Vector Field Topology Continued

Examples

Wake Vortex Study at Wallops Island NASA Langley Research Center

5/4/1990

Image # EL-1996-00130

Motivation

- Abstract representation of flow field
- Characterization of global flow structures
- Basic idea (steady case):
- Interpret flow in terms of streamlines
- Classify them w.r.t. their limit sets
- Determine regions of homogenous behavior
- Graph depiction
- Fast computation

- Limit sets of a point $\mathbf{x} \in {I\!\!R}^n$
 - $\omega(\mathbf{x})$: **omega limit set of x** = point (or curve) reached after **forward** integration by streamline seeded at x
 - $\alpha(\mathbf{x})$: alpha limit set of \mathbf{x} = point (or curve) reached after backward integration by streamline seeded at x
- Sources (() and sinks () of the flow
- Basin: region of influence of a limit set

• Phase portrait

Limit sets

• Flow direction

•]-basin of sink

<-basin of source

- Equilibrium
 - $\vec{v}(\mathbf{x}_0) = \vec{0}$
 - Streamline reduced to a single point
- Remarks
 - Asymptotic flow convergence / divergence
 - Streamlines "intersect" at critical points
- Type of critical point determines local flow pattern around it

Intuition: Smooth Field

 In the ε-neighborhood of a regular point the direction of the vector field does not change significantly

Intuition: Smooth Field

 In the ε–neighborhood of a critical point the direction of the vector field can change arbitrarily

Critical Points are Key to Understand the Structure of the Field Computation as intersection of level sets:

 $\begin{cases} v_x(x,y) = 0 \\ v_y(x,y) = 0 \end{cases}$

How many critical points can you have in a

Remember Isocontours $v_y(x,y) = 0$

 $\begin{cases} v_x(x,y) = 0 \\ v_y(x,y) = 0 \end{cases}$

 $\begin{cases} v_x(x,y) = 0 \\ v_y(x,y) = 0 \end{cases}$

- Walk around the boundary
- Alternating intersections with the two level sets:
 - One critical point
- Otherwise:
 - No critical point

Quad Mesh

 How many critical points per cell can you have?

• How many critical points per cell can you have?

- For each pair of connected components of Vx and Vy
 - Walk around the boundary
 - Alternating intersections with the two level sets:
 - One critical point
 - Otherwise:
 - No critical point

- Jacobian has full rank
 - No zero eigenvalue

Major cases

 $\mathbf{J} = \begin{pmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} \\ \frac{\partial v_y}{\partial x} & \frac{\partial v_y}{\partial y} \end{pmatrix}$

det $\mathbf{J} = \frac{\partial v_x}{\partial x} \frac{\partial v_y}{\partial u} - \frac{\partial v_x}{\partial u} \frac{\partial v_y}{\partial x} \equiv \lambda_0 \lambda_1 \neq 0$

Saddle

Spiral

Node

Focus

Center

Hyperbolic (stable) / non-hyperbolic $\sim \operatorname{Re}(\lambda_{1,2}) \neq 0$ (unstable)

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $\vec{v}(\mathbf{x}) = k\mathbf{x}, k > 0$

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $\vec{v}(\mathbf{x}) = k\mathbf{x}, k > 0$

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $\vec{v}(\mathbf{x}) = k\mathbf{x}, k > 0$

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $\vec{v}(\mathbf{x}) = k\mathbf{x}, k > 0$

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $\vec{v}(\mathbf{x}) = k\mathbf{x}, k > 0$

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $\overrightarrow{v(\mathbf{x})} = k\mathbf{x}, k > 0$

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $\overrightarrow{v(\mathbf{x})} = k\mathbf{x}, k > 0$

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $\overrightarrow{v(\mathbf{x})} = k\mathbf{x}, k > 0$

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $\overrightarrow{v(\mathbf{x})} = k\mathbf{x}, k > 0$

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $\overrightarrow{v(\mathbf{x})} = k\mathbf{x}, k > 0$

- Type determined by Jacobian's eigenvalues:
 - Positive real part: repelling (source) $\overrightarrow{v(\mathbf{x})} = k\mathbf{x}, k > 0$

