Vector Field Topology Continued

Examples

5/4/1990

Wake Vortex Study at Wallops Island NASA Langley Research Center

Image # EL-1996-00130

Motivation

- Abstract representation of flow field
- Characterization of global flow structures
- Basic idea (steady case):
- Interpret flow in terms of streamlines
- Classify them w.r.t. their limit sets
- Determine regions of homogenous behavior
- Graph depiction
- Fast computation

Limit Sets and Basins

- Limit sets of a poin $\mathbf{x} \in {I\!\!R}^n$
 - $\omega(\mathbf{x})$: **omega limit set of x** = point (or curve) reached after **forward** integration by streamline seeded at x
 - α(x) : alpha limit set of x = point (or curve) reached after backward integration by streamline seeded at x
- Sources (() and sinks () of the flow
- Basin: region of influence of a limit set

Limit Sets and Basins

Phase portrait

Limit Sets and Basins

• Limit sets

Limit Sets and Basins

Flow direction

Limit Sets and Basins

•]-basin of sink

Limit Sets and Basins

• <-basin of source

Critical Points

- Equilibrium
 - $\vec{v}(\mathbf{x}_0) = \vec{0}$
 - Streamline reduced to a single point
- Remarks
 - Asymptotic flow convergence / divergence
 - Streamlines "intersect" at critical points
- Type of critical point determines local flow pattern around it

Intuition: Smooth Field

 In the ε-neighborhood of a regular point the direction of the vector field does not change significantly

Intuition: Smooth Field

 In the ε–neighborhood of a critical point the direction of the vector field can change arbitrarily

Critical Points are Key to Understand the Structure of the

• Computation as intersection of level sets:

$$\begin{cases} v_x(x,y) = 0\\ v_y(x,y) = 0 \end{cases}$$

Triangular Mesh

• Walk through the mesh triangle by triangle

Triangular Mesh

• Walk through the mesh triangle by triangle

Triangular Mesh

• Walk through the mesh triangle by triangle

Triangular Mesh

• Walk through the mesh triangle by triangle

Triangular Mesh

• Walk through the mesh triangle by triangle

Triangular Mesh

• How many critical points can you have in a

Remember Isocontours

$$\begin{cases} v_x(x,y) = 0\\ v_y(x,y) = 0 \end{cases}$$

Remember Isocontours

$$\begin{cases} v_x(x,y) = 0 \\ v_y(x,y) = 0 \end{cases}$$

Remember Isocontours

- Walk around the boundary
- Alternating intersections with the two level sets:
 - One critical point
- Otherwise:
 - No critical point

Quad Mesh

• Walk through the mesh triangle by triangle

Remember Isocontours

Remember Isocontours

• How many critical points per cell can you have?

Remember Isocontours

• How many critical points per cell can you have?

Remember Isocontours

- For each pair of connected components of Vx and Vy
 - Walk around the boundary
 - Alternating intersections with the two level sets:
 - One critical point
 - Otherwise:
 - No critical point

• Hyperbolic (stable) / non-hyperbolic (unstable) $\frac{\operatorname{Re}(\lambda_{1,2}) \neq 0}{\operatorname{Re}(\lambda_{1,2}) \neq 0}$

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $-\phi$ $\overrightarrow{v(\mathbf{x})} = k\mathbf{x}, k > 0$

Critical Points

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) • $\vec{v}(\mathbf{x}) = k\mathbf{x}, k > 0$

Critical Points

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $\vec{v}(\mathbf{x}) = k\mathbf{x}, k > 0$

Critical Points

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $v(\mathbf{x}) = k\mathbf{x}, k > 0$

- Type determined by Jacobian's eigenvalues:

Critical Points

- Type determined by Jacobian's eigenvalues:

 - Negative real part: attracting ((gink)kx, k < 0

Critical Points

- Type determined by Jacobian's eigenvalues:

 - Negative real part: attracting((s)nk)(x, k < 0)

Critical Points

- Type determined by Jacobian's eigenvalues:

 - Negative real part: attracting $\mathfrak{gr}(\mathfrak{sjnk})$, k < 0

- Type determined by Jacobian's eigenvalues:

 - Negative real part: attracting f(s) hk kx, k < 0

Critical Points

- Type determined by Jacobian's eigenvalues:

 - Negative real part: attracting ((sink) kx, k < 0

Critical Points

- Type determined by Jacobian's eigenvalues:

 - Negative real part: attracting ((s)nk) kx, k < 0

• Hyperbolic (stable) / non-hyperbolic (unstable) $\frac{\operatorname{Re}(\lambda_{1,2}) \neq 0}{\operatorname{Re}(\lambda_{1,2}) \neq 0}$

• Hyperbolic (stable) / non-hyperbolic (unstable) $\frac{\operatorname{Re}(\lambda_{1,2}) \neq 0}{\operatorname{Re}(\lambda_{1,2}) \neq 0}$

Eigenvalues and Eigenvectors $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $Ae = \lambda e$

Eigenvalues and Eigenvectors

Eigenvectors • Eigenvalues can be computed as the zeroes of the characteristic polynomial

$$\det(A - \lambda I) = 0$$

$$\begin{split} \det \begin{bmatrix} a-\lambda & b\\ c & d-\lambda \end{bmatrix} &= (\mathbf{a}-\lambda)(\mathbf{d}-\lambda) - \mathbf{bc} = \lambda^2 - (\mathbf{a}+\mathbf{d})\lambda + (\mathbf{ad}-\mathbf{bc})\\ \lambda &= \frac{a+d}{2} \pm \sqrt{\frac{(a+d)^2}{4} + bc - ad} = \frac{a+d}{2} \pm \frac{\sqrt{4bc + (a-d)^2}}{2} \end{split}$$

Eigenvalues and Eigenvectors

Critical Point Extraction

- Cell-wise analysis
 - Solve linear / quadratic equation to determine position of critical \vec{p} (int, incert $\vec{0}$
 - Compute Jacobian at that position $\frac{\partial v_x}{\partial x}$

 $\mathbf{J} =$

 ∂v_y

- Compute eigenvalues
- If type is saddle, compute eigenvectors

Closed Orbits

- Curve-type limit set
- Sink / source behavior

Closed Orbits

- Curve-type limit set
- Sink / source behavior
- Poincaré map:
- Defined over cross section ٠
- Map each position to next intersection with cross section along flow
- Discrete map
- Cycle intersects at fixed point
- Hyperbolic / non-hyperbolic

Cross section

Fixed point

Closed Orbit Extraction

- Poincaré-Bendixson theorem:
 - ٠ If a region contains a limit set and no critical point, it contains a closed orbit

Closed Orbit Extraction

- Detect closed cell cycle
- Check for flow exit along boundary
- Find exact position with Poincaré map

Closed Orbit Extraction

Topological Graph

- Graph
 - Nodes: critical points
 - Edges: separatrices and closed orbits
- Remark
 - All streamlines in a given region have same $\langle \text{-} \text{ and } \rceil \text{-}$ limit set
- Problem
 - Definition does not account for bounded domain

Topological Graph

Local Topology

- Classification w.r.t. asymptotic convergence
- On bounded domain: streamlines leave domain in finite time
- Extend definition of topology
 - Inflow boundaries α sources
 - Outflow boundaries α sinks outflow inflow inflow
 - Bounded by half-saddles
 - Bounded by nail-saddle
 - Additional separatrices

Local Topology

Application to Surfaces in 3D

 Critical point analysis + integration of separatrices applied to projection of vector field onto polygonal surface

What about transient flows?

- Parameter dependent topology:
- •Critical points move, appear, vanish, transform

•Graph connectivity changes

- Structural stability (Peixoto): topology is stable w.r.t. small but arbitrary changes of parameter(s) if and only if
- $^{\bullet}$ 1) Number of critical points and closed orbits is finite and all are hyperbolic
- •2) No saddle-saddle connection