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Abstract. Shape regression is emerging as an important tool for the
statistical analysis of time dependent shapes. In this paper, we develop
a new generative model which describes shape change over time, by ex-
tending simple linear regression to the space of shapes represented as cur-
rents in the large deformation diffeomorphic metric mapping (LDDMM)
framework. By analogy with linear regression, we estimate a baseline
shape (intercept) and initial momenta (slope) which fully parameterize
the geodesic shape evolution. This is in contrast to previous shape re-
gression methods which assume the baseline shape is fixed. We further
leverage a control point formulation, which provides a discrete and low di-
mensional parameterization of large diffeomorphic transformations. This
flexible system decouples the parameterization of deformations from the
specific shape representation, allowing the user to define the dimension-
ality of the deformation parameters. We present an optimization scheme
that estimates the baseline shape, location of the control points, and
initial momenta simultaneously via a single gradient descent algorithm.
Finally, we demonstrate our proposed method on synthetic data as well
as real anatomical shape complexes.

1 Introduction

Shape regression is of crucial importance for statistical shape analysis. It is useful
to find correlations between shape configuration and a continuous scalar param-
eter such as age, disease progression, drug delivery, cognitive scores, etc.. When
only few follow-up observations are available, regression is also a necessary tool to
interpolate between data points and give a scenario of evolution which depicts a
continuous shape evolution over the parameter range [5,13]. Longitudinal studies
also require to compare such regressions across different subjects [5,8,10,11].

Extending traditional scalar regression for shape is not straightforward as
shape intrinsically live on a Riemannian manifold. Therefore, methods differ
according to the choice of metric on the shape space and the corresponding re-
gression function. In [5], a piecewise geodesic method has been proposed, which
extends piecewise linear regression for shape time-series. In [7,16] second-order
models have been proposed which are controlled by the acceleration of shape
changes or the deviation from geodesic paths. Non-parametric regression has
been proposed in [3], extending kernel regression to Riemannian manifolds. In [9]



geodesic regression is proposed as a straightforward extension of linear regres-
sion on Riemannian manifolds. Geodesic regression is fully characterized by the
baseline shape (the intercept) and the tangent vector defining the geodesic at the
baseline shape (the slope). Therefore, it seems well adapted for longitudinal stud-
ies, since different regressions could be compared by transporting baseline and
tangent vectors from subject to subject, using parallel transport for instance [12].

Methods in [5,7,14] are based on the large diffeomorphic deformation metric
mapping (LDDMM) paradigm, which is well suited for regression purposes since
it is built on a continuous flow of diffeomorphisms that model continuous shape
changes over a time period. In [14], geodesic regression is proposed in the LD-
DMM framework for image data. Extending it for geometric data such as curves
and surfaces is challenging for at least two reasons.

First, images seen as measures on R
3 inherit from a linear structure which

eases the estimation of the baseline image (images could be averaged by aver-
aging grey levels for instance). Curves or surfaces could be also embedded into
a vector space if we assume point correspondences between shapes [2]. Alterna-
tively, we can avoid explicit correspondence by embedding shapes into the space
of currents, which defines a generic metric which can handle both surfaces and
curves or any mix of them. However, the average of surfaces in the space of cur-
rents is usually not a surface anymore [5]. To overcome this limitation, we will
use here the new formulation initiated in [6], which allows to optimize a given
template in the space of currents, while preserving its topology.

Second, the parameterization of the deformations in the LDDMM setting
is given by a scalar momenta map (which plays the role of the tangent vector
defining the geodesic path), which has the same dimension as the images. For
point data, the parameterization is given by one momentum vector at every
point of the baseline shape. The dimension of this parameterization explodes
when shape complexes are analyzed. To overcome this limitation, we will use
the control point formulation in the LDDMM setting that has been introduced
in [4]. Consequently, our geodesic model characterizes complex evolution with
a small number of parameters (defined by the user), compared to [5,7] which
require vectors at every shape point and every time point in the discretization.

2 Methods

2.1 Shape regression

In shape regression, the goal is to estimate a continuous shape evolution from a
discrete set of observed shapes Oti at time ti within the time interval [t0, T ].
Here we consider shape to be generic geometric objects that can be represented
as curves, landmark points, or surfaces in 2D or 3D. Shape evolution is modeled
as the geodesic flow of diffeomorphisms acting on a baseline shape X0, defined
as X(t) = φt(X0) with t varying continuously within the time interval deter-
mined by the observed data. The baseline shape X0 is continuously deformed
over time to match the observation data (X(ti) ∼ Oti) with the rigidity of the



evolution controlled by a regularity term. This setting is naturally expressed as
a variational problem, described by the regression criterion

E(X0, φt)) =

Nobs
∑

i=1

||(φti(X0)−Oti)||
2
W∗ +Reg(φt)

=

Nobs
∑

i=1

D(X(ti),Oti) + L(φt) (1)

where D represents the squared distance on currents (||·||2W∗) and L is a measure
of the regularity of the time-varying deformation φt.

