Vector Field Topology Continued
Examples
Motivation

- Abstract representation of flow field
- Characterization of global flow structures
- Basic idea (steady case):
 - Interpret flow in terms of streamlines
 - Classify them w.r.t. their limit sets
 - Determine regions of homogenous behavior
- Graph depiction
- Fast computation
Limit Sets and Basins

- Limit sets of a point $x \in \mathbb{R}^n$

- $\omega(x)$: **omega limit set of** x = point (or curve) reached after *forward* integration by streamline seeded at x

- $\alpha(x)$: **alpha limit set of** x = point (or curve) reached after *backward* integration by streamline seeded at x

- Sources (⟨) and sinks (⟩) of the flow

- Basin: region of influence of a limit set
Limit Sets and Basins

- Phase portrait
Limit Sets and Basins

- Limit sets
Limit Sets and Basins

- Flow direction
Limit Sets and Basins

- Λ-basin of sink
Limit Sets and Basins

- basin of source
Critical Points

• Equilibrium
 • \(\vec{v}(x_0) = \vec{0} \)
 • Streamline reduced to a single point

• Remarks
 • Asymptotic flow convergence / divergence
 • Streamlines “intersect” at critical points

• Type of critical point determines local flow pattern around it
Intuition: Smooth Field

- In the ε–neighborhood of a regular point the direction of the vector field does not change significantly
Intuition: Smooth Field

- In the ε–neighborhood of a critical point the direction of the vector field can change arbitrarily.
Critical Points are Key to Understand the Structure of the Field

- Computation as intersection of level sets:

\[
\begin{cases}
 v_x(x, y) = 0 \\
 v_y(x, y) = 0
\end{cases}
\]
Triangular Mesh

- Walk through the mesh triangle by triangle
Triangular Mesh

- Walk through the mesh triangle by triangle
Triangular Mesh

- Walk through the mesh triangle by triangle
Triangular Mesh

- Walk through the mesh triangle by triangle
Triangular Mesh

- Walk through the mesh triangle by triangle
Triangular Mesh

- How many critical points can you have in a triangle?
Remember Isocontours

\[v_x(x, y) = 0 \]
Remember Isocontours

\[v_y(x, y) = 0 \]
Remember Isocontours

\[
\begin{aligned}
\nu_x(x, y) &= 0 \\
\nu_y(x, y) &= 0
\end{aligned}
\]
Remember Isocontours

\[
\begin{cases}
 v_x(x, y) = 0 \\
 v_y(x, y) = 0
\end{cases}
\]
Remember Isocontours

• Walk around the boundary
• Alternating intersections with the two level sets:
 • One critical point
• Otherwise:
 • No critical point
Quad Mesh

- Walk through the mesh triangle by triangle
Remember Isocontours
Remember Isocontours

- How many critical points per cell can you have?
Remember Isocontours

- How many critical points per cell can you have?
Remember Isocontours

- For each pair of connected components of V_x and V_y
- Walk around the boundary
- Alternating intersections with the two level sets:
 - One critical point
- Otherwise:
 - No critical point
Critical Points

- Jacobian has **full rank**
- No zero eigenvalue
- Major cases

\[J = \begin{pmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} \\ \frac{\partial v_y}{\partial x} & \frac{\partial v_y}{\partial y} \end{pmatrix} \]

\[\det J = \frac{\partial v_x}{\partial x} \frac{\partial v_y}{\partial y} - \frac{\partial v_x}{\partial y} \frac{\partial v_y}{\partial x} \equiv \lambda_0 \lambda_1 \neq 0 \]

- **Saddle**
- **Spiral**
- **Node**
- **Focus**
- **Center**

- Hyperbolic (stable) / non-hyperbolic (unstable)

\[\text{Re}(\lambda_{1,2}) \neq 0 \]
Critical Points

• Type determined by Jacobian’s eigenvalues:

• Positive real part: repelling (source)

\[\vec{v}(x) = kx, \ k > 0 \]
Critical Points

- Type determined by Jacobian’s eigenvalues:
 - Positive real part: repelling (source)
 \[\vec{v}(\vec{x}) = k\vec{x}, \quad k > 0 \]
Critical Points

- Type determined by Jacobian’s eigenvalues:
 - Positive real part: repelling (source)

\[\vec{v}(x) = kx, \quad k > 0 \]
Critical Points

- Type determined by Jacobian’s eigenvalues:
 - Positive real part: repelling (source)

\[
\vec{v}(x) = kx, \quad k > 0
\]
Critical Points

- Type determined by Jacobian’s eigenvalues:
- Positive real part: repelling (source) $\vec{v}(x) = kx, \ k > 0$
Critical Points

• Type determined by Jacobian’s eigenvalues:
 • Positive real part: repelling (source) \(\vec{v}(x) = kx, \ k > 0 \)
 • Negative real part: attracting \(\vec{v}(x) = kx, \ k < 0 \)
Critical Points

• Type determined by Jacobian’s eigenvalues:

 • Positive real part: repelling (source) \(\vec{v}(x) = kx, \ k > 0 \)

