the visualized data to only important features, providing useful navigation
techniques, as well as relating events in the trace to source code is very

important to having a useful tool.

4.3.3.1 Memory System Orientation

The first step in managing the large dataset is to let the user filter the
data by registering specific memory regions (for example, program data
structures) to visualize. During instrumentation, there is no limit on the
number of memory regions that can be specified, although in visualization,
the screen space taken by each region becomes a limitation. To ease this
problem, the user is given the freedom to move the regions anywhere on
the screen during visualization. Clicking on a individual region makes
that region active, which brings that region to the forefront, and lines that
relate the memory locations of that region to locations in the cache are

drawn (Figure 4.4, right).

4.3.3.2 Source Code Orientation

MTYV also highlights the line of source code that corresponds to

the currently displayed reference record (Figure 4.5), offering a familiar,

17

18

/* begin tracing ™/
#ifdef __APPLE__
if(startstop)
asm*mfmsr r0®);
#Fendif

/® perform a lockstep update
fori=0: i<cmaxSize: i++)

— ali%A] = bi%B] + 1;

bli%B] = c|i%L)] + 1;

c|i®C] = dli%D] + 1;

nagE on 1

| |
I 000 0TS HDERTR T A0 T

d[i%D] = e[i%E] + 1;
e[i%E] = a[i%A] + 1;
]

II II /® stop tracing */
#ifdef __APPLE__

if{startstop)

IR IIRIIN asmCmimsr 0%,

Hendif

Figure 4.5. The source code corresponding to the current memory access is
highlighted, providing a direct relationship between memory access and source code.

intuitive, and powerful way to orient the user, in much the same way as
a traditional debugger such as GDB. This provides an additional level of
context in which to understand a reference trace. Source code directly
expresses a program’s intentions; by correlating source code to reference
trace events, a user can map code abstractions to a concrete view of

processor-level events.

Generally, programmers do not think about how the code they write
effects physical memory. This disconnect between coding and the memory
system can lead to surprising revelations when exploring a trace, creating
a better understanding of the relationship between coding practices and
performance. For example, in a program which declares an C++ STL
vector, initializes the vector with some data, and then proceeds to sum all
the data elements, one might expect to see a sweep of writes representing

the initialization followed by reads sweeping across the vector for the

summation. However, MTV reveals that before these two sweeps occur,
an initial sweep of writes moves all the way across the vector. The source
code viewer indicates that this view occurred at the line declaring the
STL vector. Seeing the extra write reminds the programmer that the
STL always initializes vectors (with a default value if necessary). The

source code may fail to explicitly express such behavior (as it does in this

example), and often the behavior may appreciably impact performance.

In this example, MTV helps the programmer associate the abstraction of
“STL vector creation” to the concrete visual pattern of “initial write-sweep

across a region of memory.”

4.3.3.3 Time Navigation and the Cache Event Map

Because reference traces represent events in a time series and MTV
uses animation to express the passage of time, only a very small part of the
trace is visible on-screen at a given point. To keep users from becoming
lost, MTV includes multiple facilities for navigating in time. The most
basic time navigation tools include play, stop, rewind and fast forward
buttons to control the simulation. This allows users to freely move through

the simulation, and revisit interesting time steps.

The cache event map is a global view of the cache simulation, displaying
hits and misses in time, similar to the technique of Yu et al. [33]. Each
cell in the map represents a single time step, unrolled left to right, top

to bottom. The color of each cell expresses the same meaning as the

blue-to-red color scale in the cache and region views (see Section 4.3.2.3).

A yellow cursor highlights the current time step of the cache simulation.

By unrolling the time dimension (normally represented by animation) into
screen space, the user can quickly identify interesting features of the cache
simulation. In addition, the map is a clickable global interface, taking the

user to the time step in the simulation corresponding to the clicked cell.

19

20

Beginning of Cache Simulation

m Hit to fast cache level mHit to slow cache level
m Miss to main memory [Current time step End of Simulation

Figure 4.6. The cache event map provides a global view of the cache simulation by
showing the cache status for each time step, and a clickable time navigation interface.
The time dimension starts at the upper left of the map and proceeds across the image
in English text order.

4.4 Examples

The following examples demonstrate how MTV can be used to illu-
minate performance issues resulting from code behavior. For the first
example, a simple cache is simulated: The block size is 16 bytes (large
enough to store four single-precision floating point numbers); L1 is two-way
set associative, with four cache blocks; L2 is eight-way set associative, with
eight cache blocks. In the second example, the cache has the same block
size but twice as many blocks in each level. These caches simplify the
demonstrations, but much larger caches can be used in practice. The third
example simulates the cache found in a PowerMac G5. It has a block size

of 128 bytes; the 32K L1 is two-way set associative, and the 512K L2 is

21

eight-way set associative.

Figure 4.7. Striding a two dimensional array in different orders produces a marked
difference in performance.

4.4.1 Loop Interchange
A common operation in scientific programs is to make a pass through
an array of data and do something with each data item. Often, the data
are organized in multi-dimensional arrays; in such a case, care must be
taken to access the data items in a cache-friendly manner. Consider the

following two excerpts of C code:

/* Bad Stride (before) */ /* Good Stride (after) */
double sum = 0.0; double sum = 0.0;
for (j=0; J<4; J++) for (i=0; i<32; i++)
for (i=0; 1<32; 1i++) for (j=0; J <4; Jj++)
sum += A[i][]]; sum += A[i][j];

The illustrated transformation is called loop interchange [10], because
it reorders the loop executions. Importantly, the semantics of the two
code excerpts are identical, although there is a significant difference in
performance between them.

The above source code demonstrates how MTV visualizes the effect

of the code transformation (Figure 4.4.1). In each case, the A array is

displayed both as a single continuous array (as it exists in memory) and
as a 2D array (as it is conceptualized by the programmer). The “Bad
Stride” code shows a striding access pattern resulting from the choice of
loop ordering, while the “Good Stride” code shows a more reasonable
continuous access pattern.

The “Bad Stride” code exhibits poor performance because of its lack
of data reuse. As a data item is referenced, it is loaded into the cache
along with the data items adjacent to it (since each cache block holds four
floats); however, by the time the code references the adjacent items, they
have been flushed from the cache by the intermediate accesses. Therefore,
the code produces a cache miss on every reference. The “Good Stride”
code, on the other hand, uses the adjacent data immediately, increasing
cache reuse and thereby eliminating three quarters of the cache misses.

MTYV flags the poor performance in two ways. First, the poor striding
pattern is visually apparent: the accesses do not sweep continuously across
the region, but rather make multiple passes over the array, skipping large
amounts of space each time. Because the code represents a single pass
through the data, the striding pattern immediately seems inappropriate.
Second, the cache indicates that misses occur on every access: the shell
of the cache glyph stays black, and therefore cold, throughout the run.
The transformed code, on the other hand, displays the expected sweeping

pattern, and the cache stays warm.

