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Abstract. We present a novel automated method for assessment of im-
age alignment, applied to non-rigid registration of brain Magnetic Reso-
nance Imaging data (MRI) for image-guided neurosurgery. We propose a
number of robust modifications to the Hausdorff distance (HD) metric,
and apply it to the edges recovered from the brain MRI to evaluate the
accuracy of image alignment. The evaluation results on synthetic images,
simulated tumor growth MRI and real neurosurgery data with expert-
identified anatomical landmarks, confirm that the accuracy of alignment
error estimation is improved compared to the conventional HD. The pro-
posed approach can be used to increase confidence in the registration
results, assist in registration parameter selection, and provide local esti-
mates and visual assessment of the registration error.

1 Introduction

The objective of this work is the development of a novel metric for evaluating
the results of pairwise mono-modal Non-Rigid Image Registration (NRR). An
important feature of the proposed metric is the quantitative measure of the
misalignment between the two images, with the goal to estimate the registration
error. The specific application where we consider such metric to be of particular
importance is the non-rigid registration of brain Magnetic Resonance Imaging
(MRI) data during image-guided neurosurgery. This work is motivated by the
difficulty of selecting the optimum parameters for NRR and the lack of “ground
truth” that can be used for intra-operative evaluation of the registration results
during the course of the neurosurgery.

Image registration for image-guided neurosurgery aims the alignment of the
high-quality pre-operative MRI data with the scans acquired intra-operatively
(lower-quality images), for subsequent visualization of the registered data to as-
sist with the tumor targeting during the resection. Non-rigid registration [1] is es-
sential for this application because the brain shift cannot be recovered accurately
using rigid or affine transformations [2]. A number of methods for non-rigid
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registration of brain MRI have been developed [3,4]. One of the challenges in
NRR is the evaluation and validation of the registration results, e.g., see Chris-
tensen et al. [5]. Before a registration method is used in clinical studies, it can
be validated on the cases, where the “ground truth” is available (e.g., phantoms,
animal studies, cadavers, manually pre-labeled datasets) [1]. However, validation
of the results obtained during the patient studies is quite limited.

In the case of non-rigid registration of brain MRI, a widely accepted approach
to validation requires an expert (ideally, a group of independent experts) to iden-
tify landmark points in the pairs of images before and after the registration, or
outline the corresponding anatomical regions. The accuracy can then be assessed
by the overlap of the corresponding regions and landmarks. Although this ap-
proach provides possibly the best precision, the accuracy estimation is available
only at the landmark locations. The procedure is also very time-consuming, and
is not practical when the results need to be validated within the short period of
time (e.g., during the neurosurgery, when the time allowed for NRR is limited
to 5-10 minutes), or when it is not feasible to have expert involved (e.g., when
the results from a large number of different registration methods need to be
compared, or while performing large-scale parametric studies).

Because of the difficulties in performing intra-operative validation for patient
studies, the results of NRR can be assessed by evaluating certain formalized met-
rics. Christensen et al. [5] summarize a number of such success criteria. However,
not all of these criteria can be applied intra-operatively (e.g., the relative overlap
metric requires segmentation of both images). Those criteria that can be evalu-
ated intra-operatively (i.e., transformation transitivity and consistency metrics)
cannot be used to estimate local alignment error. Finally, although the failure
of NRR can sometimes be detected, there is no sufficient metric to conclude
success of the NRR. This provides motivation for the development and study of
new metrics for the NRR accuracy assessment.

In this paper we consider the use of an image similarity metric, different from
the one minimized during NRR, as the measure of image alignment to assess
the NRR accuracy. The concept of performing NRR assessment in such a way
was previously suggested in [2,6]. One of the common deficiencies of many image
similarity metrics (e.g., Normalized Cross-Correlation, or Mutual Information)
is that their value does not quantify the alignment error in terms of Euclidean
distance. Thus, given the selected similarity metric is robust and reliable, one
can track the improvement in image alignment, but cannot speculate about the
degree of misalignment. Our approach to address this deficiency uses similarity
metrics that are derived from the definition of the Hausdorff Distance (HD) [7].