 • Negative real part: attracting \(\vec{v}(x) = kx, \ k < 0 \)
Critical Points

- Type determined by Jacobian’s eigenvalues:
 - Positive real part: repelling (source) \(\vec{v}(x) = kx, \ k > 0 \)
 - Negative real part: attracting \(\vec{v}(x) = kx, \ k < 0 \)
Critical Points

• Type determined by Jacobian’s eigenvalues:

 • Positive real part: repelling (source) \(\vec{v}(x) = kx, \ k > 0 \)

 ![Diagram of positive real part]

 • Negative real part: attracting \(\vec{v}(x) = kx, \ k < 0 \)

 ![Diagram of negative real part]
Critical Points

- Type determined by Jacobian’s eigenvalues:
 - Positive real part: repelling (source) \(\ddot{v}(x) = kx, \ k > 0 \)
 - Negative real part: attracting \(\ddot{v}(x) = kx, \ k < 0 \)
Critical Points

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $\vec{v}(x) = kx, \ k > 0$
 - Negative real part: attracting (sink) $\vec{v}(x) = kx, \ k < 0$
Critical Points

- Jacobian has **full rank**
- No zero eigenvalue
- Major cases

\[J = \begin{pmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} \\ \frac{\partial v_y}{\partial x} & \frac{\partial v_y}{\partial y} \end{pmatrix} \]

\[\det J = \frac{\partial v_x}{\partial x} \frac{\partial v_y}{\partial y} - \frac{\partial v_x}{\partial y} \frac{\partial v_y}{\partial x} \equiv \lambda_0 \lambda_1 \neq 0 \]

- Hyperbolic (stable) / non-hyperbolic (unstable)

\[\text{Re}(\lambda_{1,2}) \neq 0 \]

Saddle Spiral Node Focus Center
Critical Points

• Jacobian has full rank

\[J = \begin{pmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} \\ \frac{\partial v_x}{\partial y} & \frac{\partial v_y}{\partial y} \end{pmatrix} \]

\[\det J = \frac{\partial v_x}{\partial x} \frac{\partial v_y}{\partial y} - \frac{\partial v_x}{\partial y} \frac{\partial v_y}{\partial x} \equiv \lambda_0 \lambda_1 \neq 0 \]

• No zero eigenvalue

• Major cases

 Saddle Spiral Node Focus Center

• Hyperbolic (stable) / non-hyperbolic (unstable)

\[\text{Re}(\lambda_{1,2}) \neq 0 \]
Eigenvalues and Eigenvectors

\[A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad A e = \lambda e \]
Eigenvalues and Eigenvectors

- Eigenvalues can be computed as the zeroes of the characteristic polynomial

\[\det(A - \lambda I) = 0 \]

\[
\begin{vmatrix}
 a - \lambda & b \\
 c & d - \lambda
\end{vmatrix}
= (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + (ad - bc)
\]

\[
\lambda = \frac{a + d}{2} \pm \sqrt{\frac{(a + d)^2}{4} + bc - ad} = \frac{a + d}{2} \pm \sqrt{\frac{4bc + (a - d)^2}{2}}
\]
Eigenvalues and Eigenvectors

Align the arrows to find an eigenvector and its corresponding eigenvalue.

\[
A = \begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 1.2 \end{pmatrix}, \quad u = \begin{pmatrix} 1.26 \\ -2.08 \end{pmatrix}, \quad Au = \begin{pmatrix} 0.26 \\ -2.08 \end{pmatrix}
\]
Critical Points

Saddle

Spiral

Node

Focus

Center

separatrices
Critical Point Extraction

- Cell-wise analysis
- Solve linear / quadratic equation to determine position of critical point in cell \(\vec{v}(x_0, y_0) = \vec{0} \)
- Compute Jacobian at that position:
 \[J = \begin{pmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} \\ \frac{\partial v_y}{\partial x} & \frac{\partial v_y}{\partial y} \end{pmatrix} \]
- Compute eigenvalues
- If type is saddle, compute eigenvectors
Closed Orbits

- Curve-type limit set
- Sink / source behavior
Closed Orbits

- Curve-type limit set
- Sink / source behavior
- Poincaré map:
 - Defined over cross section
 - Map each position to next intersection with cross section along flow
 - Discrete map
 - Cycle intersects at fixed point
 - Hyperbolic / non-hyperbolic
Closed Orbit Extraction

- Poincaré-Bendixson theorem:
 - If a region contains a limit set and no critical point, it contains a closed orbit
Closed Orbit Extraction

- Detect closed cell cycle
- Check for flow exit along boundary
- Find exact position with Poincaré map
Closed Orbit Extraction

• Results
Topological Graph

- **Graph**
 - Nodes: critical points
 - Edges: separatrices and closed orbits

- **Remark**
 - All streamlines in a given region have same \(-\) and \(\bar{\lim}\)-limit set

- **Problem**
 - Definition does not account for bounded domain
Topological Graph
Local Topology

• Classification w.r.t. asymptotic convergence
• On bounded domain: streamlines leave domain in finite time
• Extend definition of topology
 • Inflow boundaries α sources
 • Outflow boundaries α sinks
 • Bounded by half-saddles
 • Additional separatrices
Local Topology
Critical point analysis + integration of separatrices applied to projection of vector field onto polygonal surface

http://people.nas.nasa.gov/~globus/topology/Pictures/pictures.html