4.4.2 Matrix Multiplication
Matrix multiplication is another common operation in scientific pro-
grams. The following algorithm shows a straightforward multiplication

routine:

for(i=0; i<N; i++)
for(j=0; j<N; j++){
r = 0.0;

22

for(k=0; k<N; k++)

r += Y[i*N+k] * Z[k*N+j];
X[i*N+j] = r;
}

MTYV shows the familiar pattern associated with matrix multiplication
by the order in which the accesses to the X, Y, and Z matrices occur
(Figure 4.8, top). The troublesome access pattern in this reference trace
occurs in matrix Z, which must be accessed column-by-column because of
the way the algorithm runs.

In order to rectify the access pattern, the programmer may transform
the code to store the transpose of matrix Z. Then, to perform the proper
multiplication, Z would have to be accessed in row-major order, eliminating
the problematic access pattern. When certain matrices always appear
first in a matrix product and others always appear second, one possible
solution is to store matrices of the former type in row-major order and
those of the latter type in column-major order. In this example, the
visual patterns encoded in the trace (Figure 4.8, top), suggested a code
transformation. This transformation also suggests a new abstraction of left-
vs. right-multiplicand matrices that may help to increase the performance
of codes relying heavily on matrix multiplication. A more general solution
to improving matrix multiplication is widely known as matrix blocking,
in which algorithms operate on small submatrices that fit into cache,
accumulating the correct answer by making several passes (Figure 4.8,

bottom).

4.4.3 Material Point Method
A more complex, real-world application of MTV is in investigating the
Material Point Method (MPM) [3], which simulates rigid bodies undergoing
applied forces by treating a solid object as a collection of particles, each of

which carries information about its own mass, velocity, stress, and other

23

24

Figure 4.8. Naive matrix multiply (top) and blocked matrix multiply (bottom).

physical parameters. A simulation is run by modeling an object and the

forces upon it, then iterating the MPM algorithm over several time steps.

Because each material point is associated with several data values, the
concept of a particle maps evenly to a C-style struct or C++-style class.

The collection of particles can then be stored in an array of such structures.

Figure 4.9. MPM Horizontal (top) and Vertical (bottom).

Accessing particle values is as simple as indexing the array to select a
particle, and then naming the appropriate field. Although this design is
straightforward for the programmer, the scientific setting around MPM

demands high performance.

MTV’s visualization of a run of MPM code with the array-of-structs
storage policy demonstrates how the policy might cause suboptimal per-
formance (Figure 5.8, top). The region views show that the access pattern
is broken up over the structs representing each particle, so that the same
parts of each struct are visited in a sort of lockstep pattern. Though these
regions are displayed in MTV as separate entities, they are in fact part of
the same contiguous array in memory; in other words, the access pattern
is related to the poorly striding loop interchange example (Section 4.4.1).
The visual is confirmed by the MPM algorithm: in the first part of each
time step, the algorithm computes a momentum value by looking at the
mass and velocity of each particle (in Figure 5.8, top, the single lit value
at the left of each region is the mass value, while the three lit values to

the right of the mass comprise the velocity). In fact, much of the MPM

25

algorithm operates this way: values of the same type are needed at roughly
the same time, rather than each particle being processed in whole, one at
a time.

MTYV demonstrates a feature of the MPM implementation that is
normally hidden: the chosen storage policy implies a necessarily non-
contiguous access pattern. The simplest way to rearrange the storage is to
use parallel arrays instead of an array of structs, so that all the masses
are found in one array, the velocities in another, and so on. Grouping
similar values together gives the algorithm a better chance of finding the
next values it needs nearby. This storage policy results in a more coherent
access pattern, and higher overall performance (Figure 5.8, bottom).

This particular observation and the simple solution it suggests are both
tied to our understanding of the algorithm. By making even more careful
observations, it should be possible to come up with a hybrid storage policy
that respects more of the algorithm’s idiosyncrasies and achieves higher
performance. The example also stresses the value of abstraction, and in
particular, the value of separating interfaces from implementations. By
having an independent interface to the particle data (consisting of functions
or methods with signatures like double getMass(int particleld);),
the data storage policy is hidden appropriately and can vary freely for

performance or other concerns.

4.5 Conclusions and Future Work

The gap between processor and memory performance will be a persistent
problem for memory-bound applications until major changes are made
in the memory paradigm. We have described a tool that is designed to
explicitly examine the interaction between a program and memory through
visualization of detailed reference traces. Our work provides a technique for
the rich yet inscrutable reference trace data by offering visual metaphors
for abstract memory operations, leading to a deeper understanding of

memory usage and therefore opportunities for optimization.

26

In the future, we hope to mature our techniques by making them
more automatic; we want to make the process of collecting, storing, and
analyzing a reference trace transparent to a user, so that MTV can become
as useful as interactive debuggers are today. A way to reduce or eliminate
the need for runtime instrumentation (or at least, render it completely
transparent) would help meet this goal, for instance.

We are also seeing a relatively new trend in computing—multicore
machines are on the rise, and programmers are struggling to understand
how to use them effectively. To fully realize their potential, we need ways
to keep all of the cores fed with data: it is a central problem, and as yet,

an unsolved one. We believe visualization and analysis tools in the spirit of

MTYV have an important place among multicore programming techniques.

Whether processors continue to get faster, or more of them appear
in single machines (or both), memory will always be a critical part of
computer systems, and its careful use will be critical to high-performance
software. We hope that MTV and the ideas behind it can help keep the

growing complexity of computer systems manageable.

27

CHAPTER 5

ABSTRACT REFERENCE TRACE
VISUALIZATION

This is an awesome chapter on abstract reference trace visualization.

5.1 Introduction

The interactions between modern hardware and software systems are
increasingly complex which can result in unexpected interactions and
behaviors that seriously affect software performance costing time and
money. To address this issue, students and software engineers often
spend a significant amount of their time understanding performance and
optimizing their software.

One common performance analysis technique is to track cache activity
within an application. This information is usually provided for very coarse
time granularity. At best, cache performance is provided for blocks of
code or individual functions. At worst, these results are captured for
an entire application’s execution. This provides only a global view of
performance and limits the ability to intuitively understand performance.
An alternative to this coarse granularity is to generate a memory reference
trace, which can then be run through a cache simulator to produce a
fine-grained approximation of the software’s actual cache performance.

The biggest challenge when using this approach is sifting through the
volume of data produced. Even simple applications can produce millions
of references, yet this data contains valuable information that needs to be
extracted to better understand program performance. The use of statistical

methods or averaging simply produces a coarse understanding of software

performance, forgoing the detail available in the trace. Static analysis of
memory behavior is also possible [6], but limited only to cases where the

program behavior can be deduced at compile time.

To address these problems, we propose visualizing the simulated cache
and the reference trace, allowing developers to see their software with
fine-grained detail, and bring their experience and intuition to bear on
understanding software memory performance. We do this by introducing a
system that provides an abstract visualization of the cache as the reference
trace plays through it.

The goal of the system is to provide an intuitive understanding of how
the computer hardware affects software performance, without the need to
know or understand every feature of the hardware itself. The resulting
visualizations correspond to our intuitive understanding of how caches
work, yet are able to convey cache activity that may be difficult to envision
or else are surprising in some way. Our approach is not a replacement
for other conventional approaches, but rather an additional tool that can
assist in software analysis.