The Hausdorff distance is a very common measure in pattern recognition
and computer vision to measure mismatch between the two sets of points. A
number of methods have been proposed to identify features (points, edges, lines)
in medical images [8,9]. The resulting feature images can be used as input for
the HD measure. The HD is not based on point correspondence, which makes
it somewhat tolerant to the differences in the two sets of features compared.
However, it is highly sensitive to noise. A large number of robust modifications
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to the HD have been proposed to suppress the noise and improve robustness of
the HD, since one of the first papers in this direction by Huttenlocher et al. [7].
The most recent surveys of the modifications to the HD are available in [10,11].
The value of the HD is derived from Euclidean distances between the two point
sets. Nevertheless, the HD has found limited use as a measure for the evaluation
of image alignment. Peng et al. [12] used a robust version of the HD to register
outlines of brain in two dimensions. Morain-Nicolier et al. [13] applied the HD to
quantify brain tumor evolution. Finally, Archip et al. [2,6] assess the performance
of non-rigid image registration of brain MRI with the 95% partial HD, but do
not discuss the reliability of this approach.

To the best of our knowledge, the HD-based approach to image alignment
assessment has not been comprehensively evaluated before. A number of the ro-
bust versions of the HD exist, but they have not been evaluated for 3d images
and in the context of NRR for medical imaging. In this paper we evaluate the
recent advances in the development of robust HD, and apply these techniques
to evaluate the accuracy of pairwise alignment for brain MRI subject to non-
rigid deformation. Based on the results of our evaluation, the presented approach
significantly improves the accuracy of the previously used alignment evaluation
metrics based on the conventional HD. The implementation of the presented
approach is available as open source software, accompanied by the detailed de-
scription of the parameters we used to obtain the reported results on publicly
available BrainWeb data [14].

2 Methods

The methods developed in this paper focus primarily on registration assessment
for image guided neurosurgery. The objective of the NRR is to align the pre-
operative image with the intra-operative data. Consequently, the objective of
the evaluation procedure is to confirm that alignment indeed improved following
NRR, and quantify the level of mis-alignment before and after registration. The
first image, which is called fixed image, is acquired intra-operatively, and shows
the brain deformation. For the purposes of assessment, the second image can
either be the floating image (pre-operative image rigidly aligned with the fixed
image), or the registered image (the result of registering the floating and target
images). By evaluating the alignment of fixed vs. floating and fixed vs. regis-
tered images we can assess the error of alignment before and after registration,
respectively. However, the formulation of the problem remains the same.

Given two images, I and J , the objective is to derive the point-wise alignment
error. Let A and B be the binary images with the feature points extracted from
I and J respectively, and A = {a1, . . . , an} and B = {b1, . . . , bm} be the sets
of points that correspond to the non-zero voxels in A and B, respectively. Next
we consider the sequence of the HD-based similarity measures with increasing
robustness.

The directed HD between the two sets of points h(A, B) is defined as the maxi-
mum distance from any of the points in the first set to the second set, and the HD
between the two sets, denoted H(A, B), is the maximum of these distances [7]:
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h(A, B) = max
a∈A

(d(a, B)), where d(a, B) = min
b∈B

‖a − b‖,

H(A, B) = max(h(A, B), h(B, A)).

In the case of perfect correspondence between the points in the sets A and
B (i.e., point a in the set A corresponds to the same image feature as point
b in the set B), H(A, B) would be the maximum (global), alignment error be-
tween the two images. This is the first problem in using the HD for alignment
assessment, as it can only estimate the maximum error. The second problem
obviously comes from the sensitivity of the metric to noise and lack of point
correspondence: the estimated value of the error will not correspond to the max-
imum error in the general case. Simple versions of the robust HD measure were
proposed to alleviate this problem. The partial Hausdorff distance is defined as a
quantile of the ranked distances between the two point sets, originally proposed
by Huttenlocher et al. [7]. Archip et al. [2,6] use 95%-HD, which is defined as the
0.95-quantile partial distance between the two sets. However, 95%-HD is a global
measure, and does not allow to assess the error locally without modifications to
the calculation procedure.