2.2 Control point parameterization of deformations

We adopt a discrete parameterization of deformations, where dense diffeomor-
phisms of the underlying space are built by interpolating momenta located at
control points [4]. Let c0 = {c1, ..., cNc

} be a finite set of control points which
carry initial momenta vectors α0 = {α1, ...αNc

}, together referred to as the
initial state of the system S0 = {c0,α0}.

The set of control point positions c0 and initial momenta α0 serve as initial
conditions for the geodesic equations, which define the time evolution of the
system of control points and momenta, given by























ċi(t) =

Nc
∑

p=1

K(ci(t), cp(t))αp(t)

α̇i(t) = −

Nc
∑

p=1

αi(t)
tαp(t)∇1K(ci(t), cp(t))

(2)

where K is the interpolating kernel assumed (without loss of generality) to be
Gaussian: K(x, y) = exp(−|x− y|2)/σ2). These equations describe the evolution
of the state of the system S(t) = {ci(t), αi(t)} and can be written in short as
Ṡ(t) = FS(t)

Thanks to the geodesic equations, the trajectories of control points ci(t) and
αi(t) now parameterize the time-varying velocity field v(x, t) defined at any point
in space x and time t as

ẋ(t) = v(x, t) =

Nc
∑

p=1

K(x, cp(t))αp(t). (3)

which can be written in short as ẋ(t) = G(x(t),S(t)).
The time-varying velocity field v(x, t) can then be used to build the flow

of deformations φt(x) in the spirit of the LDDMM framework by integrating
the ODE: φ̇t(x) = v(φt(x), t). Using the coordinates of the baseline shape X0

as initial conditions, integrating this ODE computes the deformation of the
baseline shape from time t0 to T . Therefore the flow of diffeomorphisms is fully
determined by the initial state of the system S0: the set of initial control points
c0 and initial momenta vectors α0.



2.3 Minimization of regression criterion

Fig. 1. Overview of
geodesic regression with
estimated parameters in
red.

The geodesic flow of diffeomorphisms φt in the crite-
rion (1) is parameterized by Nc control points and mo-
menta vectors S0 = {c0,α0}, which act as initial con-
ditions for the flow equations (2). The baseline shape
X0 can then be deformed according to this flow by
applying equation (3). Therefore we seek to estimate
the position of the control points, initial momenta,
and position of the points on the baseline shape such
that the resulting geodesic flow of the baseline shape
best matches the observed data. An overview of our
control point formulation of geodesic shape regression
is shown in Fig. 1. With all elements of our frame-
work defined, geodesic shape regression can now be
described by the specific regression criterion

E(X0,S0) =

Nobs
∑

i=1

1

2λ2
D(X(ti),Oti) + L(S0) (4)

subject to
{

Ṡ(t) = F (S(t)) with S(0) = {c0,α0}

Ẋ(t) = G(X(t),S(t)) with X(0) = X0
(5)

where λ2 is used to balance the importance of the data term and regularity,
L(S0) =

∑

p,q α
t
0,pK(c0,p, c0,q)α0,q is the regularity term defined by the kinetic

energy of the control points. The first part of (5) describes the trajectory of the
control points and momenta as in (2). The second equation of (5) represents
flowing the baseline shape along the deformation defined by S(t) as in (3).

As shown in the appendix, the gradients of the criterion (4) are

∇S0
E = ξ(0) +∇S0

L ∇X0
E = θ(0) (6)

where the auxiliary variables θ(t) and ξ(t) = {ξc, ξα} satisfy the ODEs:

θ̇(t) = −∂1G(t)tθ(t) +

NObs
∑

i=1

∇X(ti)D(ti)δ(t− ti) θ(T ) = 0

ξ̇(t) = −(∂2G(t)tθ(t) + dS(t)F (t)tξ(t)) ξ(T ) = 0

(7)

The gradient is computed by first integrating equations (2) forward in time
to construct the flow of diffeomorphisms. The deformations are then applied to
the baseline shape by integrating forward in time equation (3). With the full
trajectory of the deformed baseline shape, one can compute the gradient of the
data term ∇X(ti)D(ti), corresponding to each observation. The ODEs (7) are
then integrated backwards in time, with the gradients of the data term acting
as jump conditions at observation time points, which pull the geodesic towards
target data. The final values of the auxiliary variables θ(0) and ξ(0) are then



used to update the location of the control points, the initial momenta, and the
location of the points on the baseline shape.