Figure 5.1 shows four example images of our system visualizing different
versions of the matrix multiply algorithm. Memory locations, represented
by point glyphs, are placed on concentric rings based upon their cache
residency. Lighter-colored, ghost glyphs are placed in the higher levels
of cache (and the main memory region) to indicate duplication of data
through the levels of the memory hierarchy. The outermost ring contains
items in main memory, the middle ring contains items in the level 2 (L.2)
cache, and the innermost ring contains items in the level 1 (L1) cache. Our
visualization provides an intuitive understanding about how memory is
used and evicted from the cache. As locations are referenced, their glyphs
move to the center of the visualization, and as they age (and are eventually

evicted), they are pushed out towards the next concentric ring.

The remainder of the paper is organized as follows. In the next section

29

30

(a) Standard 16x16 ma- (b) Transposed-storage (¢) 16x16 matrix multi-
trix multiply. 16x16 matrix multiply. ply with 4x4 blocking.

(d) 12x12 matrix multi-
ply with 4x4 blocking.

Figure 5.1. Matrix multiply in various incarnations. The standard algorithm shows
good cache behavior for the left-hand matrix but poor behavior for the right-hand
matrix. One solution is to operate on a transposed-storage version of the right-hand
matrix, which results in better cache behavior, but a loss of generality in the allowed
matrix operations. A common solution between the two is matrix blocking, in which
submatrices are operated on to accumulate the final result piece by piece. By operating
on small submatrices that fit into the cache, we can improve the cache performance
of the multiply while keeping the generality of the standard matrix multiplication
algorithm.

we discuss related work. Section 5.3 overviews our system while section 5.4
discusses the design decisions we have made in our abstract visualization
approach. Section 5.5 discusses results and examines a few case studies.

Section 5.6 concludes with future directions for this work.

5.2 Related Work
5.2.1 Memory Behavior Visualization
Software profilers, programs that observe the runtime behavior of a

target application and generate statistics about where that application

spent its time, are a basic tool for any study of software performance.

Well-known examples include GNU GProf, VTune, and Shark. These
programs report the amount of time spent in various functions or lines
of code, allowing developers to direct their optimization effort. They
are capable of providing, for example, aggregate cache miss statistics

from hardware performance counters, but generally they do not provide

information about how memory was used during the application’s execution.

Performance counters can also be accessed from applications by making
use of specialized libraries [25]. The visualization provided by profilers is
usually limited to graphs of the data that can show where the application

spent more time, but not necessarily why.

Software profilers generalize to a certain class of visualization tools,

exemplified by Vampir [14] and Tau [22] which use runtime profiling

information to produce post-mortem, statistically-guided visualizations.

They use classical information visualization techniques to show trends in
bulk data about, for example, communication patterns between nodes of
a cluster, and allow for the developer to identify high-level performance
bottlenecks. They are essentially the visual counterparts of traditional

code profilers.

More specific visualizations can provide insight about execution and
performance, at many levels of detail. At the system level, whole-system
data is collected in an attempt to visualize the various parts of the machine
as an execution is carried out. Stolte et al. [24] present a system that
visualizes important processor internals, such as functional unit utilization
and pipeline stalls, and allows for drilling down to show details about
certain subsystems. At the application level, runtime data is visualized
in the familiar context of source code. For example, Heapviz [1] tracks
heap allocations and their pointer dependencies in the Java runtime,
displaying the heap’s graph structure, allowing developers to see how their

data structures develop during the run, possibly finding errors such as

31

misallocations, unbalanced hash tables, etc.

Several approaches deal with the memory subsystem specifically. The
Cache Visualization Tool [27] shows cache block residency, visualizing cache
line contention due to the layout and access patterns of several active data
structures. KCacheGrind [29] is a visual frontend for CacheGrind that
visualizes the calling context over time, correlating cache miss costs with
lines of source code. Yu et al. [32] use cache simulation to produce a static
view of cache behavior over time. Each pixel in an image corresponds to the
cache effect (hit or miss) of a single reference; as a whole, the image serves
as a time-indexed “map” of cache performance. YACO [18] is a cache
optimization tool focusing on performance statistics. Cache misses are
counted and plotted in different ways, highlighting performance bottlenecks
in lines of code and data structures. In our own earlier work, the Memory
Trace Visualizer (MTV) [7] visualizes a reference trace and performs cache
simulation, showing access patterns as they occur, and cumulative cache
performance. By contrast, Grimsrud et al. [9] use traditional information
visualization techniques, developing precise definitions of access locality,

and visualizing the resulting measures in surface plots.

These approaches all provide specific insights, but none of them gives
an overarching view of the behavior of the memory system and cache,
including the elements residing therein, whereas our goal in the current
work is to set up a system in which such a global view of many elements
of the memory subsystem is possible, leading to insights about large-scale

patterns and behaviors.

5.2.2 Organic Visualization

Our current work is inspired by organic visualization [8], an approach
that imbues the visual elements with behavioral rules that allow them to
self-organize into meaningful visual structures, much as individual cells are

able to work together to constitute a whole organism. Codeswarm [16] is

32

an example of the technique as applied to software visualization, in which

source code repository data directs visual elements representing files and

developers to form groups according to tight relationships between them.

For instance, frequent committers associate into circles with their working
files. Motion, proximity, color, and size all work together to express the
important relationships between the participants. Our current work is
inspired by systems such as Codeswarm, as such organic visualization
systems are able to handle many visual elements by allowing them to
aggregate automatically into higher-level structures—such as levels of a
cache and semantically delineated regions of memory—so that their sheer
volume does not obscure the insights they try to transmit. Compared to
this more organic visualization behavior, our earlier system MTV addresses
the same problem of visualizing reference traces, but in a more regimented,
litral way. Concrete access patterns are more visible in MTV, while our
present work is better able to show cache dynamics and data motion. As
with much of the work described here, our system is trace driven, and
performs cache simulation to derive some performance statistics that can
be associated to the trace. In the next section we detail just how our
system works, both in terms of visual element design, and their prescribed

behaviors.

5.3 System Overview

In this section we briefly outline the data flow in our visualization

system.

Memory Reference Traces. The system relies on memory reference

traces collected from running applications as its primary data source.

The traces are simply lists of addresses accessed by the application as it
runs, together with a code indicating the type of transaction (i.e. read
or write). We collect these at runtime using Pin [12], a dynamic binary

rewriting infrastructure that allows for arbitrary code to be attached

33

to any instruction at runtime. Collecting a reference trace is relatively
straightforward: each load or store instruction is directed to trap to
a recording function which writes the read-write code and the effective
address to disk. We are also able to use debugging symbols in the executable
to record correlations of instructions to line numbers in source code. This
allows the visualization to correlate memory activity to the familiar source
code context for the visual analysis. In a final step, the log of memory
activity is filtered to allow the visualization to only display activity from
variables and algorithms of interest to the developer. In this way, we can
avoid displaying the many activities application perform which are not

important to understanding the application’s behavior.