The local-distance map (LDMap) proposed by Baudrier et al. [11] for the of 2d
images extends the definition of the HD, and allows to derive the local measure
of dissimilarity between the two binary images:

∀x ∈ R3 : Hloc(x) = |1A(x) − 1B(x)| × max(d(x, A), d(x, B)), (1)

where A(x) is the voxel value at location x, and 1A(x) is a function which has
value 1 if A(x) is non-zero, and 0 otherwise. Hloc is symmetric, and it is connected
to the conventional HD definition by the relation H(A, B)=max(Hloc(A, B)) [11].

The advantage of Hloc (LDMap) is that it can be used for localized estimation
of the alignment error. Ideally, the value of Hloc should be the same as the
distance between the corresponding points in the images. However, because there
is no point correspondence used in the HD definition, the values of Hloc would
significantly deviate from the values of the alignment error, in the general case.

We attempt to add the notion of point correspondence to the definition of the
LDMap by using greyscale modification of the HD originally proposed by Zhao
et al. [10] for matching 2d images corrupted by noise. We transform the input
binary images, produced by the feature detection procedure, into greyscale Ã and
B̃. These greyscale images have the same size as the initial binary images, with
each voxel initialized to the number of non-zero voxels in the neighborhood of the
corresponding binary image pixel. A 2d example of greyscale image construction
is shown in Figure 1. Let B̃ be the set of points that correspond to non-zero
pixels in B̃. The directed distance d(ag, B̃), where g is the greyscale value at
voxel a in the greyscale image computed from A, is now defined as the distance
from a to the closest voxel in B̃ with the greyscale value within the tolerance t
from the value of g in B̃ (we used t = 2):

d(ag, B̃) = min
bg′∈B̃

‖ag − bg′‖, g − t ≤ g′ ≤ g + t.
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Fig. 1. Left: Binary image. Right: Corresponding greyscale image.

The greyscale local HD can now be computed based on this updated point
distance definition:

∀x ∈ R3 : GHloc(x) = |1A(x) − 1B(x)| × max(d(xg, Ã), d(xg, B̃)). (2)

We define the greyscale Hausdorff distance (GHD) GH(A, B) between the two
binary images as GH(A, B) = max(GHloc(A, B)).

Additional processing of the greyscale HD can increase its robustness further.
We define robust greyscale HD locally based on the least trimmed squares robust
statistics [15] on the values of GHloc in the region around each feature point.
The robust greyscale HD RGHloc(x) is calculated as the average of the ordered
values of GHloc(x) in the fixed size window centered at x, after discarding 20%
percent of the top distance values within this window (trimmed mean value).
Similarly to the HD and GHD, we define the robust greyscale Hausdorff distance
(RGHD) RGH(A, B) = max(RGHloc(A, B)).

Prior to edge detection, we smooth the input images using edge-preserving
anisotropic diffusion (variance 1.0, conductance 0.5, time-step 0.0625), followed
by adaptive contrast equalization [16]. Without such preprocessing the edges de-
tected in the images can have very small overlap even with the perfect alignment.
Edge detection is done with the Canny edge detector [8]. We use adaptive selec-
tion of the edge detection thresholds based on the binary search to have similar
number of edges in both images. Insight Toolkit (ITK) [16] is used for all image
processing operations. The reader is referred to [14] for the details of parameter
selection and the open source implementation of the presented technique.

3 Results

We evaluate the presented methods using three benchmarks: (1) synthetic non-
rigid deformation; (2) synthetic tumor growth; (3) real data from image-guided
neurosurgery with the expert-placed anatomical landmarks. In each case, the
performance of an evaluation metric is measured as its ability to recover the
deformation magnitude (thus, misalignment error value) at the locations of the
image where such deformation is known (all points for benchmarks (1) and (2),
and selected landmark points for (3)). The questions to answer are how the val-
ues of Hloc, GHloc and RGHloc locally compare to the ground truth alignment
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Fig. 2. Distribution of the error and the HD, GHD, and RGHD values for the same
synthetic deformation case (BrainWeb, sum of Gaussian deformations, variance 5)

error, and how the robust versions of the HD (GHD and RGHD) compare with
the conventional HD.