The method, summarized in Algorithm 1, is implemented via a gradient
descent scheme. The parameters of the algorithm are the tradeoff between data
matching and regularity λ, the standard deviation of the deformation kernel
σV , and the standard deviation of the metric on currents σW . The value of σV

controls the scale at which points in space move in a correlated manner, while the
value of σW controls the scale at which shape differences are considered noise.
The algorithm also requires an initial baseline shape. For surfaces, initialization
consists of an ellipsoid for each connected component of the shapes, which defines
the number of shape points as well as the connectivity, which is preserved during
optimization.

3 Results

Fig. 2. Initial baseline
shape and observed
amygdala.

Synthetic Transformations We explore the abil-
ity of the geodesic regression model to capture simple
synthetic transformations applied to a real anatom-
ical surface. We consider the amygdala surface ex-
tracted from a 4 year old child and investigate trans-
lation and scaling. For both experiments, we initialize
the baseline shape to be an ellipse, as shown in Fig.
2, which defines the topology of the baseline shape,
which will remain unchanged during optimization. We
define 12 control points on a regular grid and param-
eters σV = 12 mm, σW = 5 mm, and λ = 0.1. Both experiments contain three
shape observations spaced one time unit apart.

The results of the translation and scaling experiments are summarized in Fig.
3. For both experiments, the baseline shape estimated by our method closely
matches the amygdala surface at the earliest time point. Additionally, the dy-
namics of shape evolution described by translation and scaling is well captured
by the geodesic model. These experiments demonstrate the compactness of the
geodesic model – continuous shape evolution is fully described by the baseline
shape and 12 momentum vectors.

Synthetic Tumor Evolution Next, we apply our geodesic model to study
tumor evolution over time. Using TumorSim [15], we simulate three differing
tumor scenarios : a slowly deforming tumor, a rapidly deforming tumor, and
a tumor which infiltrates rather than deforming surrounding tissue. We obtain
four observations in the time span of one year, obtained at the same baseline
time 0, 5± 1, 8± 1, and 12 months. This mimics the acquisition of real medical
images, which are not necessarily acquired at the same time for every patient.
The simulated images and tumor segmentations are shown in Fig. 4.

In order to compare the differing tumor evolutions, we leverage the control
point formulation. We establish a common reference space which is shared among



Algorithm 1: Geodesic shape regression

Input: X0 (initial baseline shape), Oti (observed shapes), t0 (start time), T
(end time), σ (tradeoff), σV (std. dev. of deformation kernel), σW (std.
dev. of currents metric)

Output: X0, c0,α0

1 α0 ← 0;
2 Initialize control points c0 on regular grid with spacing σV ;
3 repeat
4 {Compute path of control points and momentum (forward integration)};

5 ci(t) = ci(0) +
∫ T

t0

∑Nc

p=1 K(ci(s), cp(s))αp(s)ds;

6 αi(t) = αi(0)−
∫ T

t0

∑Nc

p=1 αi(s)
tαp(s)∇1K(ci(s), cp(s))ds;

7 {Compute trajectory of deformed baseline shape (forward integration)};

8 xk(t) = xk(0) +
∫ T

t0

∑Nc

p=1 K(xk(s), cj(s))αj(s)ds;

9 {Compute the gradient of the data term for each observation};
10 ∇X(ti)D(ti);
11 {Compute auxiliary variable θ(t) (backward integration)};

12 θk(t) = θk(T ) +
∫ t

T

∑Nc

p=1 αp(s)
tθk(s)∇1K(xk(s), cp(s)) −

13

∑Nobs

i=1 ∇xk(ti)Dδ(s− ti)ds;
14 {Compute auxiliary variable ξc(t) (backward integration)};

15 ξck(t) = ξck(T )−
∫ t

T

∑Nx

p=1 αk(s)
tθp(s)∇1K(ck(s), xp(s)) +

16 (∂cF
c)ξck(s) + (∂cF

α)ξαk (s)ds;
17 {Compute auxiliary variable ξα(t) (backward integration)};

18 ξαk (t) = ξαk (T )−
∫ t

T

∑Nx

p=1 K(ck(s), xp(s))θp(s) +

19 (∂αF
c)ξck(s) + (∂αF

α)ξck(s)ds;
20 {Compute gradients};
21 ∇c0

E = ξc(0) +∇c0
L;

22 ∇α0
E = ξα(0) +∇α0

L ;
23 ∇X0

E = θ(0);
24 {Update control points, momenta, and baseline shape};
25 ci(0)← ci(0)− ε∇ciE αi(0)← αi(0)− ε∇αi

E

xi(0)← xi(0)− ε∇xi
E;

26 until Convergence;
27 return X0, c0,α0;



each geodesic model by placing 125 control points on a regular grid with 12 mm
spacing and freeze these locations during optimization. We estimate a geodesic
model for each tumor scenario, using parameters σV = 12 mm, σW = 5 mm,
λ = 1.0, and initialize the baseline shape with an ellipse.