Cache Simulation. We drive our analysis and visualization with cache
simulation, so that users may start to understand how their application
performance is affected by its interaction with the cache and the memory
subsystem. Though there are several cache simulators available for research
use, we use a home-grown simulator that allows us to have more control
over what kinds of data can be extracted as output. The simulator takes
as input individual reference records from the trace and computes their
effects on the working sets in each cache level, reporting what level of the
cache was hit, and which data items were moved from level to level or

were evicted entirely.

Visualization. The results of the cache simulation are fed, step by step,
to our visualization system. The system has a structural layout reflecting
the simulated memory architecture, over which glyphs representing pieces
of data arrange themselves to reflect the ongoing dynamic updates to the

cache state as encoded in the reference trace and the cache simulation.

The current work focuses largely on the last component, visualization.

Data collection and cache simulation are crucial parts of this effort, however

the difficulties and issues they bring are outside the scope of this work.

In the next section we describe the visualization system in careful detail,

34

35

Figure 5.2. Left: Our visualizations are structured schematically as concentric rings
representing the main memory and levels of cache. The central point represents
the CPU. Increasingly distant from the center are the L1 and L2 caches, with main
memory as the farthest ring. Right: Against this backdrop, point glyphs representing
data items move from place to place to indicate residency in the various levels of the
memory hierarchy. In the cache levels, the glyphs arrange themselves into groupings
indicating the associative cache sets, with data on the verge of eviction appearing
nearer the boundaries between the levels.

examining and describing our design choices, and how they add up to

provide an insightful visual expression of the data in the reference trace.

5.4 Visualizing Reference Traces

In this section we describe the design of our system, focusing on the
nature and usage of individual visual channels. In particular, we distinguish
time scales in each channel by “frequency,” reflecting the time scales over
which changes in visual qualities tend to persist. Channels engage a low
frequency when visual elements exhibit a longer-term, stable behavior,
and a high frequency when they change rapidly. By way of example, we
can consider the position of a data glyph—the low-frequency behavior
is to settle into a position within a cache level or main memory; the
high-frequency behavior is to move from one area to another in response
to a cache level eviction event. Generally speaking, we use low-frequency
qualities to establish baselines or express average behaviors over a long
time period, reserving high-frequency qualities to reflect sudden changes in

state, or very important events that need to draw the viewer’s attention.

In broad strokes, the visualization system consists of a structural layout

representing the levels of cache, and main memory, over which data glyphs,
representing individual addressable pieces of memory, move according to
behavioral rules. The positions of these glyphs encode their presence in

one or more levels of cache.

5.4.1 Structured Cache Layout

The data glyphs occupy a structured visual space representing the
machine architecture under consideration (Figure 5.2, left). Because
locality is so important in understanding cache and memory behavior, the
visual space encodes both spatial and temporal locality of memory using
spatial layout design choices. The design is literally CPU-centric—the
physical center of the display represents the computing core, encompassing
the operation of functional units as well as the registers containing the
working set of data. In radial layers about the center, we reserve space
for the levels of cache, from fastest to slowest, while main memory is
represented as a final radial layer beyond all the levels of cache. This
structuring reflects the idea that as storage levels grow larger as they
become slower and more “distant” from the computing core. Visually, it
means that data glyphs representing pieces of memory must move from

farther distances in order to occupy the CPU.

The glyphs further organize themselves to reflect the operation of
particlar cache levels (Figure 5.2, right). For instance, in an L1 two-
way cache, there are two sets into which data items may map—these
are represented as interlocking spirals emanating from the center of the
display. Similarly, the four sets of the L2 cache are represented as spiral
arms emanating from the boundary of the L1 region. We choose to
show the sets distinctly because this feature of caches is often abstracted
away in the thinking of programmers, yet it may matter very much to
cache performance. By rendering the distinction visible, we are able to

demonstrate the resulting cache behavior and performance directly.

36

37

Figure 5.3. The common pattern of array initialization, as visualized in our system
at three points in time. The red streak lines indicate cache misses for references to the
green array. The data comes into L1 and is initialized with a series of write operations.
As the next batch of data comes in, the initialized data becomes “stale” and moves
slowly first out of L1 to L2, then out of L2 back into main memory. The bundle of red
cache miss lines is seen to rotate through the array as the array items stream through,
visually characterizing this pattern of access.

As mentioned above, the placement of the cache sets reflects their
progressive “distance” from the CPU core; within each cache set represen-
tation, distance also encodes the eviction order, with glyphs that are about
to be evicted from the cache positioned further away from the center, on

the border with the slower cache level to which they will be sent.

A common cache design uses the “least recently used” (LRU) heuristic
in deciding which cache block should be evicted when a new block arrives.
Under an LRU block replacement strategy, distance from the center of the
display can also be taken to encode time, so that glyphs that are more
“stale” (i.e., have not been accessed for a long time) tend to appear further
from the center. This placement rule renders certain access behaviors
clearly visible. For instance, a common memory access pattern is that of
array initialization, in which a newly created array must have its entries all
set to some base value (Figure 5.3). Tracking a single data item d through
the cache would reveal that at some point in time, it is brought into L1,
where it is initialized. As subsequent data items are processed, d becomes
older in L1, so it progressively moves further away along its spiral arm.
When it reaches the end of the spiral, and yet another block is brought
into L1, it is evicted to L2, where a similar process occurs, finally ejecting

d back to its original home in main memory. Because time is, in this way,

Table 5.1. Visual channels engaged in our system

Visual Channel High Frequency Low Frequency
Structure Eviction order Cache level
] Change in resident | Changes in eviction order
Motion
cache level within cache level
Size Access —
Color Cache miss Home memory region

encoded as distance from the center, d moves along a radial path as it
ages, eventually leaving the cache altogether. The visual pattern makes
clear how the lack of reuse of d makes it both “older” and pushes it “far

away’ at the same time.

5.4.2 Data Glyph Behavior

Figure 5.2 demonstrates the static structuring we have designed as the
space in which our visualization occurs. In fact, almost every dynamic
aspect of this visualization occurs via the behavior of the data glyphs. In
this section, we describe the visual channels occupied by the glyphs and
how they make use of these channels at both low and high frequencies to
transmit information about the reference trace.

Motion. One of the glyphs’ basic jobs is to move from place to place
to express their changing occupancy of different memory hierarchy levels
in response to cache events. Because glyphs are alloted the same amount
of time for each move, larger distances are covered at higher velocities than
shorter ones. Important events such as cache misses and evictions appear
as visually striking, higher velocity actions than do cache hits; when a
flurry of such events occurs, the effect is a jumble of high-speed activity
which appears very clearly and draws the viewer’s attention (Figure 5.3

demonstrates this idea for a specific kind of memory access pattern).

38

39

(a) No history (b) 16 frames (c) 32 frames (d) 64 frames

Figure 5.4. Demonstration of the effect of history pathlines on the visualization.
These four images are of the exact same simulation time, varying only in the amount
of history accumulated into the fading trails. In (a) we see only the current animation
frame, with no sense of history. In (b) we see the last 16 frames, which show that L1
hits have been taking place in the recent past. In (c) there is evidence of a recent
cache miss, and an associated eviction event, while in (d) we see these same events in
heavier detail. Note that while the same set of events is visible in (c¢) and (d), the
longer history trail in (d) tends to obscure the L1 activity that is clearer in (b). By
providing an interactive control for this feature, the user can select the amount of
history that is appropriate for the current visual analysis task.

