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Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view thatmultimodal neu-
roimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as dif-
fusion tensor imaging (DTI) has excellent potential to identify novel biomarkers andpredictors of TBI outcome. This
is particularly the casewhen suchmethods are appropriately combinedwith volumetric/morphometric analysis of
brain structures and with the exploration of TBI-related changes in brain network properties at the level of the
connectome. In this context, our present review summarizes recent developments on the roles of these two tech-
niques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value.
The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI
processingmethods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis
to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuro-
imagingmetrics. The goal of the review is to draw the community's attention to these recent advances on TBI out-
come prediction methods and to encourage the development of new methodologies whereby structural
neuroimaging can be used to identify biomarkers of TBI outcome.

© 2012 The Authors. Published by Elsevier Inc. All rights reserved.
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1. Introduction

There are approximately 1.5 million new cases of non-fatal traumatic
brain injury (TBI) in the US every year. Worldwide, the incidence of this
condition has been estimated at one to five cases for every thousand
people (Sosin et al., 1996; Thornhill et al., 2000), resulting in at least 6.8
million TBI cases every year. In the US, TBI is annually responsible for
over 500,000 emergency room visits, 100,000 hospital admissions, 7000
deaths and 30,000 permanent disabilities. The financial burden of this
condition amounts to over $56 billion annually, of which ~56% are
accounted for by moderate and severe cases. Whereas over one in four
TBI cases is moderate, at least one in ten moderate TBI patients experi-
ences long-term cognitive and behavioral impairment (McAllister et al.,
2006), compared to one in two victims for moderate TBI. Thus, TBI is a
high and growing concern for both biomedical and health research agen-
cies and veteran benefit departments, which have called for renewed
efforts dedicated to ameliorating outcome and quality of life.

Common areas of cognitive impairment caused by TBI includememo-
ry, information processing speed, attention and executive function, with
many TBI patients experiencing degradation in all four even when their
TBI is classified as mild (Parizel et al., 1998). Some studies have proposed
that as many as one in three mild TBI victims has persistent long-term
cognitive deficits (Binder, 1997; Binder et al., 1997), which can occur
despite their brains appearing normal on conventional neuroimaging
scans. Whereas age and clinical variables are stronger predictors of out-
come than computed tomography (CT) abnormalities (Jacobs et al.,
2010), the use of CT for outcome prediction has become more standard-
ized following results from the IMPACT study, where outcome prediction
for severe TBI relies partly onMarshall grading (Maas et al., 2007). Thus,
although no standard predictive model of TBI outcome using MRI
currently exists, the combined use of CT and standard magnetic reso-
nance imaging (MRI) has become standard in TBI clinical care due to
the advantages of using both techniques (Lee and Newberg, 2005).
Nevertheless, the sensitivity of combined CT/MR tomild TBI remainsun-
desirably low because these techniques can often fail to identify struc-
tural abnormalities in mild TBI patients (van der Naalt et al., 1999). In
fact, as many as two out of three mild TBI patients appear healthy on
anatomic MRI scans (Hofman et al., 2001), whereas non-hemorrhagic
diffuse axonal injury (DAI) is virtually undetectable by CT and only
difficult to detect by standard T1-weighted MRI (Provenzale, 2010).
Consequently, the multimodal use of CT and standard MRI can be insuf-
ficient for the purpose of accurately predicting the severity of TBI
sequelae in mild cases, and achieving a satisfactory level of sensitivity
may require the use of additional imaging techniques.

An important observation that is relevantwhen discussing the use of
CT/MRI imaging for TBI outcome prediction concerns the sensitivity of
these neuroimaging techniques. Suppose that recovery of conscious-
ness is adopted as the measure of case outcome. It has been known
(Tollard et al., 2009) that good outcome measured in this manner can
occur in some patients despite positive findings of extensive pathology
by CT/MR neuroimaging which might instead suggest poor prognosis.
This implies that, for severe TBI, the specificity of CT/MR (i.e. the prob-
ability of negative findings by these techniques given that case outcome
is favorable) is lower than might be expected. In conclusion, if only CT
and MR are used, multimodal neuroimaging can have either undesir-
ably low sensitivity (mild TBI) or specificity (severe TBI). For reasons
such as these, recent years have witnessed a sustained trend toward in-
creasing the number of imaging techniques being used for TBI case eval-
uation and outcome prediction.Whereas the use ofmagnetic resonance
spectroscopy (MRS) for outcome prediction is currently somewhat lim-
ited (Marino et al., 2011), one method that has been widely adopted to
complement standard structural imaging techniques is diffusion tensor
imaging (DTI). BecauseDTI can reveal in detail howTBI affects brain con-
nectivity via DAI, the technique has the potential to offermuch beneficial
information to clinicians in their attempts to identify novel biomarkers
that are predictive of outcome. Whereas the primary advantage of stan-
dard CT and MR is the ability of these techniques to provide volumetric
ormorphometricmeasures of brain structure, DTI is promising partly be-
cause it can be used to perform tractography and thereby extract con-
nectivity measures (fiber tract length, connectivity density) for white
matter (WM) connections. This allows one to obtain a very large number
of connectivity metrics that can be analyzed using various techniques,
including the armamentarium of network theory. Additionally, DTI can
be combined with fMRI to infer patterns of functional connectivity in
TBI. Thus, combiningmethods that yield volumetric and/ormorphomet-
ric measures (i.e. CT, MR) with techniques that measure structural and
functional connectivity (such as DTI and fMRI, respectively) appears to
be the recipe of choice for future studies that aim to extend the capabil-
ities of neuroimaging for the purpose of TBI clinical outcome prediction.

The purpose of this review is to summarize recent developments on
the role of MRI and DTI in the search for novel structural neuroimaging
biomarkers that have outcomeprognostication value in TBI. The themes
being explored in what follows cover notable trends in this area of re-
search and highlight promising avenues of future investigation. These
themes include

(1) the role of advanced MRI processing methods in the analysis of
structural pathology

(2) the use of brain connectomics and network analysis to identify
outcome biomarkers

(3) the application of multivariate statistics to predict outcome
using neuroimaging metrics.

Recent contributions to the field favor the view that multimodal
neuroimaging and advanced MRI/DTI image processing have the poten-
tial to identify novel biomarkers and predictors of TBI outcome. This is
particularly the case when such methods are appropriately combined
with volumetric/morphometric analysis of brain structures and with
the exploration of TBI-related changes in brain network properties
at the level of the connectome. In this context, one goal of this article
is to draw the community's attention to these recent advances by
discussing a selected body of relevant literature. However, we would
like to point out that the extent to which our own work is highlighted
throughout the text is greater than would be warranted in the context
of a typical review. This is because it is our desire to provide the reader
with examples of graphical rendering techniques currently being
used in the field without the logistic complexities incurred through
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showcasing visualizations to which we have no access. As a result, this
implies that our article might be better viewed as a ‘perspective’ in con-
trast to a truly comprehensive ‘review’, per se. Nevertheless, given that
NeuroImage: Clinical does not presently include a designation for per-
spective articles, we have aimed to review and summarize a range of
representative research reports covering important elements of struc-
tural, functional, and connectomic imaging in TBI.

2. Neuroimaging for structural analysis of TBI

2.1. Promises of structural neuroimaging

Throughout the past decade, TBI image analysis has been receiving
increased attention in the medical image processing community due to
the strong motivation of clinicians and health policy makers to develop
and increase the use of quantitative tools that can allow one to perform
analysis and visualization of complex injury-related pathology. Until
recently, research that involved conventional MRI processing to identify
markers of TBI outcome would often focus on quantifying intensity
differences between contusions and healthy-appearing tissues using
various modalities. While this type of analysis has been effective in pro-
viding important insight into TBI, voxel intensity analysis does not take
full advantage of the capabilities that neuroimaging has to offer. In par-
ticular, with the advent and dissemination of three-dimensional (3D)
brain visualization methods, a considerable amount of attention and
effort has been allocated to the task of providing the ability to generate,
manipulate and quantitatively characterize 3D models of TBI. Two im-
portant causes for the emergence of this trend are the need for 3Dmodels
of TBI that can be used for surgical planning, as well as the desire to iden-
tify volumetric and morphometric measures that can prognosticate clin-
ical outcome. In this context, there has been increased understanding by
the TBI neuroimaging community that volumetric and morphometric
measures of TBI pathology can be prognostically correlated with various
case outcome measures (see last section of this review).

Determining how the macroscopic profile of the brain changes in
response to injury and/or treatment could help to identify cortical re-
gions that are likely to experience atrophy and degeneration, and
could consequently aid in the early formulation of targeted rehabilita-
tion protocols. Utilizing quantitative brain morphological measures to
assess changes in brain structure at a systematical level could also iden-
tify those brain regions that are particularly sensitive to TBI sequelae
(Bigler, 2001). In addition, the atrophy profiles of brain areas that do
not coincide with the locations of primary injuriesmay help researchers
to understand how focal TBI can give rise to DAI and to secondary struc-
tural pathology far from the site of primary TBI. These specific aims are
paramount to the extension of existing MRI neuroimaging techniques
to the sophisticated exploration of TBI pathology.