The estimated baseline tumor and initial momenta are displayed in Fig. 5
for each of the three tumor scenarios. The magnitude of the momenta describing
the rapidly deforming tumor are the largest among the three tumor scenarios,
which is also evident in the speed of growth overlaid on the baseline tumor. The

Fig. 3. For both translation and scaling panels, the top row shows discrete shape
observations of the amygdala surface, while the bottom row shows shapes estimated
during geodesic regression at observation times as well as intermediate stages. Our
method estimates an appropriate baseline shape starting from an ellipsoid, along with
momenta vectors that capture translation or scaling

Fig. 4. Four observations of synthetic tumor evolution. Top) Slowly deforming tumor.
Middle) Rapidly deforming tumor. Bottom) Tumor which infiltrates surrounding
tissue. The first two cases show different degrees of deformation in surrounding tissue
and ventricles, while the third has little deformation.



Fig. 5. Baseline shape and initial momenta for geodesic models of tumor evolution.
Our regression framework captures the different tumor growth characteristics, with
momenta vectors constrained to be in the same coordinates for comparison purposes.

orientation of the momenta vectors encode the direction of tumor growth, which
highlight the differences in the way each tumor evolves. We note that the initial
momenta vectors do not differentiate well between deforming and infiltrating
tumors, as the infiltration process cannot be described by tumor shape alone.
However, the estimated baseline shape and dynamics of shape change are well
captured by the geodesic model for all three tumor scenarios.

Pediatric Subcortical Development We next investigate the application of
geodesic shape regression to model pediatric subcortical development. Three sub-
cortical shapes are considered as a multi-object shape complex: putamen, amyg-
dala, and hippocampus. The structures were obtained from MRI of a healthy
child scanned at approximately 9, 13, and 24 months of age. Geodesic regression
was conducted using 126 control points and parameters σV = 8 mm, σW = 6
mm, and λ = 1.0. To improve speed of convergence, we initialize the baseline
shapes for each subcortical structure with an ellipse that has been coarsely reg-
istered to its corresponding subcortical shape. Regression was conducted on all
shapes simultaneously, resulting in one deformation of the ambient space.

Several snapshots of the evolution of subcortical structures is shown in Fig.
6, with estimated baseline shape shown at 6 months. From 6 to 26 months,
all subcortical structures increase in size, with the putamen demonstrating the
most dramatic growth. The evolution of the putamen is characterized by ac-
celerated growth at the superior anterior and inferior posterior regions, while
the hippocampus grows mostly at the extreme posterior region, expanding and
bending at the tip. The geodesic model is able to capture interesting non-linear
growth patterns with few parameters; the full time evolution is modeled by three
baseline shapes and 126 momenta vectors.

This experiment demonstrates the applicability of the geodesic model in char-
acterizing pediatric subcortical development. Our regression framework simulta-
neously handles multiple shapes, including those with complex geometry. Multi-
object regression allows for a more complete analysis, compared to an indepen-



Fig. 6. Snapshots of subcortical shape evolution after geodesic regression on a multi-
object complex: putamen, amygdala, and hippocampus.

dent treatment of each subcortical structure, which ignores potentially important
spatial relationships between structures. This single subject experiment can also
be extended to a population analysis thanks to the control point formulation of
deformations. As with the previous tumor experiment, one can fix the control
point locations for all subjects. The differences between and within populations
can be quantified by exploring the variability between estimated baseline shapes,
and between initial momenta at identical locations for all subjects.

White Matter Fibers in Early Brain Development Finally, we study early
brain development by considering the evolution of white matter connections from
birth to 2 years of age. For this experiment, we have diffusion tensor imaging
(DTI) data from 17 subjects with scans obtained at clustered time points of
2± 2, 12± 2 months, and 24± 2 months. We extract the genu fiber tract from
each DTI using the framework of [1]. In our experiment, we use 26 genu fiber
tracts which are represented as a collection of 3D curves. By considering fiber
geometry obtained from multiple subjects, the estimated geodesic model can
be considered as the development of the genu tract for an average child. We
initialize the baseline shape with the genu fiber bundle from the atlas space,
define 75 control points on a regular grid, and set parameter values as σV = 5
mm, σW = 8 mm, and λ = 0.1.

