CS5630/6630
Isosurfacing

Slices still have their place

Properties of Isocontours

- Preimage of scalar value
- Concept generalizes to any dimension
- Manifolds of codimension 1
- Closed (except atboundaries)
- Nested-different values don't cross
- Can consider the zero-set case (generalizes)
$-F(x, y)=k<->F(x, y)-k=0$
- Normals given by gradient vector of F

Where are the data values?

Two solutions:

- Interpolate to get the "right" answer
- Subsampling or raycasting

Dividing Cubes

- Approximate to get a "good" answer
- Geometric primitives
- Go cell by cell

Contours in 2D

- Assign gometric primitives to "cells" consisting of 2×2 grid points

Contours in 2D

- Assign gometric primitives to "cells" consisting of 2×2 grid points
- Line segments

Contours in 2D

- Assign gometric primitives to "cells" consisting of 2×2 grid points
- Line segments
- How do we know how to organize the primitives?

Contours in 2D

- Assign gometric primitives to "cells" consisting of 2×2 grid points
- Line segments
- How do we know how to organize the primitives?
- Signs of the values of corners of cells

Contours in 2D

- Assign gometric primitives to "cells" consisting of 2×2 grid points
- Line segments
- How do we know how to organize the primitives?
-Signs of the values of corners of cells
- How do we know the position of the primitives?

Contours in 2D

- Assign gometric primitives to "cells" consisting of 2×2 grid points
- Line segments
- How do we know how to organize the primitives?
- Signs of the values of corners of cells
- How do we know the position of the primitives?
- Interpolate along grid points

Contours in 2D

- Idea: primitives must cross every grid line connecting two grid points of opposite sign

Ambiguities

- Right or wrong?

- How many grid lines with crossings can there be?
- What are the different configurations (adjacencies) of +/- grid points?

Questions

Ambiguities

- Right or wrong?

Ambiguities

- Right or wrong?

Ambiguities

- Right or wrong?

Isosurfacing

- You're given a big 3D block of numbers
- Make a picture
- Slicing shows data, but not its 3D shape
- Isosurfacing is one of the simplest ways

Surface Extraction (Isosurfacing)

- Surface Extraction
-SLICING - Take a slice through the 3D volume (often orthogonal to one of the axes), reducing it to a 2D problem
- Contour in 2D
- Form polygons with adjacent polylines

Note analogous techniques in 2D visualization:
1D cross-sections, and contours (=isolines)

A little math

- Dataset: $v=f(x, y, z)$
- $f: R^{3} \mid \rightarrow R$
- Want to find $S_{v}=\{(x, y, z) \mid f(x, y, z)=v\}$
- All the locations where the value of f is v
- S_{v} : isosurface of f at v
- In 2D: isocontours (some path)
- In 3D: isosurface
- Why is this useful?

Notation

Data Enrichment - Nearest Neighbour Interpolation

Volume of data

Each voxel transformed
to unit cube

Value at any interior point
taken as value at nearest
vertex

Fast
Discontinuous

Data Enrichment - Trilinear Interpolation

Data Enrichment - Trilinear

 InterpolationTrilinear interpolant is:

```
f(x,y,z)=
fooo(1-x)(1-y)(1-z)+
f 100x(1-y)(1-z) +
f010(1-x)y(1-z) +
foor(1-x)(1-y)z +
f110xy(1-z) +
flolx(1-y)z +
fo11(1-x)yz +
f f11xyz
```


The value at ■
is found by:
(i) 4 1D interpolations
in x ㅁ
(ii) 21 D interpolations
in y
-
(iii) 11 D interpolation
in z -

Isosurface Construction

- For simplicity, we shall work with zero level isosurface, and denote
positive vertices as

There are EIGHT vertices, each can be positive

Isosurface Construction - One Positive Vertex - 1

Intersections with edges found by inverse linear interpolation (as in contouring)

Note on Inverse Linear Interpolation

- The linear interpolation
formula gives value of f at
specified pointt:
$\mathrm{f}\left(\mathrm{x}^{*}\right)=\mathrm{f1}+\mathrm{t}(\mathrm{f} 2-\mathrm{f1}$)
- Inverse linear interpolation gives value of tat which f takes a specified value f^{*}
$t=\left(f^{*}-f 1\right) /(f 2-f 1)$

Isosurface Construction - One Positive Vertex - 2

Joining edge infersections across faces forms a triangle as part of the isosurface

Isosurface Construction -Positive Vertices at Opposite Corners

Isosurface Construction

- One can work through all 256 cases in this way - although it quickly becomes apparent that many cases are similar.
- For example:
-2 cases where all are positive, or all negative, give no isosurface
-16 cases where one vertex has opposite sign from all the rest
- In fact, there are only 15 topologically distinct configurations

Canonical Cases for Isosurfacing

The 256 possible configurations can be grouped into these 15
canonical cases on
the basis of complementarity
(swapping positive and negative)
and rotational symmetry
The advantage of doing this is for ease of implementation - we just need to code 15 cases not 256

Isosurface Construction

- In some configurations, just one triangle forms the isosurface
- In other configurations
-...there can be several triangles
-...or a polygon with 4,5 or 6 points which can be triangulated
- A software implementation will have separate code for each configuration