Increased understanding of the potential advantages that prognostic
studies can offer has also brought about renewed interest into the de-
velopment of automated image processing methods that can allow
researchers to extract brain volumetrics and morphometrics from large
cohorts of TBI patients. Such interest is partly based on the awareness
that, due to the heterogeneity of TBI, prognostic studies of outcome in
this condition can require large sample sizes in order to achieve sufficient
statistical power for prediction. Consequently, the key methodological
hurdle that must be overcome in order to make structural neuroimaging
a powerful tool for predicting TBI outcome is the current paucity of auto-
mated image processing methods that can allow researchers to analyze
large numbers of TBI CT/MRI volumes without the need for excessive
user input or intervention.

2.2. Pathology identification

To date, the number of studies that use neuroimaging volumetrics
and morphometrics to identify outcome markers has been disap-
pointingly low, in part because manual segmentation of TBI volumes
is laborious and resource-demanding when large sample sizes are in-
volved. Generally, computational methods for volumetric and mor-
phometric analysis (such as FreeSurfer; Dale et al., 1999; Desikan et
al., 2006; Destrieux et al., 2010; Fischl et al., 1999a) are preferable
to manual ones because of the reduced cost of the former and of the
smaller amount of time that is required for their application. Many
automatic methods can achieve an accuracy level that is comparable
to that of manual methods, although this is most often the case for
healthy populations or for disease groups whose anatomies do not
differ appreciably from health. In the case of TBI, automated methods
can fail, and the development and dissemination of accurate and reli-
able automatic segmentation and morphometry methods that are tai-
lored for TBI remain goals of central importance to future progress in
this area.

CT and structural MRI have been and remain techniques of key im-
portance for the purpose of TBI multimodal neuroimaging. Within
relatively short scan times, both T1- and T2-weighted MR imaging
can offer highly accurate visual descriptions of water and fat distribu-
tion in both healthy-appearing and pathological tissues at high spatial
resolutions. Similarly, CT has been very valuable for structural imag-
ing of TBI, and more so than MRI in the first few days after injury.
For example, pathology documented using CT has been found to be
a clinically important risk factor in determining post-traumatic
neurological deficits (Asikainen et al., 1999), and in categorizing CT
abnormalities based on mesencephalic cistern status, midline shift,
presence of surgical masses has helped to predict mortality in head
injury cases (Englander et al., 2003). CT has also been useful to
show that hypoxia in the pre-hospital setting significantly increases
the odds of mortality after TBI controlled for multiple variables (Chi
et al., 2006). A study by Lehtonen et al. (2005) examined the relation-
ship between cortical lesion location observed via CT and brain injury
outcome to conclude that frontal and fronto-temporal lesions
detected acutely using CT were associated with poorer performance
on neuropsychological measures of executive function and memory
at rehabilitation discharge.

Information on TBI obtained from MRI/CT allows clinicians and re-
searchers to localize and quantify focal lesions straightforwardly and
to evaluate lesion loads. Additional MR sequence types such as Fluid
Attenuated Inversion Recovery (FLAIR), Gradient-Recalled Echo (GRE)
T2-weighted imaging and Susceptibility Weighted Imaging (SWI) can
increase the descriptive power ofMRI by allowing researchers to distin-
guish between various types of lesions. FLAIR, a pulse sequence which
uses inversion recovery to nullify cerebrospinal fluid (CSF) signal, has
been widely used to associate hyperintensities in this modality with
edema. GRE imaging and SWI, on the other hand, are commonly used
to identify hemorrhages,which appear hypointense in thesemodalities.
The use of these three sequences is very common in TBI because of their
abilities to isolate pathology, and a combination of T1, T2, FLAIR and SWI
imaging has already been successfully used by Irimia et al. (2011) to ob-
tain segmentations and 3D models of edema, hemorrhaging tissue, as
well as healthy-appearing white matter (WM) and gray matter (GM).

2.3. Tissue classification

One significant methodological issue that must be taken into
account when designing automatic TBI segmentation methods is the
fact that TBI characterization from MRI often requires the combined
use of several image channels in order to identify pathology. Thus, TBI
neuroimaging is multimodal par excellence. Because MR volumes of
TBI often contain skull fractures, multiple lesion types and associated
tissue deformations, multi-channel segmentation of TBI volumes bears
significant challenges, especially when such abnormalities are charac-
terized by having a complex structure. Examples of both acute and
chronic multi-channel MR image patient are shown in Fig. 1, where
the challenging nature of TBI-related pathology is demonstrated. As
this figure illustrates, TBI presents significant segmentation challenges



Fig. 1. Axial views of acute and chronic TBI in a sample subject.
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due to the need to account for tissue classes other than healthy-
appearing GM and WM. Depending on imaging sequence type, these
tissues associated with pathology can have distinct intensities and spa-
tial configurations. Moreover, ascertaining their physical and chemical
content can pose substantial interpretative dilemmas even for experi-
enced health care providers, which makes the development of robust
image processing methods for TBI even more difficult.

Segmentation algorithms for MR images of healthy-appearing
brains have been developed by a large number of investigators (see,
for example, Van Leemput et al., 1999 and Zhang et al., 2001 for two
early developments), and software packages for this task are bothwide-
ly and freely available. Most such algorithms, however, are not designed
to address pathology, which presents significant challenges because the
locations and shapes of pathological structures are not easily predict-
able and, in certain MR modalities, some pathology patterns present
image intensities and appearance that are similar to those of normal tis-
sues. Generally, developers of TBI segmentation algorithms have in-
spired themselves from methods for the MR analysis of brain sclerosis
and tumors, which present similar problems compared to TBI. In the
case of sclerosis, Van Leemput et al. have proposed a method where re-
gions affected by pathology are treated as outliers from healthy anato-
my (Van Leemput et al., 2001), whereas Wu et al. (2006) introduced a
k-nearest neighbor (kNN)method that usesmultichannelMRI to differ-
entiate between abnormal and healthy-appearing tissues. Recently,
Geremia et al. (2011) proposed a method based on decision forests
and, in the case of tumors, Prastawa et al. (2004, 2003) developed a
method based on outlier detection and subject-specific modification
of atlas priors. Similarly, Clark et al. (1998) introduced an automatic
method for pathology segmentation that uses knowledge-based tech-
niques. A level-set based tumor segmentation method has been devel-
oped by Ho et al., 2002, whereas Menze et al. (2010) have presented a
generative model for brain tumor segmentation using multi-modal
MR images. For the express purpose of TBI image analysis, Thatcher et
al. (1997) have used fuzzy C-means, kNN and manual classification to
segment 3D MR images of TBI patients, and Wang et al. (2012a,
2012b) have proposed the use of a personalized atlas for the segmenta-
tion of longitudinal TBI data. The essential ideas behind the latter meth-
od are to jointly segment images acquired at the acute and chronic
stages, as well as to describe anatomical changes due to therapeutic in-
tervention and recovery.

In traditional image processing approaches, individual images of
longitudinal series are treated independently by separate segmentations.
A notable innovation suitable for TBI is that ofWang et al., who use infor-
mation from all time points to improve segmentation and to additionally
describe changes in healthy tissue and pathology (Fig. 2). Their segmen-
tation method iteratively estimates the image appearance model as well
as the spatial anatomical model that undergoes diffeomorphic deforma-
tion and non-diffeomorphic/topological changes. In this approach, the
initialization step of the algorithm consists of manually selecting one or
several primary lesion sites and then affinely registering normal brain
atlas to the image at each time point. The initial coarse segmentation is
then refined via a joint approach composed of Bayesian segmentation
and of personalized atlas construction. This latter step estimates the aver-
age of the posteriors obtained from Bayesian segmentation at each time
point, whereafter the estimated average is warped back to each time
point so as to provide the updated priors for the next iteration of Bayesian
segmentation. Once the user has performed themanual initialization (for
example, by placing spheres at major lesion sites), the method automat-
ically segments healthy structures (WM, GM, CSF) as well as different le-
sion types including hemorrhagic lesions, edema and chronic pathology.

Fig. 3 illustrates the construction of a personalized spatiotemporal
atlas using the method of Wang et al. The longitudinal segmentation
method makes use of information from multiple MR channels and
from all time points to achieve a robust segmentation (Wang et al.,
2012a, 2012b). The spatial transformations between any time point
and the average space are obtained through the estimation of a
subject-specific atlas with associated nonlinear deformations, and
the tissue deformation between time points is made available by
composition of the individual transformations or of their inverses.
By means of a procedure such as this, a segmentation method used
longitudinally can be modified to provide not only tissue and lesion
segmentation but also information related to the amount and direc-
tion of deformation between tissues as measured at pairs of time
points. The results of this type of process are clinically relevant be-
cause they provide quantitative measurements of lesions for each
time point, as well as additional information on how tissues and/or
pathology shrink or expand in time as a result of recovery.