- Jacobian has full rank
 - No zero eigenvalue

Major cases

 $\mathbf{J} = \begin{pmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} \\ \frac{\partial v_y}{\partial x} & \frac{\partial v_y}{\partial y} \end{pmatrix}$

det $\mathbf{J} = \frac{\partial v_x}{\partial x} \frac{\partial v_y}{\partial u} - \frac{\partial v_x}{\partial u} \frac{\partial v_y}{\partial x} \equiv \lambda_0 \lambda_1 \neq 0$

Saddle

Spiral

Node

Focus

Center

Hyperbolic (stable) / non-hyperbolic $\sim \operatorname{Re}(\lambda_{1,2}) \neq 0$ (unstable)

- Jacobian has full rank
 - No zero eigenvalue

Major cases

 $\mathbf{J} = \begin{pmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} \\ \frac{\partial v_y}{\partial x} & \frac{\partial v_y}{\partial y} \end{pmatrix}$

det $\mathbf{J} = \frac{\partial v_x}{\partial x} \frac{\partial v_y}{\partial u} - \frac{\partial v_x}{\partial u} \frac{\partial v_y}{\partial x} \equiv \lambda_0 \lambda_1 \neq 0$

Saddle

Spiral

Node

Focus

Center

Hyperbolic (stable) / non-hyperbolic $\sim \operatorname{Re}(\lambda_{1,2}) \neq 0$ (unstable)

Eigenvalues and Eigenvectors

 Eigenvalues can be computed as the zeroes of the characteristic polynomial

$$\det(A - \lambda I) = 0$$

$$\det \begin{bmatrix} a-\lambda & b \\ c & d-\lambda \end{bmatrix} = (\mathbf{a}-\lambda)(\mathbf{d}-\lambda) - \mathbf{b}\mathbf{c} = \lambda^2 - (\mathbf{a}+\mathbf{d})\lambda + (\mathbf{a}\mathbf{d}-\mathbf{b}\mathbf{c})$$

$$\lambda = \frac{a+d}{2} \pm \sqrt{\frac{(a+d)^2}{4} + bc - ad} = \frac{a+d}{2} \pm \frac{\sqrt{4bc + (a-d)^2}}{2}$$

Eigenvalues and Eigenvectors

Critical Point Extraction

- Cell-wise analysis
 - Solve linear / quadratic equation to determine position of critical point in cetter 0

 $\mathbf{J} =$

- Compute Jacobian at that position ∂v_x $\left(egin{array}{ccc} \overline{\partial x} & \partial y \ \overline{\partial v_y} & \overline{\partial v_y} \ \overline{\partial x} & \overline{\partial y} \end{array}
 ight)$
- Compute eigenvalues
- If type is saddle, compute eigenvectors

Closed Orbits

- Curve-type limit set
- Sink / source behavior

Closed Orbits

- Curve-type limit set
- Sink / source behavior
- Poincaré map:
 - Defined over cross section

- Discrete map
- Cycle intersects at fixed point
- Hyperbolic / non-hyperbolic

Cross section

Closed Orbit Extraction

- Poincaré-Bendixson theorem:
 - If a region contains a limit set and no critical point, it contains a closed orbit

Closed Orbit Extraction

- Detect closed cell cycle
- Check for flow exit along boundary
- Find exact position with Poincaré map

Closed Orbit Extraction

Results

Topological Graph

- Graph
 - Nodes: critical points
 - Edges: separatrices and closed orbits
- Remark
 - All streamlines in a given region have same <- and limit set
- Problem
 - Definition does not account for bounded domain

Topological Graph

Local Topology

- Classification w.r.t. asymptotic convergence
- On bounded domain: streamlines leave domain in finite time
- Extend definition of topology
 - Inflow boundaries α sources
 - Outflow boundaries α sinks outflow inflow
 - Bounded by half-saddles
 - Additional separatrices

Local Topology

Application to Surfaces in 3D

http://people.nas.nasa.gov/~globus/topology/Pictures/pictures.html

 Critical point analysis + integration of separatrices applied to projection of vector field onto polygonal surface