Within a particular cache level, slower motion to the head of the cache
set indicates a cache hit. With many cache hits occurring in a row, the
visual character is that of several glyphs vying for the head position in the
cache. The volume of activity is again expressed by volume of motion, but
the short distances involved serve as a visual reminder that the observed
behavior exhibits good locality. This channel is naturally high-frequency;,
as glyphs cover long distances quickly only when they are evicted from
one cache level and enter another—a momentary state change that occurs
locally in time. The low-frequency component is simply lack of motion,
expressing residency within the current level of cache. Furthermore, we
distinguish between data entering the cache (in response to a cache miss),
and data leaving the cache (due to eviction)—the former is expressed
by fast, straight-line motion, while in the latter, glyphs move in a wider

circular motion to suggest fleeing.

As noted before, position also plays an important role in expressing

cache performance. The cache levels are arranged so that their distance
from the center reflects their architectural distance from the CPU; the
distance away from the center in each cache level further reflects how old
each access is, as measured from the last time it was accessed. Therefore,
data items with poor utilization slowly migrate to the outer edge of their
home cache levels, and are evicted by incoming data items at the appro-
priate time to a farther cache level. By watching this slowly developing
positional change, one may learn about the effect of under-utilization of

these data items.

Color. Each glyph’s color reflects the region of memory it comes
from. For example, Figure 5.8 shows several arrays of data from a particle
simulation, each containing a certain type of simulation value (mass,
velocity, etc.). Using the region identity as the base color for the glyphs
allows for understanding the composition of the current working set at
a glance. In Figure 5.1(a), L1 is seen to contain elements from the two
multiplicand matrices in a particular order.

The region identity occupies the low-frequency component of the color
channel; it may also be used to indicate important events at a high-
frequency as they occur. For instance, when glyphs move from slower
cache levels to faster ones (i.e., “closer” to the CPU), this indicates a cache
miss event, which are important to understand in achieving high software
performance. Therefore, as the glyphs move to the L1 cache in response
to such an event, they flash red momentarily to indicate their involvement

in the cache miss event.

Size. Along with color, the size of the glyphs makes up their basic
visual composition. The data glyphs all have an equal baseline size (i.e.,
the low-frequency size channel empty) in order to emphasize the relative
composition of the cache levels without singling out any particular data

items.

The high-frequency size channel is used to redundantly encode an access

40

to a particular data item. When a data item is accessed, it pulses larger
momentarily, with the effect of highlighting it among all the data items
present in the cache level along with it. When the data item is not already
present in the L1 level, its pulsation can be seen as it moves into L1 in
response to the cache miss event, once again highlighting the important
event (in this case, the pulsation redundantly strengthens the red glow as

discussed above).

5.4.3 Time-Lapse Mode

Memory reference traces can be very large; as such, visualizations
produced from them can be intractably long to observe. One option would
be to simply speed up the visualization by increasing the speed of trace
playback and glyph motion. This approach works until the speed becomes
so high that glyph motion is no longer visible.

To address this limitation, we have taken the approach of compressing
several timesteps into a single animation frame, encoding the changes in
glyph positions through time by using pathlines. First, a fast forward
speed is set (e.g., 2x, 4%, etc.), indicating the number of animation frames
to skip in visualization. The positions of glyphs are calculated for those
skipped frames, and a pathline is used to connect the glyph positions at
those intermediate times. When the time-compressed frames are played
at a normal speed, simulation time appears to have sped up dramatically,

yet the pathlines keep the sense of evolving time coherent.

The pathlines can be controllably extended further into history as
desired. Figure 5.4 shows four different settings for the tail length for the
same time step. Increasing the tail length shows more events, but also
tends obscure individual events—the tradeoff can be managed by the user
interactively. Transparency in the pathlines indicates age, older events
appearing more transparent, while newer events appear opaque. The

time-lapse view therefore shows higher-order temporal patterns in addition

41

to managing the commonly long time scales present in most reference

traces.

5.4.4 Summary Views

The structured layout also provides for displaying a general quantity
computed from the trace as a whole, allowing, for example, statistical
information about the trace to be included in the display. The computed
value is displayed in a soft, colormapped disk behind the areas reserved
for the cache levels. In our examples, we have computed the “cache

" a measure of the proportion of transactions in each cache

temperature,’
level resulting in a hit. More precisely, each reference trace record causes a
change in the cache: each level may either hit, miss, or else be uninvolved
in the transaction. These are assigned scores (a negative value for a miss,
a positive value for a hit, and zero for noninvolvement) which are averaged
over the last N reference trace records. The assigned scores may vary

for different levels; for example, the penalty for a miss is higher for the

L1 cache, because once a cache line is loaded into L1, it will have more

of a chance to make heavy reuse of the data than a slower level would.

In each level, the cache temperature rises above zero when the volume
of data reuse exceeds the “break even” point, and falls below zero when
there is not enough reuse. When a cache level sits idle (because, for
instance, faster levels are hitting at a high rate), its temperature gradually
drifts back to zero. The metaphor is that new data are cold, causing
a drop in temperature, but accessing resident data releases energy and
raises the temperature. Between these extremes, sitting idle allows for the

temperature to return slowly to a neutral point.

The cache temperature is displayed as a glowing color behind the
appropriate structural elements of the display. We have used a divergent
colormap consisting of colors that naturally express relative temperatures:

it runs from white in the middle (the neutral color indicating no activity,

42

or a balance of hits and misses) to red at the warm end (indicating a
relatively high volume of cache hits), and to blue at the cool end (for a
relatively high volume of misses).

The cache temperature glyphs provide a context for the patterns of
activity that occur over it. When the cache is warm, the pattern of activity
will generally show frequent data reuse, while there may be many patterns
to explain a cold cache. The changing temperature colors help to highlight
periods of activity leading to both kinds of cache behavior.

5.5 Results and Discussion
In this section we review several case studies, identifying performance
and behavioral characteristics that can be seen with our visualization

methods.

5.5.1 Matrix Multiply

Matrix multiplication is ubiquitous in many computing fields and as
such its caching performance has been of interest to programmers. Here
we examine the cache behavior of matrix multiply using our visualization
approach.

Standard Algorithm. The standard matrix multiplication algorithm
computes dot products of the rows of the left matrix with the columns of
the right matrix. This algorithm achieves good cache characteristics for
only one of the matrices, since the other must have its elements accessed
in an order that does not correspond to its layout in memory. Visually, it
can be seen that the cache contains contiguous blocks from one array, and
separated blocks from the other; the separated blocks each have a single
element that is accessed during each dot product, and these blocks flow in
and out of L1 for each column (Figure 5.5).