Segmentations of lesions as imaged at two time points (acute and
chronic) and visualization of the deformation field are shown in Fig. 4
for a sample subject. In this case, the deformation field specifies the
direction and magnitude of displacement between time points and
can be used to determine and evaluate structural changes in brain
anatomy. A significant advantage of this type of framework is that
it can handle different sets of modalities at each time point, thus



Fig. 2. Overview of semi-automatic segmentation using personalized atlas construction.
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providing flexibility in the analysis of clinical scans. Results on a range
of subjects (Wang et al., 2012a, 2012b) have demonstrated that joint
analysis of TBI volumes acquired at different time points yields im-
proved segmentation compared to independent analysis of the time
points. Joint longitudinal segmentation methods such as that of
Wang et al. are also important because they provide the ability to as-
sess the value of novel outcome measures by means of Bayesian esti-
mation and predictor–corrector methods. Such methods can allow
one to predict outcome using neuroimaging metrics associated with
the acute time point, and then to modify, correct or otherwise im-
prove the predictive value of those metrics based on the evolution
of the injury. Subsequently, outcome measures identified in this
way can in theory be applied prospectively for further validation.

2.4. Morphometric and volumetric calculations

In addition to new and improved methods for volumetric analysis
of TBI based on MRI, adaptable brain morphometry tools are also
Fig. 3. Construction of a personalized spatiotemporal atlas using diffeomorphic and non-diff
that is mapped to each time point while preserving atlas topology. The non-diffeomorphic co
that may change the topology between different time points. Regions that change diffeomo
(For interpretation of the references to color in this figure legend, the reader is referred to
needed to explore outcome prediction hypotheses, if only because it
is conceivable that TBI-induced atrophy and/or regeneration can
modify the shape of the cortex in ways that can forecast outcome.
Morphometric methods frequently make use of MRI volume segmen-
tations to fit a mesh of points to the surface of the brain and then
parcellate its structures into regions using a population atlas as a
structural prior and based on knowledge of the local curvature
(Fischl and Dale, 2000; Fischl et al., 2001; Fischl et al., 2002; Fischl
et al., 1999b; Fischl et al., 2004). Subsequently, volumetrics (cortical
thickness, GM and WM volume, etc.) and morphometrics (curvature,
folding index) can be computed for each cortical region, as has been
done extensively in studies of aging (Salat et al., 2004) or disease
(Kuperberg et al., 2003; Rosas et al., 2002). Although automatic corti-
cal parcellation methods have been applied to TBI in the past, the ca-
veat remains that errors due to the application of probabilistic tissue
classification can frequently occur whenever TBI anatomy differs ap-
preciably from health. Some studies where automatic parcellation
was applied to TBI volumes have reported major topological defects,
eomorphic components. The diffeomorphic component is the temporally global atlas �P
mponents are the temporally local probability density functions Qt at each time point t
rphically are colored in green, while regions that change topology are colored in red.
the web version of this article.)



Fig. 4. Segmentation of lesions in both acute and chronic images and visualization of the deformation field via the Jacobian determinant. (a) 3D lesion segmentation of acute images,
blue color indicates edema, brown color indicates bleeding, and the transparent color indicates white matter. (b) 3D lesion segmentation of chronic images, purple color indicates
necrosis, and the transparent color indicates white matter. (c) Visualization of the deformation field via the determinant of the Jacobian, red color indicates tissue compression,
green color indicates no change, blue color indicates tissue expansion. (d) Axial view of lesion segmentation of acute images. (e) Axial view of lesion segmentation of chronic im-
ages. (f) Axial view of visualization of the deformation field via the determinant of the Jacobian matrix. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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failures to fit cortical surfaces, as well as subcortical segmentation er-
rors (Strangman et al., 2010). Consequently, further methodological
improvements in this area are needed.

With the extension of conventional morphometry methods to TBI
analysis come numerous pitfalls and technological difficulties. Whereas
sequences such as FLAIR, T2 and SWI can aptly localize focal pathology,
one segmentation task that continues to remain problematic is that of
identifying the boundary between WM from GM when tissues on
both sides of it have been affected by trauma. In chronic TBI, scar tissue
can also lead to overestimation of GM volume and/or underestimation
of WM volume. Unfortunately, these issues bear relevance upon the
accuracy of both volumetric and morphometric measures extracted
from structural MRI because, on the one hand, improper segmentation
of the WM/GM boundary can result in the inaccurate calculation of
GM and WM volumes. On the other hand, errors of this kind can dra-
matically affect computedmorphometric measures such as local curva-
ture and the folding index of the cortical surface.

2.5. Challenges and future directions

Much of the popularity enjoyed by T1- and T2-weighted sequences
in the image processing community is due to their excellent contrast
properties, which allows WM and GM to be easily distinguished in
the healthy brain. In TBI, however, injury to somata and axons causes
lipoproteins and other intracellular material to be released into the
extracellular space. This typically results in the alteration of fat and
water contents in contusional and peri-contusional tissues, which
can make lesioned WM and GM difficult to distinguish from each
other in either T1- or T2-weighted scans (Fig. 1). Consequently, in
both T1- and T2-weighted MR, edemic and hemorrhaging tissues can
have comparable intensities, which can make their differentiation
problematic especially when visual inspection is performed solely
based on these two techniques. Becausemany algorithms for segmenta-
tion and morphometry aim to identify the GM/WM boundary based on
intensity differences in T1- or T2 images, this implies that GM/WM seg-
mentation can be particularly challenging in peri-contusional regions.
Although significant, this problem is yet to receive appropriate atten-
tion by the neuroimaging and image processing communities.

Mapping tissue changes accurately can improve the accuracy of nu-
merical methods which aim to calculate volumetric and morphometric
measures. Quantifying tissue changes during recovery from TBI, howev-
er, can be particularly challenging because tissuemovements and longi-
tudinal changes in intensity are difficult to predict. From the standpoint
of MR imaging of brain injury, there are three primary macroscopic tis-
sue changes that occur over time, namely (1) global tissue deformations,
(2) local changes in the lesion geometry and (3) local changes in the
mixture of tissues and lesions due to such changes as healing or atrophy.
Lesionswhich infiltrate or recede from healthy tissue, or which displace
healthy tissue, confoundmost image registration methods and result in
poor estimation of TBI volumetrics. Additionally, in the presence of such
changes, classical deformable registrationmethods likely produce unre-
alistic deformation estimates and thereby inappropriately bias the esti-
mation of morphometric measures. One family of techniques which
attempt to address these challenges are deformable registration
methods with weak and strong models of expected changes (e.g., with
models of tumor growth) (Hogea et al., 2008; Prastawa et al., 2009).
The registration accuracy of such models degrades when TBI lesion
growth patterns as predicted by the algorithm do not match the lesion
configuration of the subject for whom theMRI volumes acquired at dif-
ferent time points are being co-registered. To provide a remedy for this
disadvantage, some authors (Brett et al., 2001; Lamecker and Pennec,
2010; Stefanescu et al., 2004) have introduced methods which ‘hide’
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the areas in and around a lesion in order to avoid the negative influence
of the former upon the registration. One drawback to such methods is
that the registration in and around the lesion (where the results pro-
duced by the algorithm are oftenmost clinically valuable) can be partic-
ularly poor because such areas often contain important registration
information that is not being used. This can be the case despite the
fact that one goal of TBI registration and segmentation remains, even
in such cases, that of being able to distinguish background image defor-
mations from foreground deformations with respect to an embedded
geometric object (focal injury in this case). The recent geometric meta-
morphosis method developed by Niethammer et al. (2011) addresses
these complexities by including a geometric shape model of pathology,
such that deformations can be explicitly captured in conjunction with
deformations in the underlying image. This model can be used to repre-
sent the geometric deformation modulo background deformation,
thereby allowing accurate visualization and quantification of hemor-
rhagic recession (Fig. 5).

TBI heterogeneity calls for large sample sizes in order to identify
robust neuroimaging markers of outcome. For this reason, the avail-
ability of software to perform automatic segmentation and mor-
phometry of TBI is essential. Freely available tools that have been
used for the analysis of structural TBI data include Statistical Paramet-
ric Mapping (SPM, Friston et al., 2006), Individual Brain Atlases SPM
(IBA SPM, Tae et al., 2008), Automatic Anatomical Labeling (AAL,
Tzourio-Mazoyer et al., 2002), and Advanced Normalization ToolS
(ANTS, Avants et al., 2008). Some of these packages contain image
processing tools which may be particularly suitable for TBI, such as
SPM's DARTEL (Pereira et al., 2010). This volume co-registration pack-
age combines skull stripping and bias correction with good results for
atrophied brains in Alzheimer's Disease (AD) and Huntington's Disease
(HD), as well as in semantic and frontotemporal dementia (Kuceyeski
et al., 2011). Recently, Irimia et al. (2011) introduced and illustrated
the combined use of multimodal TBI segmentation and time point com-
parison using 3D Slicer (www.slicer.org), a widely-used software envi-
ronment whose TBI data processing solutions are openly available via
the National Alliance for Medical Image Computing (NA-MIC, www.
na-mic.org). These authors performed semi-automatic tissue classifica-
tion and 3D model generation for intra-patient time point comparison
of TBI using multimodal volumetrics and clinical atrophy measures.
Fig. 5. Comparison of acute (left) and chronic (right) MRI scans. Large ovals indicate the T
lesion heals. The blue region in the lower left image indicates tissue which has recovered du
in which tissue conversion (e.g., from lesion to healthy) has occurred. (For interpretation of
this article.)
The authors identified and quantitatively assessed extra- and intra-
cortical bleeding, edema, and DAI.