Synthetic nonrigid deformation. BrainWeb MRI simulator1 was used to cre-
ate two normal subject T1 images (0% and 9% noise) with 1 mm slice thickness,
and 0% intensity non-uniformity. We applied synthetic deformation to the image,
using the framework described in [17,14]. The deformation at points sampled on
a regular grid is calculated as a sum of Gaussian kernels, and deformation at non-
grid image locations are interpolated with thin-plate splines [16]. The magnitude
of deformation can be controlled by changing the variance of Gaussian kernel.
Local alignment accuracy was estimated between the undeformed image with 0%
noise and deformed images with 0% and 9% noise. The accuracy of alignment at
an image location (error) is the magnitude of the synthetic deformation vector
at that location.

The distributions of the true error values, and Hloc, GHloc, and RGHloc are
shown in Figure 2. Evidently, RGHloc is a significantly more accurate approxima-
tion of the error distribution. Robustness can also be compared by looking at the
percentage of outliers within local distance estimations, shown in Figure 3. We de-
fine outlier as a local estimation that exceeds the true error value at a point by
more than 2 mm (deformation field is in physical space, while the HD-estimation
is in 1-mm voxel space, thus errors as large as

√
3 cannot be prevented). With

increasingly larger deformations, the ratio of outliers is also increasing. The con-
tribution of the outliers in the conventional HD is increasing rapidly for larger
deformations. The robust metrics have by far less outliers, which is reflected in
the more stable behavior of GHD and RGHD in comparison to the HD: RGHD

1 http://www.bic.mni.mcgill.ca/brainweb/

http://www.bic.mni.mcgill.ca/brainweb/
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Fig. 3. Left: Error statistics for synthetically deformed BrainWeb images with and
without noise, and the derived values of the Hausdorff distance based estimations.
Right: The change in the proportion of the outlier measurements depending on the
Gaussian variance.

Fig. 4. Left: Synthetic tumor, case 2. Center: Deformation field produced by the tumor
growth simulation (tumor mass effect and infiltration), colored by magnitude. Right:
Edges recovered from the simulated tumor image. The same slice is shown in all images.

is consistently increasing as the alignment error increases, and it is always above
the mean error value (see Figure 3, left). Thus, for large deformations (deforma-
tions as large as 10-15 mm have been reported during open scull craniotomy)
RGHD is a more appropriate measure.

Synthetic tumor growth. We used simulated brain tumor growth images to
assess error estimation performance for more realistic deformation modes, and
for the images of different contrast. The images were created from the BrainWeb
anatomical data as described in [18]. We used two versions of the simulated data:
(1) with the intensity distribution close to that of the healthy subject image,
and (2) with the intensity distribution derived from the real tumor data. Edge
detection was done on the images with the regions corresponding to the tumor
excluded. The misalignment was estimated between the healthy subject data
and the image with the simulated tumor for the same subject at each feature
point of the edge images. The recovered distances were compared with the true
deformation magnitude from the tumor growth simulation (deformation field
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Table 1. Outliers percentage for synthetic tumor growth data (only points correspond-
ing to non-zero ground truth deformation are considered)

same contrast diff. contrast diff. contrast, enhanced
id Hloc RGHloc Hloc RGHloc Hloc RGHloc

1 7.9% 4.6% 32.7% 42.9% 12.1% 9.5%
2 21.7% 16.4% 30.3% 34.1% 20.2% 15.4%
3 4.1% 3.6% 34.5% 44.7% 10.4% 7.1%

Table 2. Accuracy of error assessment for the tumor resection data in mm; empty
entries correspond to image locations without edge features to assess error

landmark id case 1 case 2 case 3
expert Hloc RGHloc expert Hloc RGHloc expert Hloc RGHloc

