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Abstract. This paper describes an automatic tissue segmentation method
for neonatal MRI. The analysis and study of neonatal brain MRI is of
great interest due to its potential for studying early growth patterns
and morphologic change in neurodevelopmental disorders. Automatic
segmentation of these images is a challenging task mainly due to the
low intensity contrast and the non-uniformity of white matter intensities,
where white matter can be divided into early myelination regions and
non-myelinated regions. The degree of myelination is a fractional voxel
property that represents regional changes of white matter as a function
of age. Our method makes use of a registered probabilistic brain atlas
to select training samples and to be used as a spatial prior. The method
first uses graph clustering and robust estimation to estimate the initial
intensity distributions. The estimates are then used together with the
spatial priors to perform bias correction. Finally, the method refines the
segmentation using sample pruning and non-parametric density estima-
tion. Preliminary results show that the method is able to segment the
major brain structures, identifying early myelination regions and non-
myelinated regions.

1 Introduction

Magnetic resonance imaging is the preferred imaging modality for in vivo stud-
ies of brain structures of neonates. Potential applications include the analysis
of normal growth patterns and the study of children at high risk for developing
schizophrenia and other neurodevelopmental disorders. This typically involves
the reliable and efficient processing of a large number of datasets. Therefore,
automatic segmentation of the relevant structures from neonatal brain MRI is
critical. This task is considerably more difficult when compared with the seg-
mentation of brain MRI of infants and adults. This is due to a number of factors:
low contrast to noise ratio, intensity inhomogeneity (bias field), and the inhomo-
geneity of the white matter structure. White matter is separated into myelinated
white matter and non-myelinated white matter, often with ambiguous bound-
aries and as a regional pattern that changes with age.
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Experience shows that automatic segmentation methods for healthy adult
brain MRI generally fail to properly segment neonatal brain MRI. However,
the concepts and approaches for segmenting adult brains are still applicable for
neonatal brains if adjusted to tackle the specific problems. Matsuzawa et al. [1]
showed neonatal brain segmentation from MRI as a part of a study of early
brain development. The results show that the method has difficulties dealing
with tissue separation. The segmentations of one-month-old infants show mostly
noise, although axial MRI slices visually leave the impression that there are in-
tensity differences between non-myelinated white matter and gray matter. Most
advanced work has been demonstrated by Warfield et al. [2,3], but subjects were
mostly preterm babies presenting less complex cortical folding.

A successful concept for robust, automatic tissue segmentation of adult brains
is to use the information provided by a brain atlas. The brain atlas can be used
as spatial priors for segmentation [4,5]. The template-moderated segmentation
proposed by Warfield et al. [6] clearly demonstrates the strength of the use of a
spatial prior since regions that overlap in intensity space but are spatially dis-
joint can be separated. However, there is no spatial model for early myelination
regions in white matter since this is an infiltrating tissue property. Cocosco et
al. [7] demonstrated automatic, robust selection of training samples for different
tissue categories using only regions with high atlas probabilities. Additionally,
this research proposed non-parametric clustering to overcome limitations of tra-
ditional mixture Gaussian models. Brain tissue segmentation based on fractional
voxel properties has been developed by Shattuck et al. [8], motivated by the
need to improved tissue segmentation in the presence of pathological regional
changes. Preliminary feasibility tests with our 3 Tesla neonatal MRI with the
EMS method [5] were shown in Gerig et al. [9].

We have developed a new atlas based segmentation method for neonatal brain
MR images. The atlas is used as a guide to determine sample locations and also
defines spatial prior probabilities for tissue to improve robustness of classifi-
cation. Incorporating spatial priors into the process is essential for separating
different tissues that have low contrast. Our method combines the graph cluster-
ing approach by Cocosco et al. [7], the bias correction scheme by Van Leemput
et al. [10], and the robust estimation algorithm by Rousseeuw et al. [11]. In con-
trast to most other brain segmentation schemes, our new segmentation method
integrates bias correction, non-parametric classification, and brain masking into
one method.

2 Method

Unlike in adult brains, white matter in neonatal brains cannot be treated as
a single structure. White matter is composed of large non-myelinated regions
and small regions of early myelination (mostly seen in the internal capsule and
along the projection tracts towards the motor cortex). Non-myelinated white
matter in infants have the inverse intensity properties as compared to adult white
matter, it is dark in T1-weighted images and bright in T2-weighted images. Early



Fig. 1. Example neonatal MRI dataset with early myelination: the filtered and
bias corrected Neonate-0026 dataset. From left to right: T1-weighted image, T2-
weighted image, and the proton density image.

Fig. 2. The neonatal brain atlas-template created from a single subject segmen-
tation and blurring. From left to right: T1 template image, white matter (both
myelinated and non-myelinated), gray matter, and cerebrospinal fluid probabil-
ities.

myelination in white matter is shown as hyper intense regions in T1-weighted
images and hypo intense regions in T2-weighted images. Fig. 1 shows an example
of neonatal brain MRI in different modalities with early myelination regions.