In conclusion, the foregoing discussion of TBI neuroimaging high-
lights the fact that the development and further refinement of TBI
segmentation andmorphometry methods should be granted more at-
tention by the image processing community. Although segmentation
and morphometry tools are very important for the purpose of com-
puting accurate structural measures of TBI, the existing range of
such tools is poor and many of them do not provide the ability to ex-
plore and accurately capture the longitudinal evolution of TBI lesions.
Nevertheless, in spite of the difficulties outlined in this section, it re-
mains the case that automation continues to make moderate-scale
neuroanatomical studies of TBI realistically feasible. The use of auto-
mated segmentation followed by human review can significantly de-
crease the cost of implementing population- and subject-level studies
of neurotrauma, and it is foreseeable that future improvements in
these methods may one day allow researchers to undertake neuroim-
aging studies using samples of the TBI population that are comparable
in size to those now being used by the AD and HD communities.

3. Neuroimaging for connectomic analysis of TBI

3.1. Diffusion imaging of TBI

Diffusion imaging methods have been acknowledged to hold ap-
preciable relevance to the improvement of TBI clinical care as a result
of their ability to capture the effects of injury upon WM structure
(Kraus et al., 2007; Rutgers et al., 2008; Vos and Bigler, 2011). In par-
ticular, the realization that focal lesions can lead to deficits in func-
tions that are localized far from the primary injury has brought to
the foreground the fact that the effects of DAI are easier to investigate
using diffusion rather than conventional structural imaging. Acutely,
acceleration/deceleration injuries result in water diffusion anisotropy
changes because of restricted axoplasmic flow and increased flow
across the axonal membrane (Kou et al., 2010). In diffusion weighted
imaging (DWI), the apparent diffusion coefficient (ADC) quantifies
the degree of diffusion restriction of water molecules caused by
head injury in a voxel. It is a quantity which increases with vasogenic
edema (where water diffuses into interstitial space) and decreases
BI lesion. Small ovals in bottom row indicate a brain structure that is deformed as the
ring the healing process. Geometric metamorphosis automatically detects those regions
the references to color in this figure legend, the reader is referred to the web version of

http://www.slicer.org
http://www.na-mic.org
http://www.na-mic.org
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with cytotoxic edema (where diffusion is restricted due to the pres-
ence of swollen ischemic cells). Thus, diffusion imaging techniques
are useful for distinguishing between distinct types of edema and
for identifying the mechanisms whereby such pathology can cause
deterioration of function.

Because of the important advantages associated with structural
neuroimaging methods in general and with diffusion imaging in par-
ticular, an NINDS panel recently proposed that neuroimaging should
play a more important role in TBI classification so that TBI cases can
be classified into more homogeneous categories based on neuroimag-
ing criteria (Saatman et al., 2008). It has long been known that com-
mon sequences such as T1, T2, FLAIR and SWI imaging can generate
volumetrics and morphometrics of both healthy-appearing tissue as
well as pathology. By comparison, DTI tractography methods allow
one to map the macroscopic connections of the human brain, thereby
providing a large amount of information that can allow one to infer
the physical parameters of fiber tracts, such as length and density.
Consequently, an important advantage of DTI that more research
should focus on is the fact that this technique allows one to visualize
axonal injury as the major pathological substrate of TBI.

As in the previously discussed case of conventional MRI, diffusion im-
aging techniques (high-angular-resolution diffusion imaging (HARDI),
DWI, DTI and DSI) are complimentary and incremental in their abilities
to generate quantitative metrics of brain connectivity. For example,
image intensity in DWI reflects the rate of water diffusion at the location
of each voxel, whereas DTI additionally allows researchers to capture the
directionality of diffusion. Diffusion spectrum imaging (DSI) is amore re-
cent technique which allows one to map complex fiber architectures by
imaging the 3D spectra of tissues (Wedeen et al., 2005). These techniques
can be very effectively combined with CT/MRI to study the effects of TBI
upon specific WM structures in the brain and to identify abnormalities
which other modalities cannot detect. In pediatric TBI, Sigmund et al.
(2007) found that combined T2, FLAIR and SWI imaging could provide a
more accurate assessment of WM injury severity and detection of
outcome-influencing lesions than CT. These authors found that the total
volume of lesions detected on FLAIR and T2 images was, on average, at
least four times greater than that detected on SWI. Nevertheless, the lat-
ter technique was found to be superior to the former two in its ability to
detectmicro-bleeds inWM,while diffusion techniques such asDWIwere
found to be capable of identifying DAI that is not visible on any of T2 Spin
Echo, T2* GRE or FLAIR sequences. These and other relative merits of
various diffusion and conventional neuroimaging modalities have been
excellently evaluated by Metting et al. (2007), whose review the reader
is encouraged to consult. An important conclusion of these studies is
that diffusion imaging increases our ability to identify WM pathology,
and that DWI/DTI/DSI sequences should be used to acquire data from
TBI patients whenever this is possible.

DTI constitutes an excellent imaging modality for the noninvasive
study of brain architecture, with recent advances in software and ren-
dering allowing visualization of WM tracts in the entire brain within a
time period that is clinically acceptable from the standpoint of acute
care. Such advances indicate that it may now be feasible to extract
TBI outcome biomarkers from diffusion data, and additionally to use
these biomarkers to formulate treatments or interventions that rely
on brain connectivity data to reverse or prevent further damage to
WM. DTI is also well suited for the study of brain network properties
in TBI patients, and even for investigating structural connectivity
damage in TBI subjects of historical importance, as for example in
the celebrated case of Phineas Gage (Van Horn et al., 2012). Because
of the appreciable effect that DAI can have upon long-term outcome
(Liew et al., 2009; Shigemori et al., 1992), it is foreseeable that clinical
interventions tailored in response to specific changes in WM that
occur acutely or sub-acutely may significantly affect survival rate and
long-term outcome. Consequently, longitudinal studies of WM connec-
tions using diffusion neuroimaging should play a more prominent role
in translational TBI research and more attention should be devoted to
the task of developing tools for the analysis ofWM fibers and brain net-
works across subjects and time points.

3.2. Personalized connectomic analysis

Although diffusion methods are suitable for the longitudinal study
of WM connectivity, this topic has been insufficiently explored in TBI
patients. Nonetheless, several studies have used diffusion imaging
measurements to reveal that WM abnormalities can appear quickly
after injury and then evolve dynamically over time (Mac Donald et
al., 2007; Sharp and Ham, 2011) as a consequence of axonal injury
and demyelination (Beaulieu et al., 1996; Song et al., 2002; Sun et
al., 2008). One limitation of diffusion techniques is that, although dif-
fusion imaging is very suitable for investigating the longitudinal evo-
lution of brain connectivity, DTI scans can capture only snapshots of
cerebral reorganization prompted by injury. Due to high attrition
rates in many longitudinal TBI studies (Corrigan et al., 2003) and to
TBI heterogeneity, investigators must often rely on small sample
sizes to perform this type of research, which can appreciably curtail
the predictive power of their statistical analyses. Consequently, it is
important that more studies be undertaken where DTI scans are ac-
quired at a number of time points after injury in a large patient pop-
ulation so that the acute effects of TBI upon brain network topology
can be better understood. In particular, the acute period after TBI
should be targeted because this is when important changes in brain
connectivity occur. Typically, the first 4–6 h after injury is associated
with cytoskeletal disruption followed by axonal disconnection be-
tween 1 and 7 days after the traumatic event (Gaetz, 2004). Because
such damages to brain connectivity can result in deterioration of cog-
nitive function that may persist for years (Povlishock and Katz, 2005),
further efforts should be dedicated to the longitudinal use of DTI in
the acute phase of TBI in order to understand the relationship be-
tween the structural remodeling of the brain, on the one hand, and
long-term improvements or deterioration in motor and cognitive
function, on the other hand.

To address the need for methods that allow one to investigate per-
sonalized profiles of WM atrophy in TBI, Irimia et al. (2012a) used DTI
to introduce a patient-tailored approach to the graphical representation
ofWM change over time. These authors' method allows one to visualize
brain connections affected by pathology and to relate patient injury pro-
files to the existing body of scientific and clinical knowledge on affected
cortical structure function. The approach provides the ability to quantify
WM atrophy for personalized connectomics and allows one to integrate
such knowledge with other clinical case information to provide a more
insightful picture on the neuroplasticity and neuro-degeneration pat-
terns that occur in the TBI brain. The authors also introduced a circular
representation wherein the parcellated gyral and sulcal structures of
the cortex are displayed as a circle of radially aligned elements called a
“connectogram” (Fig. 6). To calculate inter-region connectivity in the
approach of Irimia et al., each fiber tract extremity is first identified
and associated with the pair of parcellated regions which it connects.
In the second step, the percentage change in the density of fibers
previously selected is computed for each connection, using the formula
Δ=[D (t2)−D (t1)]/D (t1). Finally, those fibers that have computed
changes in fiber density with absolute values greater than 20%
(|Δ|>20%, i.e. the top four fifths of the distribution of percentage
changes) are displayed on a separate connectogram. For eachpair of cor-
tical regions, the change Δ in the fiber density D between successive
time points t1 and t2 is computed as a percentage of the fiber count at
acute baseline based on the multimodal imaging data acquired at the
two time points. A combination of conservative restrictions upon the
selection of atrophied fibers (see Irimia et al., 2012a for details) can
then allow one to confidently identify fibers undergoing a large amount
of atrophy in a particular patient.