Figure 5.1(a) demonstrates that the cache misses incurred by the right
matrix (in green) are almost constant, whereas the left matrix (purple)

is able to achieve much more data reuse. The lack of reuse in the right

43

(A Ava A Aid [Ais Avs Avr Aus [BETBIABITBI] B: s 815 By Bis Cia Cia Cis Cia|Cis Cus Ciy Cin W,

Aus Az Aus Aga Py Ay Aoy Mg [BEBTEIE 6.« B.: B:) B2s Caa Gz Cas Caa Cas Cag Coy Cas »y‘,f:/’

Ass Aoa Ass Asa Ass Mg Asy Asg (ENBTBEREHA 5.« B B3 Bss 31 Ca2 Ca3 Coa Cos Cag Cap og "sey
Aat Auz Aus A Aas Ags Agy Asg [BAEBIEBaaBAA] B. s By Bay Bus Ca1 Caz Cas Caa Cas Cag Cas Cag

Asi Asa Ass Asa Ass Ass Asy Asg X [BEBEABEBa] 8. s B¢ B:j Bss = || CoaGea Ca Cos Gas Cas o Gan

Aas Aax Asa Aga Ass Acs Asy Acg [BEATBEATBETBa B B Bor Bes Co1 Coa Csa Can Cos Cos Car Cos

Ao Arz s Ara Ao Ars Arz Arg (B BRATB B3] B B By B Cra Cra C13 Cra Crs o Crg Crp

Ast Auz Aus Aga Ags Ags Agr Ags (BRI BRABRRBA] B s B By Bss C1 Caa Cas Cas Cas Cas Cay Cas

Aas Aia Aus A [Aus Avs Aur Auy BB [B3 [BE) 8. - B1c 817 Bus CCRGHGHIC.s Cue Cur G || g

Poa Aoz As Ao Aus Agg P Ao BB B2 (B2 8. 5 B2 B, B4 o1 Coa Ca3 Coa Cos Cag o Cog w‘,::
Asa Asz Ass Ass Ass As Asy Asg BB |83 By 8, s 1 85 B Cs1 Csa Cas o Cas Cag Co Cag er
Ao Aaa Aus As Aus Ags Auy Aug 8, Bus Bag Bay Bug Cus Caa Caa Cun Cos Cog Cuy Cap

A Asz Ass Asa Ass Asg Asy Asg X B3B3 (B3 [BEA] B s B Bsr Bus |~ | Cas Coa Coa Csa Cos Cog Csp Cog

Rox Aca Ass Acs Ags Ags Agy Ags BB B (B 86 5 B o Bos Cos Coa Caa Coa Cos Cas Coy Cop

Aoa Ara Ars Ars Ars Arg Ay Ay Bys By By By 1 Cra Crs Cra Cos Crg Cr Crg

Asx Asz Aus Aus Ass Ass Asy Ass BB B (Bsal 8. s B4 81 85 Cas Caa Cas Coa Cas Cas oy Cas

At A Ao vl | RUAEA A | | BUBIRBIRBI | B:s Bus Brr Brs | | (GGG Cis Cuo iy Cun o

Aot Aoz Ao Ao | Aas Aug Aoz Ass 825 Bg By By Caa Caa Cap Caa | Cas Cag Cap Cas DW:%S';
Asa Asa Ass Ase | Ass Asg Ay sy Bys By Byy By Gaa Gaa Caa Coa | Cas Cos Gz Can |\ T "":_v,,’
Aux Auz Aus Aua | Aus Aug Agy Aus Bz Bas Bas Bus | | Cux Caz Can Con fCas Can Ca Cas e,
Asa Asa Ass Ase 56 As7 Asp X BEIBIRBRATBAN | Bss Bso Bsy Bss | | Csa Csa Csa Coa | Css Csg Csz Csn

Act Asa As Ase | Ass Aas Asy Ass Bos Bos Boy Bos Cex Coa Cos Coa | Cos Cog Coy Coa

Boa Ara Aos Ara 7B 85 w0 || Gn GG Gy | EnEnEr o

Ass Asz Ass Asa | Ass s Ass Aus ‘ Bas Bye Byy Bas Cs1 Cs2 Cas Caa | Cas Cos Car Cas

Figure 5.5. A schematic view of the cache properties of matrix multiply. Top:
The standard algorithm computes dot products of rows of the left hand matrix with
columns of the right hand matrix. This requires pulling the indicated cache lines
into the cache. Unfortunately, as the columns of the right hand matrix are accessed,
the upper lines will tend to be evicted, causing them to be pulled in again for each
column, leading to poor cache performance. Middle: One simple idea for optimizing
the multiplication is to compute with the transpose of the right-hand matrix, accessing
its rows rather than its columns during the computation. The access patterns for both
matrices become spatially coherent, but at the cost of restricting where the transposed
matrices may be used. Bottom: By blocking the matrix multiply, we can bring in
fewer numbers of cache lines at a time, operating on the full set of data present before
bringing in a new block on which to operate. The results are eventually accumulated
in the output matrix, and the correct product is computed with better cache behavior
than the standard algorithm. Blocking retains some of the locality of the transposed
approach, while also keeping the generality of the standard matrix multiply.

matrix is conveyed visually by new data streaming into L1 as older data is
ejected from the cache in an almost pipelined manner. The misses come
from the ejected data having to re-enter the cache every time a column is
traversed.

Transposed Matrix Multiply. The visualization leads to a simple
idea: if we stored the transpose of the right matrix, then we would
improve its caching behavior by accessing its rows instead of its columns.
Figure 5.1(b) shows that the number of cache misses is largely reduced.
The left matrix (purple) is still seen to have better cache residency and

reuse; this is due to the fact that the dot products of a single row from

that matrix are computed against all columns of the right matrix, so it

tends to reside in the cache for longer.

Blocked Matrix Multiply. Storing transposed matrices restricts
the allowed operations performed on them—transposed matrices can only

“right matrix” in any multiplication. A common cache

participate as the
optimization for the standard algorithm is instead to use blocking, in
which submatrices are repeatedly multiplied and accumulated in the final
output. Rather than a single row of one matrix and a single value of
one column residing together in the cache at a time, blocking allows for
the submatrices to occupy the cache instead, occupying a middle ground

between the standard and transposed algorithms, while retaining the

generality of standard matrix multiply.

Figures 5.1(c,d) show that the overall volume of cache misses is reduced,
and more evenly distributed between the matrices. As the submatrix lines
are brought into cache, they remain there relatively longer and get better

data reuse than in the naive case.

5.5.2 Sorting Algorithms

Sorting algorithms are a natural choice for demonstrating reference
trace visualization, as the algorithms are usually straightforward and simple
to implement and understand, and therefore have simple yet important
interactions with the cache. In this section we compare two well-known
sorting algorithms, uncovering their cache performance characteristics:
bubble sort and merge sort. Bubble sort is known for its slow O(n?) average-
case running time, but it has good cache performance characteristics. By
contrast, merge sort has a better running time, and we demonstrate its

particular cache behavior characteristics.
Bubble Sort. Bubble sort is a well-known sorting algorithm with a
very simple implementation, in which repeated sweeps of the array to be

sorted cause large items to be swapped to the end. After the ith sweep, the

45

46

Figure 5.6. Bubble sort, a sorting algorithm in which progressive sweeps swap
the remaining largest element to the correct location. Because the sweeps become
progressively shorter, the size of the working set continuously decreases until it fits
first within L2, and then within L1, leading to good cache behavior at the end of the
algorithm.

