Examples

Vector Field Topology
Continued

Motivation

¢ Abstract representation of flow field

* Characterization of global flow structures
* Basic idea (steady case):

* Interpret flow in terms of streamlines

* Classify them w.r.t. their limit sets

* Determine regions of homogenous behavior

* Graph depiction

¢ Fast computation

g Wake Vortex Study at Wallops Island
NASA Langley Research Center 5/4/1990 Image # EL-1996-00130



Limit Sets and Basins Limit Sets and Basins

® Limitsets of a poink € IR" ® Phase portrait
[ ]

w(x) :omega limit set of x = point
(or curve) reached after forward
integration by streamline seeded at x
® a(x) :alpha limit set of x = point (or
curve) reached after backward
integration by streamline seeded at x
® Sources (¢) and sinks (1) of the flow

® Basin: region of influence of a limit set

Limit Sets and Basins Limit Sets and Basins

® Limitsets ® Flow direction




Limit Sets and Basins

® l-basin of sink

Critical Points

® Equilibrium
4 ﬁ(xo) = 6
® Streamline reduced to a single point
® Remarks
® Asymptotic flow convergence / divergence
® Streamlines “intersect” at critical points

® Type of critical point determines local flow
pattern around it

Limit Sets and Basins

® (-basin of source

Intuition: Smooth Field

® In the e-neighborhood of a regular point the
direction of the vector field does not change
significantly
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Critical Points are Key to

Intuition: Smooth Field Understand the Structure of the
Field
® Inthe e-neighborhood of a critical point the ® Computation as intersection of level sets:
direction of the vector field can change
arbitrarily

v, (x,y)=0
Vy (xﬂy) — O

Triangular Mesh Triangular Mesh

® walk through the mesh triangle by triangle ® walk through the mesh triangle by triangle




Triangular Mesh Triangular Mesh

® Walk through the mesh triangle by triangle ® Walk through the mesh triangle by triangle
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Triangular Mesh Triangular Mesh
® walk through the mesh triangle by triangle ® How many critical points can you have in a
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Remember Isocontours Remember Isocontours

v, (x,7)=0 vy (%) =0
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Remember Isocontours Remember Isocontours
{vx (x,y)=0 {vx (x,y)=0
Vy(x’y):() Vy(-xay):()
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Remember Isocontours Quad Mesh

® Walk around the boundary ® Walk through the mesh triangle by triangle
® Alternating intersections with the two level [ I~
sets: 1t T~
® One critical point J oy ! BNE
® Otherwise: ! 1]
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No critical point . ] ]
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Remember Isocontours Remember Isocontours
® How many critical points per cell can you
® ® ® have?
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Remember Isocontours

® For each pair of connected components

Remember Isocontours

® How many critical points per cell can you
have~ of Vx and Vy
) ; ‘““-_j ® Walk around the boundary
® Alternating intersections with the two level

sets:
® One critical point

C\?r O
' _ ® Otherwise:

O /i) J ® Nocritical point

Critical Points Critical Points

v, (<1
. _{ % B . .
® Jacobianhas full rank 7= ( Do B ) ® Type determined by Jacobian’s
® Nozero elgenvalue ey B duy 40 eigenvalues:
90 oy Oy 9z = 0N . .
* Ma|or cases e e ® Positive real part: repelling (%&yc_e)cx .
Node Focus Center

Saddle Spiral

d Hyperbolw@le) / non hgperbollc
(unstable)



Critical Points Critical Points
® Type determined by Jacobian’s ® Type determined by Jacobian’s
eigenvalues: eigenvalues:

® Positive real part: repelling (g?u)rce ® Positive real part: repelling (source

_4)& vx=)cx,k>(] _¢$1—> )cx,k>0

Critical Points Critical Points
® Type determined by Jacobian’s ® Type determined by Jacobian’s
eigenvalues: eigenvalues:
[ ) [ ) H . H
Positive real part: repelling (S(()lﬁrce)cx E>0 Positive real part: repelling (g&ﬁrc:e)cx’ E>0
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Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source
part: repelling (S0Urce) . k>0

® Negative real part: attractingi(gsjnkx, k < 0
?

Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source
part: repelling (sodrce) . k>0

® Negative reatpart: attrastingi(sjnklx, k < 0
A ? ?

Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source
part: repelling (Source) . k>0

® Negative real part: attractingi(sjnklx, k < 0
¢ ?

Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (spurce
part: repelling (source) . k>0

hd wn: attractingi(tsinkkx, k < 0
¢



Critical Points
® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source
part: repelling (S0Urce) . k>0

° I\_I$g_a$i¥_e#r§p$rt: attrastings(fsinklx, k < 0
¢

Critical Points

du, By
. . i %
Jacobian has full rank vy Ay

9z Oy
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No zero eigenvalue v, 8 v, &
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® Major cases

Foxrxe

Saddle Spiral Node Focus Center

d Hyperbolw@le) / non hgperbollc
(unstable)

Critical Points
® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source
part: repelling (Source) . k>0

° Wﬁ%rt: attracting(gjnklx, k < 0
¢

Critical Points

Bvug vy
° . g 2= v
Jacobian has full rank dvy vy

x Oy

[ ]
No zero eigenvalue v, 0 v, O
9 ﬁﬁ_jﬁz,\n)u?gg

® Major cases
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Saddle Spiral Node Focus Center

® Hyperbolm@le) / non hgperbollc
(unstable)



Eigenvalues and
Eigenvectors

a b
A=(C dJ Ae = Je

Eigenvalues and
Eigenvectors

Eigenvalues and
Eigenvectors

® Eigenvaluescan be computed as the zeroes
of the characteristic polynomial

det(4 — AI)=0

a— A
c

det{ H__E/J:(a—)\)(d—)\)—bc:)@—(a+d))\+(ad—bc)

+d | | 2 . /4b —d)?
:ﬂi !Mﬁ»bc—ad:i—di%

A=y

Critical Points

separatrices
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Critical Point Extraction Closed Orbits

® Cell-wise analysis ® Curve-type limitset

® Solve linear / quadratic equation to . ® Sink/ source behavior
determine position of critical p’dimm)&éﬁ 0

® Compute Jacobian at that posiCom v )

dx By
Guy  uy
dr Oy

® Compute eigenvalues
4

® Iftype is saddle, compute eigenvectors

Closed Orbits Closed Orbit Extraction
® Curve-type limitset ® Poincaré-Bendixson theorem:

® Ifa region contains a limit set and no

® Sink/ source behavior
critical point, it contains a closed orbit

® Poincaré map:

Cross section = v

® Defined over cross section SO = .
® Map each position to next intersection with cross K ' ' / \
section along flow : ] ] M
® Discrete map \\\ 'Sy Y \\‘ﬂ/ v
° . ) . N
Cycle intersects at fixed point Fixed point
® Hyperbolic/ non-hyperbolic



Closed Orbit Extraction Closed Orbit Extraction

® Results

® Detect closed cell cycle
® Check for flow exit along boundary

® Find exact position with Poincaré map

Topological Graph

Topological Graph

® Graph
® Nodes: critical points
® Edges: separatrices and closed orbits

® Remark

® Allistreamlinesin a given region have same (-and 1
limit set

® Problem

® Definition does not account for bounded domain



Local Topology Local Topology

® Classificationw.r.t. asymptotic convergence

® On bounded domain: streamlines leave
domainin finite time
® Extend definition of topology
® Inflow boundaries a sources
half-saddle
® Outflow boundaries a sink%
u

® Bounded by half-saddles

tflo inflow

® Additional separatrices separatrix

Application to Surfaces in 3D What about transient flows?

nas.nasagovl- crespictures himl

* Parameter dependenttopology:
*Critical points move, appear, vanish, transform
*Graph connectivity changes

* Structural stability (Peixoto): topology is stable
w.r.t. smallbut arbitrary changes of

parameter(s) if and only if

®1) Number of critical points and closed orbits is finite and all
are hyperbolic

® Critical point analysis + integration of
separatrices applied to projection of vector ®2) No saddle-saddle connection
field onto polygonal surface