Personalized atrophy profiles in the fashion of those created by
Irimia et al. can be used to identify WM connections that have suffered



Fig. 6. Connectograms for three sample TBI subjects. For complete details on how to interpret the connectogram, the reader is referred to Irimia et al. (2012b). The outermost ring
shows the various brain regions arranged by lobe (fr—frontal; ins—insula; lim—limbic; tem—temporal; par—parietal; occ—occipital; nc—non-cortical; bs—brain stem; CeB—cerebellum)
and ordered anterior-to-posterior. The color map of each region is lobe- and ROI-specific. The set of five rings (from the outside inward) reflects volumetric andmorphometric measures.
For non-cortical regions, only average regional volume is shown. Links represent the computed degrees of connectivity between segmented brain regions. In the top row, links represent
connections that have been affected by primary TBI. In the bottom row, links represent connections that have suffered an appreciable degree of atrophy six months after injury.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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from appreciable atrophy between acute and chronic time points.
Such representations may be of interest to clinicians and to other med-
ical professionals to gain insight on the effect of TBI upon a patient's
clinical picture as well as to examine atrophy trajectories. Additionally,
connectogramic display of atrophy patterns allows one to identify stud-
ies from the current literature that have possible relevance to improving
and tailoring patient rehabilitation protocols. Such studies describe
cognitively demanding exercises that involve stimulus–response selec-
tion in the face of competing streams of information, including divided-
attention tasks, verbal- and motor-response selection tasks that chal-
lenge faculties commonly affected by TBI.

3.3. Network-theoretic methods

Much of the promise that diffusion imaging techniques hold for
the purpose of TBI outcome prediction stems from the latter's ability
to investigate changes in brain network topology. Motor and cogni-
tive functions such as attention, for instance, are frequently affected
by TBI in ways which are difficult to quantify based on volumetric
and morphometric measures alone. Instead, because these functions
are dependent upon the integration and segregation properties of
large-scale brain networks, the study of TBI and the formulation of
treatments for this condition should incorporate knowledge of how
these networks are impaired by trauma (Sharp and Ham, 2011). Cur-
rently, DTI- and MRI-based diagnosis and assessment of TBI is often pri-
marily qualitative and performed ‘by eye’ due to the unavailability of
clinical tools for studying brain network properties and for elucidating
changes to the structural connectivity of the brain (Kuceyeski et al.,
2011). Thus, although there is considerable interest in how lesion loca-
tion and size influence disability type and severity via alterations to
WM connectivity patterns, the quantitative study of this relationship is
in its infancy and requires further effort.

The understanding that brain network topology and dynamics
modulate a vast array of brain functions that are affected by disease
has prompted an increasing interest in the theoretical aspects of net-
work analysis across the entire spectrum of neuroscience research
(Dimitriadis et al., 2010). In TBI, there is growing demand for time-
dependent network analysis methods that are able to capture and
quantify the dynamic changes that brain connections undertake
acutely as a result of primary TBI and sub-acutely in response to treat-
ment and recovery. Thus, whereas brain network topologies were
previously explored using static graphs, advances in the field have
led to the development of methodologies that account for the contin-
uous formation and dissolution of structural and functional links over
multiple time scales. Dimitriadis et al. (2010), for example, proposed
the concept of time-dependent network analysis based on weighted
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graphs using metrics reflecting network segregation (clustering coef-
ficient, local efficiency) and integration (characteristic path length).
Using these network metrics in TBI research makes sense because
previous studies have found that significant differences in these
measures exist when comparing healthy adults to schizophrenics
(Zalesky et al., 2011), AD patients (Lo et al., 2010) and normal aging
(Wen et al., 2011). For these reasons, the use of network theory to
explore pathology is particularly appealing, especially because this
could reveal novel biomarkers of TBI outcome.

Research into how brain connectivity is affected by trauma has
spurned renewed interest into particular aspects of network theory,
such as the development and application of theoretical concepts that
can address and model network properties and phenomena that occur
in TBI, including cortical reorganization and resilience to injury. Because
structure entails function, a structural description of brain connectivity
will likely help to understand cortical function and to provide insight
into brain network robustness and recovery from damage (Kaiser et
al., 2007). The study of network properties such as clustering and hier-
archical organization is useful for determining how brain rewiring can
occur as a result of trauma, andwhich regions of the brain aremost sen-
sitive to injury.

Whereas appreciableWM loss can sometimes be compensated for by
large-scale rewiring, focal damage to highly specialized areas (e.g. audi-
tory cortex or language areas) can lead to significant decline in day-
to-day functioning. Kaiser et al. (2007) and the references therein used
theoretical network models to conclude that the type of injuries that
are likely to result in appreciable deficits is that involves highly-
connected hub nodes and bottleneck connections. A study by Varier et
al. (2011) used a network model to reproduce known findings
according to which (1) lesion effects to brain networks are greater for
larger and multifocal lesions and (2) early lesions cause qualitative
changes in system behavior that emerge after a delay during which ef-
fects are latent. Kuceyeski et al. (2011) used structural and diffusion
MRI from 14 healthy controls to create spatially unbiasedWM ‘connec-
tivity importance’maps that quantify the amount of brain network dis-
ruption that would occur if any particular brain region was lesioned.
The authors then validated the maps by investigating the correlations
of the importance of maps' predicted cognitive deficits in a group of
15 TBI patientswith their cognitive test scores ofmemory and attention.

3.4. Functional connectomics

Although structural neuroimaging can reveal a wealth of relevant
information which can be critical to the process of TBI clinical care
and rehabilitation, the fact remains that next-generation methods
for the study of this condition will require a synthesis of both neuro-
anatomical (CT, MRI, DTI) as well as functional imaging methods such
as fMRI. Thus, although the fMRI literature on TBI has been thorough-
ly reviewed elsewhere (Belanger et al., 2007; Hillary et al., 2002), it is
nevertheless useful to indicate here how this technique can be useful
for the purpose of investigating connectomic changes associated with
brain injury.

A potential impediment associated with the application of fMRI to
the study of TBI is the necessity to examine the effects of collecting
or loose blood, including subarachnoid hemorrhage and subdural
hematomas, as well as that of factors which may alter hemodynamic
responses, including increased intracranial pressure (Hillary et al.,
2002). Despite such difficulties associated with the quantification
and interpretation of blood oxygen-level dependent (BOLD) signals,
fMRI is likely to become increasingly beneficial for the purpose of illu-
minating how the brain overcomes the effects of injury by means of
developing compensatory neural networks (NIH, 1998). For example,
one study which examined brain activations while TBI patients
performed a working memory task found that TBI patients displayed
cerebral activation patterns which were more regionally dispersed
and more lateralized to the right hemisphere (Christodoulou et al.,
2001). Similarly, a TBI case study (Scheibel et al., 2003) found
increased frontal activation under a 2-back relative to a 1-back condi-
tion of working memory, with more extensive activation in two TBI
subjects compared to controls. Tomeasure improvements in cognitive
ability following rehabilitation, Laatsch and Krisky (2006) used fMRI
to investigate task performance in the context of a cognitive rehabili-
tation model and concluded that individuals with severe TBI
can demonstrate improvements in neuropsychological testing even
many years after injury. Another useful study by Karunanayaka et al.
investigated covert verb generation in a pediatric TBI group and
found significant differences in BOLD signal activation in peri-sylvian
language areas between the TBI group and a control group, as well
as significant associations between BOLD signal activation and perfor-
mance on language-specific neuropsychological tests (Karunanayaka
et al., 2007). Finally, an important study by Monti et al. (2010) used
fMRI to show that a small proportion of patients in a vegetative or
minimally conscious state have brain activation reflecting some
awareness and cognition. All of these studies have indicated the use-
fulness of fMRI for investigating neuronal network reorganization
after injury and, although the application of this technique to the
study of TBI is still in its infancy, the findings listed above do indicate
the potential utility of fMRI for the purpose of studying how the func-
tional connectome changes with injury.

In addition to working memory and language, attention can
also be highlighted as an aspect of brain function whose study is
critical for understanding the effects of TBI. For example, Kramer et
al. (2008) found that pediatric TBI patients exhibited attention
task-related activations of frontal and parietal areas which were sig-
nificantly greater than in healthy controls. Interestingly, the authors
suggested that such hyper-activation of attention networks in TBI
contrasted with the hypo-activation of attention networks which
has been reported for attention-deficit/hyperactivity disorder. Inter-
estingly, whereas Kramer et al. found over-activation of attention-
related networks, Sanchez‐Carrion et al. (2008) found that TBI patients
had a hypo-activation of frontal lobe networks in several n-back work-
ingmemory tasks, which indicates that the effects of TBI upon cognition
likely consist of both hyper- and hypo-activation in response to exoge-
nous stimuli, depending upon which brain function is being activated
as well as upon the nature of the functional and structural networks
involved.