1 2.59 – – 2.51 – – 4.43 1 3.07
2 0.48 – – 1.52 – – 4.53 1.41 2.25
3 0.48 1 0.92 2.99 1.41 1.53 3.96 – –
4 0.48 1 1.2 1.36 1.73 1.16 2.15 – –
5 2.59 1 0.82 0.98 – – 2.88 2 2
6 1.07 – – 2.4 – – 3.66 – –
7 2.45 – – 2.04 – – 3.49 2.24 2.22
8 1.44 1 0.63 1.92 1 1.36 4.43 1.41 2.94
9 3.36 2.24 3.45 3.04 – – 3.96 – –
10 1.44 1 1.11 1.36 1 1.43 1.98 1.41 1.05

avg difference w.r.t. expert 0.77 0.69 0.81 0.57 2.04 1.37

being the sum of the tumor mass effect and infiltration induced deformations).
The outlier statistics is summarized in Table 1. Case 2 was the most complex,
with the two infiltrating tumors of large volume located one next to another.
Edge detection is particularly problematic in the edema region, which in this
particular case extends to the majority of the deforming tissue region. This
explains large number of outliers for set 2. Figure 4 helps to appreciate the
complexity of error recovery for tumor set 2: there are very few edges detected
in the area of the deformation, and the tumor area is almost indistinguishable
from the large edema region. Nevertheless, robust HD estimation consistently
has less outliers than the HD.

Neurosurgery registration data. We used three data sets from the public
SPL repository of the tumor resection data2. Expert radiologist placed 10 cor-
responding anatomical landmarks in the pre- and intra-operative brain MRI T1
images. The error recovered using the HD-based techniques was compared with
the expert-estimated error. The results are summarized in Table 2. On average,
the RGHD measure shows better accuracy compared to the HD.

2 http://www.spl.harvard.edu/pages/Special:PubDB View?dspaceid=541

http://www.spl.harvard.edu/pages/Special:PubDB_View?dspaceid=541
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Fig. 5. Local estimation of misalignment using RGHD, all images show the same slice.
Left: Undeformed image, BrainWeb. Center: Deformed image, Gaussian kernel variance
5 mm. Right: LDMap of the deformed and undeformed images, voxel values initialized
to RGHDloc.

4 Conclusions

We have presented an HD-based approach to estimation of image alignment error.
Based on the evaluation results, the RGHDmeasure we propose can be more robust
in terms of outliers in local distance estimation, and thus can potentially improve
the accuracy of the image alignment assessment. While our primary application
is the assessment of the non-rigid registration results, validation of the proposed
method itself on real neurosurgery data is complicated by the absence of ground
truth. Nevertheless, it can be used to improve the confidence in registration results.

The synthetic tumor growth data used in our evaluation may be more chal-
lenging than estimation of the pre-, intra-operative and registered image align-
ment. In the latter case, the images have similar content: tumor and edema are
present on both images, and the edges detected from those images are more
similar. We show that RGHD improves error estimation accuracy locally for
anatomical landmarks, thus we expect that globally RGHD is also more accu-
rate on neurosurgery data than the HD measure.

The evaluated techniques, and specifically RGHD – the most robust of the eval-
uated methods – can serve multiple purposes in registration assessment. First,
they can be used as a global similarity metric between the two images, as well as
for local alignment assessment. This mode of operation is particularly useful for
automatic assessment of the non-rigid registration results during large-scale un-
supervised parametric studies. Second, localized assessment of registration error
can also be applied in conjunction with the visual assessment to provide quan-
titative error measurements. An example is shown in Figure 5. We emphasize,
that the proposed method cannot substitute validation studies. Instead, it can
be used in conjunction with other accuracy assessment methods for the patient
studies, where accuracy is critical, processing time is highly limited and there are
no means to compare the registration result with the ground truth. An promising
area of our future work is the evaluation of the proposed measures in conjunction
with the consistency tests of the deformation fields obtained during the NRR, and
sensitivity of the measures to parameter selection of a specific NRR method.
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