Vector Field Topology
Continued



Examples




= Wake Vortex Study at Wallops Island
. NASA Langley Research Center 5/4/1990 Image # EL-1996-00130



Motivation

* Abstract representation of flow field

Characterization of global flow structures

Basic idea (steady case):

Interpret flow in terms of streamlines
Classify them w.r.t. their limit sets
Determine regions of homogenous behavior
Graph depiction

Fast computation



Limit Sets and Basins

® Limit sets of a pointx € IR™

®* w(x) :omega limit set of x = point
(or curve) reached after forward
integration by streamline seeded at x

® «(x) :alphalimit set of x = point (or
curve) reached after backward
Integration by streamline seeded at x

® Sources (¢) and sinks (]) of the flow
® Basin: region of influence of a limit set



Limit Sets and Basins

® Phase portrait




Limit Sets and Basins

® Limit sets




Limit Sets and Basins




Limit Sets and Basins

® |-basin of sink




Limit Sets and Basins

® (-basin
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Critical Points

® Equilibrium

* ¥(x0)=0

® Streamline reduced to a single point
® Remarks

® Asymptotic flow convergence / divergence

® Streamlines “intersect” at critical points

® Type of critical point determines local flow
pattern around it



Intuition: Smooth Field

® In the e—neighborhood of a regular point the
direction of the vector field does not change
significantly
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Smooth Field

Intuition
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® In the e—neighborhood of a critical po

Id can change

direction of the vector fie
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Critical Points are Key 10
Understand the Structure of the
Field

® Computation as intersection of level sets:
v, (x,5)=0
v, (x,)=0



Triangular Mesh

® Walk through the mesh triangle by triangle
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Triangular Mesh

® Walk through the mesh triangle by triangle
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Triangular Mesh

® Walk through the mesh triangle by triangle
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Triangular Mesh

® Walk through the mesh triangle by triangle
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Triangular Mesh

® Walk through the mesh triangle by triangle




Triangular Mesh

nave in a




Remember Isocontours

v (x,)=0

AN




Remember Isocontours

v, (x,y)=0




Remember Isocontours
rvx (x,y)=0
v, (x,y)=0
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Remember Isocontours
rvx (x,y)=0
v, (x,y)=0
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Remember Isocontours

® Walk around the boundary

® Alternating intersections with the two level
sets:

® One critical point
® Otherwise:

® No critical point



Quad Mesh

® Walk through the mesh triangle by triangle
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Remember Isocontours




Remember Isocontours

® How many critical points per cell can you
have?



Remember Isocontours

® How many critical points per cell can you

have? 7 :
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Remember Isocontours
® For each pair of connected components
of Vx and Vy
® Walk around the boundary

® Alternating intersections with the two level
sets:

® One critical point
® Otherwise:

® No critical point



Critical Points

O0v4 Ovg
. . ox s,
® Jacobian has full rank J= ( ov, %vi )
£ Yy
® No zero eigenvalue
) dot J = 200 Ovs0vy _

Ox 6y oy Or

Fox*

Saddle Spiral Node Focus Center

® Hyperboli¢ (stable) / non-hyperbolic
(unstable) Re(A1,2) # 0



Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source)

_¢ ()—kxk>0




Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source)
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Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source)

_<:>_<|7>"+__’ (x) =kx, k>0




Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source)

_<:>¢->+ + > v(x) = kx, k >0




Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source)

e




Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source)

_(:).(F)+9+ >+ > 'i_f(X)IkX?k:)O

o Njgative real part: attracting{gink) rx % < 0




Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source)

_(:).(F)+9+ >+ > 'i_f(X)IkX?k:)O

o Njgative real part: attracting(Sink) xx k < o
?




Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source)

_(:).(F)+9+ >+ > 'i_f(X)IkX?k:)O

® Njgative rQa_Lpgrt: altta.cl?gvﬁip@ kx, k£ <0




Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source)
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® N gati\Le_*rQa_Lpgrt: all;ra.cl?g?;@ipg) kx, k <0




Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source)

R S

° Njgaii\(_e_*rea_Lp?rt: all;ra.cll({rlg%gpg) kx, k <0



Critical Points

® Type determined by Jacobian’s
eigenvalues:

® Positive real part: repelling (source)

R S

o Njgﬁiv_e_*rea_m?rt: all;ra.cll({rlg%gpg) kx, k < 0



Critical Points

O0v4 Ovg
. . ox s,
® Jacobian has full rank J= ( ov, %vi )
£ Yy
® No zero eigenvalue
) dot J = 200 Ovs0vy _

Ox 6y oy Or

Fox*

Saddle Spiral Node Focus Center

® Hyperboli¢ (stable) / non-hyperbolic
(unstable) Re(A1,2) # 0



Critical Points

O0v4 Ovg
. . ox s,
® Jacobian has full rank J= ( ov, %vi )
£ Yy
® No zero eigenvalue
) dot J = 200 Ovs0vy _

Ox 6y oy Or

Fox*

Saddle Spiral Node Focus Center

® Hyperboli¢ (stable) / non-hyperbolic
(unstable) Re(A1,2) # 0



Eigenvalues and

Eigenvectors
a b

o 4, Ae = Ae

Align the arrows to find an eigenvector and its corresponding eigenvalue.
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Eigenvalues and
Eigenvectors

® Eigenvalues can be computed as the zeroes
of the characteristic polynomial

det(A—Al)=0

ﬂ:f“* dE}J = (a—A)(d—A) —bc= A — (a+ d)A + (ad — be)

1 d Mo 4 d)2 1 d [4be + (a — d)2
a+d:|: If(ﬂ"‘dﬁ —|—br:—a.d=a+dzlz1"" ( )

A=y YT > 5
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Eigenvalues and
Eigenvectors

Align the armows to find an eigenvector and its corresponding eigenvalue.
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Critical Points

Saddle Spiral Node Focus Center




Critical Point Extraction

® Cell-wise analysis

® Solve linear / quadratic equation to _
determine position of critical péimbivcet: 0

ox oy
Ovy Ovy
oz oy

® If type is saddle, compute eigenvect s

® Compute Jacobian at that positionsv, v,
® Compute eigenvalues C )
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Closed Orbits

® Curve-type limit set

® Sink / source behavior



Closed Orbits

® Curve-type limit set
® Sink / source behavior

® Poincaré map:
Cross section
® Defined over cross section

® Map each position to next intersection with cross
section along flow

® Discrete map \
® Cycle intersects at fixed point \

Fixed point
® Hyperbolic / non-hyperbolic



Closed Orbit Extraction

® Poincaré-Bendixson theorem:

® If a region contains a limit set and no
critical point, it contains a closed orbit




Closed Orbit Extraction

® Detect closed cell cycle
® Check for flow exit along boundary

® Find exact position with Poincaré map




Closed Orbit Extraction

® Reslults
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Topological Graph

® Graph
® Nodes: critical points

® Edges: separatrices and closed orbits

® Remark

® All streamlines in a given region have same (- and |-
limit set

® Problem

® Definition does not account for bounded domain



| Graph




Local Topology

® Classification w.r.t. asymptotic convergence

® On bounded domain: streamlines leave
domain In finite time

® Extend definition of topology

® Inflow boundaries o sources
half-saddle

® Outflow boundaries o sinks wL
outflo inflow

/';ﬁ AN

® Additional separatrices separatrix

® Bounded by half-saddles



Local Topology




Application to Surfaces in 3D

http://people.nas.nasa.gov/~globus/topology/Pictures/pictures.html

® Critical point analysis + integration of
separatrices applied to projection of vector
fleld onto polygonal surface