1th largest element is sorted into place; therefore, the algorithm requires NV
sweeps of steadily decreasing length in the worst case to sort the entire list.
The visualization of the memory behavior of this algorithm (Figure 5.6)
shows an interesting characteristic—as the algorithm nears completion,
and the size of the remaining elements to sort begins to fit in the cache,
cache performance steadily improves. During the first sweep, all elements
of the array are accessed in turn, and the visualization shows every block
of values entering and then exiting the cache. The L1 cache temperature
rises due to the high volume of swaps occuring there, while the L2 cools
due to the lack of available data reuse in that level (since each item is
accessed at one time during each sweep). However, because fewer and
fewer elements are needed in each subsequent sweeps, eventually all of
the required data populates the L2—and then L1-—cache, and no further
evictions take place. This is illustrated by the sustained flurry of activity
between L1 and L2, and then later solely in L1, indicated by frequent,
localized streak lines and an increase in the observed cache temperatures.
The visualization clearly shows the increasing spatial locality inherent in
the access patterns associated to bubble sort.

Although bubble sort is famously slow in algorithmic complexity, it
does in fact have—at least during certain segments of its execution—
desirable cache behavior. Our conclusion from this initial example: though

reasoning carefully about bubble sort would lead to the insights about its

47

execution presented here, our visualization makes the insights immediately
graspable—its value lies in its ability to quickly, decisively, and visually
convey those insights, which can then later be confirmed by reasoning

about the program.

‘10‘3‘8‘4‘2‘12‘5‘9‘

Split Phase
(no memory activity)

‘3‘4‘8 10‘ ‘2 5‘9 12‘

Merge Phase

‘2‘3‘4‘5‘8‘9‘10‘12‘

Figure 5.7. Left: A schematic view of how merge sort works. In the top half, the
sorting function is recursively called on each half of the input. This step simply
sets up a tree of computation that will accomplish the sorting, without any memory
access. In the lower half, atomic lists of a single element are combined anti-recursively
by merging, resulting in progressively larger, sorted sublists. This stage involves
comparisons and movement of elements to a temporary working store, before they are
copied back to the input array. Each depicted merging phase matches with a snapshot
of our visualization on the right. Right: Visualization of the memory behavior of
the merge phase. This has roughly the opposite cache behavior as bubble sort—it
begins its memory transactions with small lists that fit entirely in the cache, forming
progressively larger lists that eventually overspill the cache levels, leading to poorer
cache characteristics near the end of the algorithm.

Merge Sort. Merge sort typifies the “efficient” sorting algorithms—it
achieves the O(nlogn) lower complexity bound on comparison-based
sorting algorithms. It is a divide-and-conquer algorithm that works
by dividing the list into two parts, applying the merge sort procedure
recursively to each half, and then reassembling a sorted list by sweeping

each list, transferring the appropriate value to the result array.

Though the algorithm has good asymptotic complexity, it may be
somewhat surprising to see that its cache behavior is somewhat erratic. In
the initial phase of the algorithm, the input is recursively subdivided into a
tree of lists of single elements (each of which is trivially already sorted, by
definition). In this phase, no memory transactions are performed on the
elements, so its cache performance is vacuously neutral. The second half
of the merge sort algorithm builds the sorted output by anti-recursively
merging the single-element lists, then the two-element lists that result, etc.
This phase starts out with good cache performance, as the lists to be sorted
are small and fit entirely into L1 (Figure 5.7 top), but as sorted elements
begin to move farther and farther distances (as they jump from their
current position to the head of a progressively sorted subarray), spatial
locality degrades. This can be seen in the spilling over of the working set
into L2 (Figure 5.7 middle), and then into main memory, with increasingly
frequent bursts of cache misses as the merge phase progresses (Figure 5.7
bottom). At the midway point, the process begins again for the second

half of single-element lists, and the cache behavior recurs once more.

5.5.3 Material Point Method

The material point method (MPM) [4] is a particle-based mechanical
engineering simulation method in which objects are discretized into col-
lections of points, which undergo loads according to certain rules. Here
we demonstrate a running MPM code and highlight some of its cache

behaviors. We present it here as an example of a real-world code running

48

49

Figure 5.8. The material point method (MPM), a particle-based mechanical
engineering simulation, in action. Left: Computation of momentum from the mass and
velocity data (in the black and green arrays). The algorithm tends to sweep through
the values in order, resulting in good cache performance. Middle: Computation of the
particle stress update (brown data array) near the end of the timestep, from various
data, including the constitutive model (blue data array). MPM is made up of several
phases which tend to access the data in order. The resulting visual pattern is that of
data moving into L1, being operated upon a limited number of times, and then slowly
migrating first to L2 and then back into main memory, as newer data comes into L1
to be operated upon in turn. Right: This example shows a bigger MPM simulation
and a larger cache to demonstrate the scalability of our visualization system.

in our visualization system.

Figure 5.8 shows an MPM timestep at various points. Figure 5.8 left
shows an early phase of the timestep, in which the particle momenta
(computed from their masses and velocities—the black and purple data
arrays, respectively) are interpolated to a background mesh via their
positions (the green data array).

In Figure 5.8 middle, we see the particle stress update (the brown data
array) taking place, with input from the physical constitutive model (blue
data array), using a sweeping access pattern that will engage each particle
in the system. As this action continues, the data seen to reside in L2,
which is no longer needed during this phase of the timestep, will slowly
age and be pushed out by the newer incoming data—the hallmark of a
“streaming” style of access, which is embodied by the stress update.

This example contains more data than our previous examples, and
we have also quadrupled the size of the simulated cache. As Figure 5.8
right shows, our system is able to scale up to larger sizes. Currently, our
bottleneck lies on the data collection side, rather than the visualization

side.

5.6 Conclusions and Future Work

We have presented a visualization system for memory reference traces,
drawing inspiration from organic visualization approaches, in reaching
for the goal of illustrating the large-scale behavior of memory access and
caching during the run of a program. Our system includes cache simulation
as a way to drive performance analysis, and uses a carefully orchestrated
set of visual qualities to convey important information about a program’s
runtime memory behavior.

We have several ideas in mind for future work. Although we have
argued that our design decisions work well to convey information, there
is still possible exploration of the visual channels we have discussed. For
instance, the low-frequency motion chanel is largely unused in our current
approach—mainly because we believe the visualization is more effective this
way—but it may be the case that other effects in various visual channels
are in fact useful. We would like to prototype several such effects, design a
user study, and investigate whether uninitiated subjects find them useful.

There is also no reason to restrict these techniques to just the memory
subsystem. A crucial part of the current effort rested in designing a
meaningful static structure against which to overlay the dynamically
changing data glyphs. We believe that such designs are possible for
many different kinds of system architectures, and that with the right
kinds of data sources, we could adapt this approach to diverse computing
platforms. The generally accepted difficulty of high-performance software
enterprises invites approaches such as ours to help developers understand

the performance characteristics of their programs.