3.5. Caveats of connectomic neuroimaging

There are a number of potential caveats regarding the use of DTI
neuroimaging in TBI research. Firstly, movement in the MR scanner
can be an important limitation because TBI patients are often agitated
or confused in the acute phase of TBI. This can interfere with image
acquisition and with the investigation of symptoms (Metting et al.,
2007), and can also result in systematic errors related to connectivity
calculations (Van Dijk et al., 2012). For this reason, recently intro-
duced methods which address this limitation (such as PROspective
MOtion Correction, PROMO, Brown et al., 2010) are likely to find
wide implementation in the TBI neuroimaging field, and the applica-
tion of both existing and novel motion correction algorithms may also
greatly benefit the field of TBI neuroimaging in general. Another dis-
advantage of DTI data processing is that tractography remains a
suboptimal analysis method, particularly when it comes to account-
ing for partial volume effects and crossing fibers. One drawback of
probabilistic tractography is that this method assigns higher probabil-
ities to shorter fibers, which can cause WM located close to GM to
have a comparatively large number of tracts with high probability
(Kuceyeski et al., 2011). Nevertheless, one study by Vaessen et al.
(2010) showed that common graph-theoretical measures are more
reproducible across subjects and scanning protocols even when struc-
tural connectivity measures are not as reproducible by comparison. In
addition, recent advances using DSI indicate that this latter method
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can effectively address the limitation ofWM fiber crossings (Wedeen et
al., 2008).

The investigative efforts described above as well as other studies of
how TBI affects brain structure and function highlight the value of
connectomic studies for the purpose of establishing robust biomarkers
of TBI outcome. Because diffusion imaging techniques combined with
tractography yield a very large number of connectogramic descriptive
variables, the potential of such studies to identify factors that are prog-
nostic of TBI outcome is appreciable. Consequently, it is reasonable to
expect that the near future will witness a vigorous proliferation of stud-
ies whose goal will be to investigate TBI connectivity in general and DAI
in particular using the tools of diffusion imaging. At the same time, im-
provement in automatic segmentation methods for TBI is likely to mo-
tivate researchers to undertake studies of TBI connectivity based on
sample sizes that are much larger than today, with corresponding in-
creases in statistical power and significance despite the highly hetero-
geneous nature of TBI.

4. Statistical models for TBI outcome prediction using
structural neuroimaging

4.1. Significance of multivariate models

Of great value to both clinicians and to the families of TBI patients
would be the ability reliably to predict the recovery of consciousness
as well as the evolution of cognitive and behavioral abilities in the
long term. Such ability would dramatically change the way in which
treatment and rehabilitation strategies are formulated, and may signif-
icantly reduce the financial burden of TBI upon the healthcare system.
Furthermore, reliable outcome-predictive biomarkers could allowmed-
ical staff tomore efficiently proportionate the level of care and to inform
families on rehabilitation goals (Tollard et al., 2009). The importance of
TBI predictivemodeling is also highlighted by the fact that assessing the
relative merits of various uni- and multimodal imaging techniques and
derived biomarkers should take into account the extent to which in-
creased sensitivity and specificity can alter clinical decision making
(Carlos et al., 2003; Husereau et al., 2009; Provenzale, 2010).

The heterogeneity of TBI is among the primary causes of the
daunting complexity associated with the task of prognostic case eval-
uation. Because this condition frequently involves diffuse changes to
brain structure which are difficult to quantify macroscopically, stud-
ies that have attempted to identify consistent patterns of injury that
lead to a specific outcome have been fraught with intimidating diffi-
culties. For these reasons, intra-individual—i.e. patient-tailored—
studies whereby neuroimaging findings are correlated against out-
come appear to constitute an ideal paradigm for future TBI research.
A review of existing literature points out that a major obstacle in eval-
uating TBI outcome is the current lack of quantitative, consistent def-
initions of injury severity (van der Naalt, 2001; van der Naalt et al.,
1999). Although conventional CT and MRI have become invaluable
techniques for TBI critical care and treatment, most clinical decisions
that involve these two modalities are based on qualitative—rather
than quantitative—analyses of imaging findings (Tollard et al.,
2009). This is undoubtedly suboptimal for the purpose of outcome
prediction, as illustrated for instance in a study by Lee et al. (2008),
where qualitative blinded assessments of CT and MR scans by human
reviewers failed to identify neuroimaging markers that could reliably
predict clinical outcome. Nevertheless, in spite of the need for accurate
and precise TBI assessment standards, a large number of published
studies that make use of quantitative TBI markers appear to confirm
the incremental validity of using multimodal neuroimaging techniques
compared to the traditional use of standard CT and MRI. Furthermore,
an increasing number of studies indicate that TBI-related brain abnor-
malities obviated via multimodal imaging are partially correlated to
clinical outcome variables (see Belanger et al., 2007 and the references
therein). Thus, the creation of a site-independent, rigorously precise
and quantitative system for TBI lesion description and evaluation
could significantly ease the process of implementing studies that aim
to predict TBI outcome.

4.2. The role of CT in outcome prediction

As previously detailed, CT can often be more sensitive thanMRI for
the detection and quantification of pathology within the first few
days after injury (see Maas et al., 2007 and the references therein).
Partly for this reason, the ability to predict outcome early after injury
based on CT alone is a particularly attractive goal which has attracted
appreciable efforts, though with mixed results. An early study by
Ichise et al. (1994), for example, found that the antero-posterior
ratio as computed from CT images was correlated with six tests of
neuropsychological outcome, though the ventricle-to-brain ratio
was correlated with only two such tests, despite being known to be
a structural index of poor outcome. Englander et al. (2003) studied
the association between early CT findings and the need for assistance
for ambulation, activities of daily living and for supervision at the
time of rehabilitation discharge. These authors found that individuals
with midline shifts in excess of 5 mm were more likely to require as-
sistance at discharge, and that 57% of such patients needed home su-
pervision compared to fewer than 40% of patients with midline shifts
of less than 5 mm. Patients with bilateral cortical contusions as re-
vealed by CT were found to require more global supervision at reha-
bilitation discharge but not for ambulation. Importantly, individuals
with mass lesions in excess of 15 cm3 and who had inflammation
with structural shifts of over 3 mm were found to have mortality
rates greater than 50%. A study by Temkin et al. (2003) proposed
the Functional Status Examination (FSE) as an outcome measure
based on CT findings and found that it could dichotomize patients
well based on recovery from one month to five years after injury. Ad-
ditionally, this measure was found to have the ability of identifying
individuals with functional problems as well as associated neuropsy-
chological and emotional impairments as late as 5 years after injury.
Maas et al. examined the predictive value of the Marshall CT classifi-
cation with alternative CT models by means of logistic regression and
recursive partitioning with bootstrapping techniques and found that
the former classification indicated reasonable discrimination for the
purpose of outcome prediction. The authors also found that discrimi-
nation could be improved by including intraventricular and traumatic
subarachnoid hemorrhage and by detailed differentiation of mass le-
sions and basal cisterns, although individual CT predictors were pref-
erable to the Marshall classification for prognostic purposes. An
important contribution to the task of outcome prediction using CT is
that of Yuh et al. (2008), who developed a computer algorithm for au-
tomatic detection of intracranial hemorrhage and mass effect in pa-
tients with suspected TBI. The authors found that their method was
excellent for detection of these two phenomena in addition to that
of midline shift, while maintaining intermediate specificity. In partic-
ular, software detection of the presence of at least one non-contrast
CT feature of acute TBI demonstrated high sensitivity of 98% and
high negative predictive value of 99%.

4.3. Prognostication via diffusion imaging

It has long been known that patients with focal injuries to a specif-
ic part of the brain can experience long-term deficits related to cogni-
tive functions that are localized in very different brain areas. Some
modeling studies have indicated that cortical areas along the midline,
including cingulate cortex, are particularly susceptible to DAI even in
the absence of focal injuries to those areas, presumably due to the
network topology of inter-hemispheric WM fibers (Alstott et al.,
2009). This finding is even more interesting in light of the fact that
autopsies of mild TBI patients indicate that the corpus callosum
(CC), a region in the immediate vicinity of cingulate cortex, is quite
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frequently affected by DAI (Blumbergs et al., 1995). Galloway et al.
(2008) attempted to predict TBI outcome using DWI and found that
the mean apparent diffusion coefficient (ADC) values associated
with healthy-appearing WM could be used as an outcome predictor
in pediatric cases of severe TBI. Other findings obtained using diffu-
sion techniques—such as water diffusion abnormalities in contusion
cases—have been associated with Glasgow Coma Score (GCS) values
and with Rankin scores at patient discharge (Huisman et al., 2004),
while reduced fractional anisotropy (FA) in the splenium has been
correlated with cognitive dysfunction over one year after injury
(Nakayama et al., 2006). In a related study, Wang et al. (2011) studied
a cohort of 28 patients with mild to severe TBI to conclude that DTI
tractography is a valuable tool for identifying longitudinal structural
connectivity changes and for predicting patients' long term outcome.
These authors found that, in agreement with the diverse outcomes of
their study cohort, WM changes in patients were heterogeneous,
ranging from improvements to deteriorations in structural connectivity.
Another study by Bazarian et al. (2007) used DTI to detect clinically im-
portant axonal damage in cerebral WM within 72 h after injury using
ROI analysis of FA values. The authors found that, compared to control
subjects,mild TBI patients hadWMvoxel DTI trace values thatwere sig-
nificantly lower in the left anterior internal capsule aswell asmaximum
ROI-specific median FA values which were significantly higher in the
posterior CC. These FA values were found to be correlated with 72-h
post-concussive symptom (PCS) score and with neurobehavioral tests
of visual motor speed as well as impulse control.