Due to the different growth patterns across subjects and significant changes
over the first few months of development, it would be difficult to obtain separate
spatial models for the two different white matter classes. Therefore, we use a
single spatial prior for white matter that provides the probability for every voxel
to be either a myelinated white matter or non-myelinated white matter. Spatial
and geometric differences between the two classes are difficult to summarize,
so the identification of the different white matter classes is set to be driven by
image intensities. To test our method, we have created a template atlas shown
in Fig. 2. The template atlas was created from the segmentation of one dataset
that was done using a semi-automatic segmentation method. The human rater
first removes the skull and background using thresholding and user-supervised
level set evolution. The rater then manually marks regions for each tissue type
in different areas throughout the brain. From the user-selected regions, a bias
field estimate is extrapolated and then used to correct the inhomogeneity. The
segmentation is obtained using the k-nearest neighbor algorithm using training
samples from the selected regions. The segmentation result is then edited manu-
ally to correct for possible errors. We then blur the final segmentation result to
simulate the population variability. The creation of a brain atlas that sufficiently
describes the true variability of the population is a significant challenge beyond
the scope of this paper, but is currently in progress.

The segmentation process is initialized by registering the subject to the atlas
using affine transformation and the mutual information image match metric [12].



Fig. 3. Overview of the segmentation algorithm. The dashed lines show the
division of the process to three major steps: initial estimation of parameters
using MCD and MST clustering, bias correction, and refinement using a non-
parametric segmentation method.

The registered images are then filtered using anisotropic diffusion [13]. Since the
relative ordering of the different structures are known, the clustering method us-
ing the Minimum Spanning Tree (MST) proposed by Cocosco et al. [7] is ideal.
However, this method requires that the input images are already bias corrected
and that the brain regions are identified. These tasks are not easily accom-
plished given the intensity properties of neonatal MRI. Our method combines
the clustering method with robust estimation and bias correction using spatial
probabilities. The method is composed of three major steps, as shown in Fig. 3.
First, it obtains rough estimates of the intensity distributions of each tissue class.
It then iteratively performs segmentation and bias correction. Finally, it refines
the segmentation result using a non-parametric method.

2.1 Estimation of Initial Gaussian Parameters

The first step in the segmentation process determines the rough estimates of the
intensity distributions. Here, we choose to use the Gaussian as a rough model of
the intensity distributions. The parameters for the multivariate Gaussians are
computed through the combination of the Minimum Covariance Determinant
(MCD) estimator and MST edge breaking to the training samples.

The training samples are obtained by selecting a subset of the voxels with
high probability values (ex. τ > 0.9). Additionally, we use the image gradient
magnitudes as a sampling constraint. The 2-norm of the image gradient magni-
tudes at voxel location x, G(x) =

√
|∇I1(x)|2 + . . . + |∇In(x)|2, is the measure

we have chosen. Samples with G(x) greater than the average G(x) over the can-
didate white matter regions (Pr(wm) > 0) is removed to avoid sampling in the
transition regions between myelinated and non-myelinated white matter and at
white/gray matter boundaries. The removal of samples from the partial volume
regions aids the clustering process (Fig. 4).

Once the samples are obtained, we compute the initial parameters for gray
matter and csf using the robust mean and covariance from the MCD estima-
tor [11]. The result of the MCD algorithm is the ellipsoid that covers at least
half of the data with the smallest determinant of covariance. We then apply



Fig. 4. Illustrations of the Minimum Spanning Trees for white matter obtained
using different sampling strategies. Left: Samples with high probability values.
Right: Samples with high probability values and low gradient magnitude. Choos-
ing only samples with low gradient magnitude helps to remove samples from the
transition regions between myelinated white matter and non-myelinated white
matter and gray/white boundary voxels. This is crucial for clustering based on
edge breaking. As seen on the right picture, breaking the longest edge marked
by the arrow would give two well separated clusters.

the graph clustering method through MST edge breaking to the white matter
samples. The two white matter distributions are computed using an iterative
process similar to the one described in [7]:

1. Given a threshold value T , break edges incident with node i that have length
greater than T ×A(i), where A(i) is the average length of all edges incident
on node i.

2. Determine the two largest clusters and their means using the MCD algo-
rithm. The two clusters are sorted based on the robust mean along one of
the intensity features (set the first cluster to represent early myelination).

3. Stop when the two clusters satisfy the relative ordering criterion along one
of the intensity features. For example, the robust mean values for the T2
intensity feature must follow the relation: µmyel < µgm < µnon−myel < µcsf

4. Otherwise, decrease the value of T and go back to step 1.

Once the two white matter clusters are identified, the robust mean and co-
variance of the two clusters obtained through the MCD algorithm is used as
the initial Gaussian distributions for white matter. The initial Gaussian param-
eters are then combined with spatial priors in the next step where this initial
segmentation is used to estimate the bias field.