50

CHAPTER 6

TOPOLOGICAL ANALYSIS AND
VISUALIZATION OF MEMORY
REFERENCE TRACES

Lorem ipsum blah blah blah.

CHAPTER 7

ENSEMBLE UNCERTAINTY IN
MEMORY REFERENCE TRACES

Lorem ipsum blah blah blah.

CHAPTER 8

RESULTS AND DISCUSSION

Lorem ipsum blah blah blah.

CHAPTER 9

CONCLUSION

Lorem ipsum blah blah blah.

1]

[10]

[11]

[12]

REFERENCES

E. E. AFTANDILIAN, S. KELLEY, C. GRAMAZIO, N. Riccr, S. L.
SU, AND S. Z. GUYER, Heapviz: interactive heap visualization for
program understanding and debugging, in Proceedings of the 5th
international symposium on Software visualization, 2010, pp. 53—62.

APPLE CORPORATION, Performance and debugging tools overview.
http://developer.apple.com/tools/performance/overview.html.

S. G. BARDENHAGEN AND E. M. KOBER, The generalized interpo-
lation material point method, CMES, 5 (2004), pp. 477-495.

, The generalized interpolation material point method, Computer
Modeling in Engineering and Sciences, 5 (2004), pp. 477-496.

K. BEyLs, E. H. D’HOLLANDER, AND Y. YU, Visualization enables
the programmer to reduce cache misses, in IASTED Conference on
Parallel and Distributed Computing and Systems, Nov 2002, pp. 781—
786.

S. CHATTERJEE, E. PARKER, P. J. HANLON, AND A. R. LEBECK,
FEzxact analysis of the cache behavior of nested loops, SIGPLAN Not.,
36 (2001), pp. 286-297.

A.N.M. I. CHOUDHURY, K. C. POTTER, AND S. G. PARKER,

Interactive wvisualization for memory reference traces, Computer
Graphics Forum, 27 (2008), pp. 815-822.

B. J. Fry, Organic information design, Master’s thesis, Massachusetts
Institute of Technology, May 2000.

K. GRIMSRUD, J. ARCHIBALD, R. FROST, AND B. NELSON, Locality
as a visualization tool, IEEE Transactions on Computers, 45 (1996),
pp. 1319-1326.

J. L. HENNESSY AND D. A. PATTERSON, Computer Architecture:
A Quantitative Approach, Morgan Kaufmann Publishers, third ed.,
2003.

C.-K. Luk, R. Conn, R. MurH, H. PatiL, A. KLAUSER,
G. LowNEY, S. WALLACE, V. J. REDDI, AND K. HAZELWOOD,
Pin: Building customized program analysis tools with dynamic instru-

mentation, in Programming Language Design and Implementation,
Chicago, 1L, June 2005, pp. 190-200.

C.-K. Luk, R. Conn, R. MurH, H. PatiL, A. KLAUSER,
G. LOwWNEY, S. WALLACE, V. J. REDDI, AND K. HAZELWOOD,

Pin: building customized program analysis tools with dynamic instru-
mentation, in PLDI, 2005, pp. 190-200.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

W. E. NAGEL, A. ArRNOLD, M. WEBER, H.-C. HOPPE, AND
K. SOLCHENBACH, VAMPIR: Visualization and analysis of mpi
resources, Supercomputer, 12 (1996), pp. 69-80.

, VAMPIR: Visualization and analysis of MPI resources, Super-
computer, 12 (1996), pp. 69-80.

N. NETHERCOTE AND J. SEWARD, Valgrind: A framework for heavy-
weight dynamic binary instrumentation, in Programming Language
Design and Implementation, June 2007.

M. OGAwA AND K.-L. MA, code_swarm: A design study in or-

ganic software visualization, IEEE Transactions on Visualization and
Computer Graphics, 15 (2009), pp. 1097-1104.

B. QuainG, J. Tao, AND W. KARL, YACO: A user conducted
visualization tool for supporting cache optimization, in Proceedings of
HPCC, 2005, pp. 694-603.

, Yaco: A user conducted visualization tool for supporting cache
optimization, in Proceedings of HPCC, 2005, pp. 694-703.

S. P. REiss, Visualizing java in action, in SoftVis ’03: Proceedings
of the 2003 ACM symposium on Software visualization, New York,
NY, USA, 2003, ACM, pp. 57-t.

S. P. REIss AND M. RENIERIS, Jove: java as it happens, in
SoftVis '05: Proceedings of the 2005 ACM symposium on Software
visualization, New York, NY, USA, 2005, ACM, pp. 115-124.

S. S. SHENDE AND A. D. MALONY, The TAU parallel performance

system, International Journal of High Performance Computing Appli-
cations, 20 (2006), pp. 287-331.

S. S. SHENDE AND A. D. MALONY, The tau parallel performance
system, Int. J. High Perform. Comput. Appl., 20 (2006), pp. 287-311.

C. StoLTE, R. BoscH, P. HANRAHAN, AND M. ROSENBLUM,
Visualizing application behavior on superscalar processors, in INFOVIS
'99: Proceedings of the 1999 IEEE Symposium on Information
Visualization, 1999, pp. 10-17.

C. StoLTE, R. BoscH, P. HANRAHAN, AND M. ROSENBLUM, Visu-

alizing application behavior on superscalar processors, in Information
Visualization, 1999, pp. 10-17.

D. TERPSTRA, H. JAGODE, H. YOU., AND J. DONGARRA, Collect-
ing performance data with PAPI-C, in Tools for High Performance
Computing, 2009, pp. 157-173.

R. A. UHLIG AND T. N. MUDGE, Trace-driven memory simulation:
A survey, ACM Computing Surveys, 29 (1997), pp. 128-170.

E. vAN DER DELJL, G. KANBIER, O. TEMAM, AND E. GRANSTON,
A cache visualization tool, Computer, 30 (1997), pp. 71-78.

o6

28]

[29]

[30]

[32]

[33]

E. vaAN DErR DEwL, G. KANBIER, O. TEMAM, AND E. D.
GRANSTON, A cache visualization tool, Computer, 30 (1997), pp. 71—
78.

J. WEIDENDORFER, Sequential performance analysis with callgrind
and kcachegrind, in Tools for High Performance Computing, 2008,
pp. 93-113.

J. WEIDENDORFER, M. KOWARSCHIK, AND C. TRINITIS, A tool
suite for simulation based analysis of memory access behavior, ICCS,

3038 of LNCS (2004), pp. 440-447.

W. A. WuLr AND S. A. McKEE, Hitting the memory wall:
Implications of the obvious, Computer Architecture News, 23 (1995),
pp- 20-24.

Y. Yu, K. BEYLS, AND E. D’HOLLANDER, Visualizing the impact
of the cache on program execution, in Information Visualization, 2001,

pp. 336-341.

Y. Yu, K. BEYLs, AND E. H. D. HOLLANDER, Visualizing the
impact of the cache on program execution, in Proceedings of the Fifth
International Conference on Information Visualisation, July 2001,
pp. 336-341.

o7