The average development of the genu tract estimated by our geodesic model is
summarized in Fig. 7, which shows several snapshots on the genu fibers over time.
The elongation of the fibers reflects the myelination process that occur during
early development, where myelin sheaths grows to cover white matter regions
outward to the cortex. Our geodesic regression framework handles the multiple



Fig. 7. Average development of genu fiber tract from 2 to 24 months. Top row shows
observed data for all subjects, which is clustered around 2, 12, and 24 months. Bottom
row shows genu fiber tracts estimated from geodesic regression at several time points
with velocity of fiber development displayed on the surface of the estimated fibers.

fiber structure that form the genu fiber bundle, using the currents framework to
match the curvilinear fiber structures.

4 Conclusions

We have presented a geodesic regression model for shapes represented as cur-
rents in the large diffeomorphic metric mapping (LDDMM) framework where
dense diffeomorphisms are built using a control point formulation. This pro-
vides a discrete and low dimensional parameterization of large diffeomorphic
transformations, decoupling the parameterization of deformations from the spe-
cific shape representation. By representing shapes as currents, our regression
model can seamlessly handle both surfaces and curves, or any combination of
them represented as multi-object complexes. This is a powerful representation
that incorporates potentially important spatial relationships between anatomical
shapes into the regression framework.

By analogy with linear regression, our generative geodesic model is fully char-
acterized by a baseline shape (intercept) and initial momenta vectors (slope). We
have introduced an optimization scheme which estimates the baseline shape, lo-
cation of the control points, and initial momenta simultaneously via a single
gradient descent algorithm. Finally, we presented results from experiments car-
ried out on a diverse collection of shape data, demonstrating the widespread
applicability of our geodesic shape regression framework. Future work will focus
on incorporating the geodesic model into a framework for the statistical analysis
of longitudinal data. We will explore approaches which simultaneously estimate
a population baseline as well as momenta for individual subjects in homologous
locations. We will also explore methods for transporting baseline shapes and
momenta vectors between subjects and between population groups to enable
hypothesis testing on 4D growth models.
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A Differentiation of the Regression Criterion

Consider a perturbation δS0 to the initial state of the system (c0, α0), which
leads to a perturbation of the motion of the control points δS(t), a perturbation
of the template shape trajectory δX(t), and a perturbation of the criterion δE

δE =

Nobs
∑

i=1

(

(∇X(ti)D(ti))
tδX(ti)

)

+ (∇S0
L)tδS0. (8)

The perturbations δS(t) and δX(t) satisfy the ODEs:

δṠ(t) = dS(t)F (t)δS(t) δS(0) = δS0

δẊ(t) = ∂1G(t)δX(t) + ∂2G(t)δS(t) δX(0) = δX0
(9)

Let Rst = exp
(

∫ t

s
dS(u)F (u)du

)

and Vst = exp
(

∫ t

s
∂1G(u)du

)

. The first ODE

is a linear homogeneous ODE with well known solution

δS(t) = R0tδS0 (10)

The second ODE is a linear inhomogeneous ODE with solution

δX(ti) =

(
∫ ti

0

Vuti∂2G(u)R0udu

)

δS0 + V0tiδX0 (11)

which can now be plugged into (8). After arranging terms we have

δE =

Nobs
∑

i=1

[
∫ ti

0

R0u
t∂2G(u)tVuti

t∇X(ti)D(ti)du

]t

δS0 + [∇S0
L]

t
δS0

+

Nobs
∑

i=1

[

V0ti
t∇X(ti)D(ti)

]t
δX0

(12)

Letting θ(t) =
∑Nobs

i=1 Vtti
t∇X(ti)D(ti)1{t≤ti}, g(t) = ∂2G(t)θ(t), and ξ(t) =

∫ ti

t
Rtu

tg(u)du leads to the gradient of the criterion written as







∇S0
E =

∫ ti

0

R0u
tg(u)du+∇S0

L = ξ(0) +∇S0
L

∇X0
E = θ(0)

(13)

where auxiliary variables θ(t) and ξ(t) satisfy the ODEs

θ̇(t) = −∂1G(t)tθ(t) +

NObs
∑

i=1

∇X(ti)D(ti)δ(t− ti) θ(T ) = 0

ξ̇(t) = −(∂2G(t)tθ(t) + dS(t)F (t)tξ(t)) ξ(T ) = 0.

(14)