The usefulness of DTI to predict injury severity has received a large
amount of scrutiny in the TBI community. Benson et al. (2007), for ex-
ample, hypothesized that a global WM analysis of DTI data would be
sensitive to DAI across a spectrum of TBI severity and injury-to-scan
interval. The authors found that FA empirical distribution parameters
(mean, standard deviation, kurtosis, skewness) were globally de-
creased in mild TBI compared to healthy controls, and furthermore
that the statistical properties of FA distributions were correlated
with injury severity as indexed by GCS and post-traumatic amnesia.
Increased diffusion in the short DTI axis dimension, likely reflecting
dysmyelination and axonal swelling, was found to account for most
decreases in FA. The conclusions of the study were that (1) FA is glob-
ally decreased in mild TBI, possibly reflecting widespread effects of
injuries, and that (2) FA changes seem to be correlated with injury se-
verity, suggesting a potential role of DTI in the early diagnosis and
prognosis of TBI. Another important study by Kraus et al. (2007) indi-
cated thatWM load was negatively correlated with performance in all
cognitive domains and that DTI provides an objective means for de-
termining the relationship of cognitive deficits to TBI, even in cases
where the injury was sustained years prior to the evaluation. Similar
findings were obtained by Wozniak et al. (2007), who showed that
children with TBI showed slower processing speed, working memory
and executive deficits, as well as greater behavioral dysregulation,
and that supracallosal FA was correlated with motor speed and be-
havioral ratings in such patients. Ewing-Cobbs additionally found dis-
ruptions in callosal microstructure, and significant correlations
between radial diffusion and/or FA in the isthmus, on the one hand,
and working memory as well as motor and academic skills, on the
other hand (Ewing-Cobbs et al., 2008). Another study involving a pe-
diatric population found that DTI was superior to conventional MR in
detecting WM injury at 3 months after injury in moderate to severe
TBI. DTI measures were also found to be related to global outcome,
cognitive processing speed, and speed of resolving interference in
children with moderate to severe TBI. By contrast, in adults, Bendlin
et al. found that neuropsychological function improved throughout
the first year post-injury despite TBI affecting virtually all major
fiber bundles in the brain including the CC, cingulum and uncinate
fasciculus (Bendlin et al., 2008). Niogi et al. (2008) found that, in
postconcussive syndrome, WM injury is correlated with impaired
cognitive reaction time and that the most frequently affected WM
structures in the adult population investigatedwere the anterior corona
radiata, uncinate fasciculus, genu of the CC, inferior longitudinal fascic-
ulus, and cingulum bundle. These findings were largely replicated by
Rutgers et al. (2008), who additionally found that supratentorial projec-
tion fiber bundles and fronto-temporo-occipital association bundles
were also frequently affected in adult TBI patients. In conclusion,
given that cognitive recovery from TBI correlates with the restoration
of WM integrity, DTI as a neuroimaging technique is uniquely posi-
tioned to predict recovery in TBI patients (Belanger et al., 2007;
Terayama et al., 1993) and should be used more widely in studies that
aim to identify markers of TBI outcome.

A significant recent study which combines DTI with fMRI is that of
Bonnelle et al. (2011), who showed that sustained attention impair-
ments in TBI patients are associated with an increase in default
mode network activation, particularly in the precuneus and posterior
cingulate cortex. Additionally, these authors found that the functional
connectivity of the former structure with the rest of the network at
the beginning of an attention task was predictive of which patients
would go on to exhibit impairments. This predictive information
was present before the patients exhibited any behavioral evidence
of sustained attention impairment, and the relationship was also
identified in a subgroup of patients without focal brain damage. In an-
other important study, Mayer et al. (2011) investigated whether
functional connectivity inferred using DTI and resting-state fMRI
could provide objective markers of injury as well as predict cognitive,
emotional and somatic deficits in mild TBI patients semi-acutely and
in late recovery. These authors found that their patient cohort dem-
onstrated decreased functional connectivity within the default mode
network and increased connectivity between the latter and lateral
prefrontal cortex, with functional connectivity measures having
high sensitivity and specificity for patient classification and deficit
prediction.

4.4. Multivariate models for identifying biomarkers of outcome

Neuroimagingmethodologies allow researchers to gather very large
number of descriptive statistics about the brain, either volumetric, mor-
phometric, or connectomic. Nevertheless, the task of identifying bio-
markers of TBI outcome from among such statistics is daunting
because these predictors must have consistent prognostic value across
the bulk of the TBI population in order to be useful. In this context, a
neuroimaging biomarker is understood to be a neuroimaging-based
progression indicator which describes physiological processes that
change with TBI evolution (Brooks et al., 2003). Identifying such out-
come metrics may require the collection of structural parameters from
large samples of TBI cases. As discussed in previous sections, this is par-
ticularly challenging in the absence of robust algorithms for automatic
TBI image segmentation and tractography. Currently, it can be difficult
to perform advanced neuroimaging studies of TBI samples to identify
outcome predictors with small to moderate size. Thus, the task of iden-
tifying outcome biomarkers that are both robust and sensitive when
used separately from each other can be considerably more difficult
when sample size is small. Consequently, it appears much more likely
that a linear combination of (a possibly large number of) biomarkers
may be required instead in order to achieve acceptable sensitivity and
specificity with regard to outcome. In this context, it is not surprising
that multivariate statistical models appear to offer the mathematical
framework of choice for the task of finding those combinations of struc-
tural metrics that can best predict clinical TBI case evolution.

Multivariate statistical models have already had some success in
identifying structural measures that correlate well with TBI outcome.
For instance, Quattrocchi et al. (1991) used logistic regression to ana-
lyze CT scans and concluded that 34% of cases with intracranial hemor-
rhage revealed by CT scans acquired early after traumawere associated
with poor outcome, compared to 61% of cases which additionally
exhibited midline shifts and to 88% of cases where the midline shift
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was ‘out of proportion’ to the intracranial hemorrhage. By contrast, a lo-
gistic regression analysis undertaken to determine the incidence
of traumatic subarachnoid hemorrhage in TBI patients as detected by
CT (Mattioli et al., 2003) showed that this condition and its grading
alone do not assume significance in predicting unfavorable outcome.
Galloway et al. (2008) used both linear and logistic regression analyses
to determine the ability of individual or different combinations of clin-
ical and neuroimaging variables to optimally predict outcome. Logistic
regression is a type of regression analysis that can be used to predict
the outcome of a binary dependent variable (e.g. poor vs. good out-
come) based on one to several predictor variables. This method of sta-
tistical analysis was also implemented by Andrews et al. (2002), who
used it in addition to decision tree analysis to predict recovery in 124
TBI patients by using admission variables and physiological data. Logis-
tic regression was used in this latter study to determine the relative in-
fluence of age, admission GCS, injury severity score (ISS) and other
factors. Tollard et al. (2009) used another multivariate technique called
linear discriminant analysis (LDA) to determine whether the combined
use of DTI andMRS could reliably predict clinical outcome in 43patients
at one year after severe TBI. LDA is a multivariate statistical analysis
method closely related to analysis of variance (ANOVA) and is frequent-
ly used in pattern recognition and machine learning to identify a linear
combination of features which optimally separates a set of object into
classes. In TBI, for example, LDA might allow a researcher to group pa-
tients into distinct outcome groups by means of a linear classifier that
includes various neuroimaging measures. Tollard et al. found that LDA
of DTI/MRS measures could separate without overlap patients with
unfavorable outcome from thosewith favorable outcome and from con-
trols with up to 86% sensitivity and 97% specificity. Maximally discrim-
inant measures identified were supra- and infratentorial FA, as well as
the NAA to creatine ratio in the pons, thalamus and insula.