2.2 Bias Correction

Neonatal brain MR images exhibit higher intensity variability for each tissue
and low intensity contrast as compared to adult MRI. These two factors severely
hamper the estimation of intensity inhomogeneity. We have experimented with
a histogram based intensity inhomogeneity correction, developed by Styner et
al. [14]. We concluded that histogram based method would often fail to obtain
the optimal solution. The histogram of a neonatal brain MR dataset is generally
smooth with weak maximas.



In the case of bias correction of neonatal brain MRI, the spatial context
is useful to deal with the low intensity contrast. We have chosen to use the
method developed by Van Leemput et al. [10]. The bias correction scheme uses
the spatial probabilities to estimate the bias field. The bias field is estimated
by fitting a polynomial to the log difference between the original image and the
reconstructed homogeneous image.

2.3 Segmentation Refinement

At this stage, the images are already bias corrected and the brain regions are
identified. However, the Gaussian does not seem the optimal model for the in-
tensity distributions due to large intensity variability. Therefore, segmentation
obtained using this model generally has more false positives. In order to refine
the segmentation results, we apply the MST clustering method [7] to prune the
samples. Instead of using probability thresholding, we simply use the previous
classification labels for sample selection. The training samples obtained using
this method is then used to estimate the probability density functions of each
class using Parzen windowing or kernel expansion.

3 Results

We have applied the method to two cases, as shown in Fig. 5. Visual inspection
shows that the major regions are properly identified, although the distinction
between myelinated white matter and non-myelinated white matter is incorrect
in some regions. The myelinated white matter regions are mostly distributed
near the spine (central posterior). We also observed the presence of myelinated
white matter around the regions associated with the sensory and motor cortex.

Quantitative validation of the segmentation results is inherently difficult due
to the lack of a gold standard. The common standard, comparison with manual
segmentations, does not seem to be feasible since highly convoluted structures
in low-contrast, noisy data are hard to trace. In addition to that, the myelinated
white matter and the non-myelinated white matter have ambiguous boundaries,
which would make manual segmentation results highly variable and difficult
to reproduce. This problem is solved for adult brains by offering web-based
archives with simulated datasets [15] and manually segmented real datasets 1. We
are currently working on contour-based segmentation with subsequent manual
interaction to provide standardize test data for validation. .

4 Discussion and Conclusion

Efficient and robust segmentation of tissue and degree of myelination would have
a large impact in neonatal MRI studies, because early detection of pathology
may permit early intervention and therapy. Neonatal brain MRI offers unique
1 Internet Brain Segmentation Repository, http://www.cma.mgh.harvard.edu/ibsr

http://www.cma.mgh.harvard.edu/ibsr
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Fig. 5. The datasets and the generated segmentation results (top: high quality
dataset provided by Petra Hüppi, bottom: Twin-0001A dataset). The results
show that our method identifies the major brain structures, including the early
myelination regions and the non-myelinated white matter regions. The classifi-
cation labels are encoded as gray values, from darkest to brightest: myelinated
white matter, non-myelinated white matter, gray matter, and csf. The 3D im-
ages show the segmented myelinated white matter (solid) and non-myelinated
white matter (transparent).

challenges for image analysis. Standard automated segmentation methods fail
as there is reduced contrast between white and gray matter in neonates. Noise
is larger since non-sedated neonates need to be scanned with a high-speed MRI
protocol to avoid motion artifacts. White matter is also heterogeneous, with hy-
per intense myelinated white matter (in T1 image) compared to non-myelinated
white matter. The low contrast and visible contours in the data suggest that a
boundary-based approach would be ideal as opposed to voxel-by-voxel statisti-
cal pattern recognition. Tissue segmentation by statistical pattern recognition
on voxel intensities by definition lacks the concept of finding boundaries. On
the other hand, the poor quality of the data and high complexity of convoluted
structures presents a challenge for boundary driven segmentation methods.

We have presented an atlas-based automatic segmentation method for multi-
channel neonatal MRI data. The method uses graph clustering and robust es-
timation to obtain good initial estimates, which are then used to segment and
correct the intensity inhomogeneity inherent in the image. The segmentation is
then refined through the use of a non-parametric method. Visual inspection of
the results shows that the major structures are properly segmented, while the
separation of myelinated and non-myelinated white matter still lacks spatial co-
herence in some regions. The availability of a real neonatal probabilistic brain
atlas that captures the variability of the population is a critical issue for the pro-
posed method. The creation of such an atlas requires the segmentation of a set
of representative datasets and may require deformable registration for reducing
the high shape variability, which make the task highly challenging.
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