An important recent study with promising results with respect to
TBI outcomeprediction is that of Strangman et al. (2010). These authors
investigated the relationship between changes in brain structure
prompted by TBI and changes in neuropsychological ability following
rehabilitation. Specifically, MRI brain morphometry methods and auto-
matic segmentation tools were used to quantify longitudinal changes in
cortical region volumes and to determinewhether andwhich regions of
the brain can be used to reliably predict memory rehabilitation out-
come. Strangman et al. recruited 50 TBI subjects of all severities, who
then participated in a memory rehabilitation program emphasizing
internal memory strategies. Primary outcome measures were collected
longitudinally, both immediately and one month after therapy, and
a multivariate statistical analysis was implemented to identify bio-
markers that were predictive of rehabilitation. The authors thus found
several brain regions that provided significant predictions of rehabilita-
tion outcome, including the volume of the hippocampus, thalamus,
lateral prefrontal cortex and cingulate cortex. They concluded thatmor-
phometric brain measures may be of appreciable predictive value with
respect to cognitive rehabilitation. These and other studies indicate that
brain morphometry and structural analysis are of considerable interest,
and thatmore efforts should therefore be dedicated to the task of apply-
ing multivariate statistical methods to neuroimaging data in order to
identify robust outcome predictors.

One advantage of DTI is that this modality can produce a large
array of metrics which can be longitudinally correlated with measures
of long-term functional outcome. Sidaros et al. (2008) found that
acute-stage DTI parameters for patients with unfavorable outcome
tend to deviate more from control values than for patients with favor-
able outcome. Similarly, a significant reduction in ADC values associated
with peripheral WM was found by Galloway et al. (2008) in pediatric
subjects with unfavorable outcome. Although DTI has been recognized
as a sensitive biomarker of TBI WM injuries with potential for prognos-
tic assessment, few longitudinal studies have followedDTI changes over
time. One notable exception is the study of Sidaros et al. cited above,
who followed 30 adult TBI patients over an entire year to identify
imaging biomarkers that were predictive of outcome. Acutely, the
authors found reduced FA in all TBI patients compared to controls, pre-
sumably due to decreased diffusivity parallel—and increased diffusivity
perpendicular—to axonal fiber direction. FA in the cerebral peduncle at
the acute scan was found to correlate with 1-year Glasgow Outcome
Score (GOS), and FA in the internal capsule was found to increase over
time in patients with favorable outcome.

Kinnunen et al. (2011) implemented a method called tract-based
spatial statistics (TBSS) that had been proposed by Smith et al.
(2006) to explore whether the location of WM abnormalities can
predict cognitive impairment. TBSS is a novel voxel-based method
for investigating WM structure which allows complex patterns of
WM damage to be isolated and quantified with respect to cognitive
impairment. Upon co-registration and alignment of WM tracts across
subjects, this technique implements statistical calculations that allow
for comprehensive analyses of tract structure in a way that is robust
to injury-related atrophy effects (Kinnunen et al., 2011). The group
found that changes in fornix structure as revealed by DTI could pre-
dict associative memory performance, in that individuals with higher
FA in the WM of the fornix had better memory performance. Their
study highlights the complex and insufficiently explored relationship
between WM damage and cognitive impairment, as well as the large
number of quantitative parameters provided by DTI that can be inves-
tigated as potential biomarkers of cognitive recovery or decline. Sharp
et al. (2011) used a multivariate analysis of resting-state fMRI to con-
clude that TBI patients exhibited increased functional connectivity
within the default mode network at rest compared to controls. In ad-
dition, patients with the highest functional connectivity had the least
cognitive impairment, and functional connectivity at rest also pre-
dicted brain activation patterns during an attention task. The authors
concluded that their results supported a direct relationship between
WM organization within the brain's structural core, functional con-
nectivity in the default mode network and cognitive function after
brain injury.

Of considerable interest to clinicians is the ability to quantify the
longitudinal evolution of various brain regions in response to TBI
recovery and rehabilitation, and some progress has already been
achieved in this direction. For example, the tools proposed by Irimia
et al. (2011) allow cross-correlation of multimodal metrics from
structural imaging (e.g., structural volume, atrophy measurements)
with clinical outcome variables and with other potential factors pre-
dictive of recovery. The workflows described by these authors are
also suitable for TBI clinical practice and for patient monitoring, par-
ticularly with regard to assessing damage extent and measuring neu-
roanatomical change over time. With knowledge of general location,
extent, and degree of change, metrics obtained using this type of soft-
ware can be associated with clinical measures and subsequently used
to suggest viable treatment options.

Recent neuroimaging studies reiterate the fact that the current
trend in TBI outcome prediction is to use multivariate statistical clas-
sification methods in order to identify groups of neuroimaging vari-
ables that can optimally cluster patients into outcome groups. Thus,
Tollard et al. identified their outcome biomarkers by implementing
an LDA where the robustness of outcome classification was tested
using a bootstrap procedure. These authors took advantage of an im-
portant feature of LDA, which is to dichotomize the TBI patient sample
into a test data set and another training data set. This allows one to
build a discriminant function of neuroimaging measures with putative
predictive value and to assign test cases to exactly one TBI outcome cat-
egory (e.g. healthy control, favorable outcome, or unfavorable outcome)
using a maximum likelihood criterion according to a strong classifica-
tion procedure. Similarly to Tollard et al., Strangman and colleagues
also used a multivariate prediction model to identify biomarkers of
TBI outcome. In their approach, however, linear regression models
were used to predict functional outcome based on anatomical mea-
sures. On the other hand, Kuceyeski et al. (2011) used principal
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component analysis (PCA) to create a combined cognitive score that has
maximal variance over healthy and TBI-affected populations and which
can presumably describe all cognitive functions of interest. Similarly,
Yuh et al. (2012) used PCA to demonstrate the interdependence of cer-
tain outcome-predictive variables extracted from CT data. Importantly,
they demonstrated that midline shift, cistern effacement, subdural
hematoma volume and GCS score were related to one another, and
concluded that the importance of these measures may be related to
their status as surrogate measures of a more fundamental underlying
clinical measure, e.g. the severity of the intracranial mass effect.

Thus, recent studies appear to confirm that TBI outcome prediction
models should not assume that outcome biomarkers consist of a single
(or group of very few) structuralmeasures. Instead, it seemsmore likely
that a linear combination of measures should be used instead as the un-
derlying modeling assumption, and that the outcome being predicted
should not be a single clinical or neuropsychological test score, but rath-
er of combination thereof. This type ofmodeling allows for greater flex-
ibility in the choice of predictive parameters while simultaneously
keeping to aminimum the assumptions beingmade about the statistical
problem under investigation.
5. Summary and conclusion

Brain region specificity is thought to play an important role in TBI
outcome type and severity, although these mechanisms of causation
have not been adequately elucidated. Consequently, investigating
the timeline of TBI abnormalities and subsequent recovery, as well
as assessing how such abnormalities contribute to long-term cogni-
tive and behavioral symptoms, are important basic research ques-
tions related to TBI. In humans, the use of CT/MRI alone has been
found insufficient for the purpose of addressing these questions, part-
ly because the sensitivity and specificity of these techniques are dis-
satisfactory when used by themselves. This realization has provided
appreciable impetus to the paradigm of multimodal imaging, whereby
a variety of complementary MR sequences (FLAIR, SWI, etc.), diffusion
imaging techniques (HARDI, DTI, DSI) and functional imaging (fMRI)
have gained popularity with both clinicians and TBI researchers.

One particular advantage of multimodal TBI imaging is that com-
bining volumetric/morphometric measures (as extracted from stan-
dard CT/MR) with structural and functional connectivity measures
(provided by DTI and fMRI, respectively) allows one to systematically
search for neuroimaging biomarkers that can predict outcome. On the
one hand, structural neuroimaging of TBI via MR/CT can help re-
searchers to determine how the gross anatomy of the brain changes
in response to injury and treatment. On the other hand, these modal-
ities allow one to quantify atrophy and regeneration, with potential
for the development of patient-tailored rehabilitation protocols. Sim-
ilarly, DTI allows one to infer the network properties of the TBI brain
and to study how DAI can affect cortical functions that are localized
far from the injury site. Finally, fMRI allows one to study the roles of
nodes and edges in such cortical networks in the context of how TBI
modulates functional responses to trauma.

Whenever large sample sizes are required for TBI neuroimaging
research, the availability of software tools for automatic segmenta-
tion, morphometry and tractography is paramount. The biggest chal-
lenge in making such tools available and reliable is the presence of
anatomical outliers in TBI data, which makes the application of con-
ventional segmentation metrics highly problematic. The reliability of
morphometric methods in TBI is also questionable in many cases,
particularly when the WM/GM boundary cannot be identified due
to changes in image intensity caused by pathology. It is particularly
challenging to quantify longitudinal anatomical changes that occur
with recovery, although recent progress via geometric metamorphosis,
personalized atlas construction and connectogramicmodeling has been
encouraging.
In spite of the difficulties and pitfalls of TBI neuroimaging summa-
rized above, an encouraging amount of progress has been recorded
through the use of neuroimaging to predict clinical outcome. In partic-
ular, multivariate statistical models have been applied with some suc-
cess to identify prognostic measures that are robust over TBI samples
of moderate size. It can be expected that future improvement in such
models, coupled with advances in automated TBI image processing
methods, may lead to the identification of volumetric/morphometric/
connectomic structural variableswhich can predictmotor and cognitive
outcome in detail. Additionally, such improvementsmay help clinicians
to generate personalized TBI profiles which can be tailored to address
the individual needs of each brain injury patient.
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