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ABSTRACT

With the increasing size of typical 2D and 3D data, e�cient computational meth-
ods are becoming increasingly crucial for achieving desired levels of interactivity.
Computation of isocontours from scalar data is a particularly critical task for
comprehensive visualization of volume data. In the case that the volume is dis-
cretized by a mesh of volumetric cells, the extraction of an isocontour consists of
two primary phases: triangulation of a particular cell and the search for all inter-
sected cells. In this chapter we will review and contrast the primary algorithmic
approaches which have been suggested in the literature.

3.1 Introduction

Isocontouring is a widely used approach to the visualization of scalar data and an inte-
gral component of almost every visualization environment. Computation of isocontours
has applications in visualization ranging from extraction of surfaces from medical vol-
ume data [Lor95] to computation of stream surfaces for 
ow visualization [van93].
Inherent in the selection of an isocontour, de�ned as C(w) : fxjF(x) � w = 0g, is
that only a selected subset of the data is represented in the result. In many applica-
tions, the ability to interactively modify the isovalue w while viewing the computed
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result is of great value in exploring the global scalar �eld structure. In fact, it has
been observed in user studies that the majority of the time spent interacting with a
visualization is in modifying the visualization parameters, not in changing the viewing
parameters [Hai91]. Hence there has been great interest in improving the computa-
tional e�ciency of contouring algorithms.
We will focus on isocontouring of scalar �elds which are de�ned over a piecewise

cell decomposition rather than the more general case of implicit functions, although
many issues cross over between the two input formats. In this situation, isocontouring
algorithms can be characterized by three principal components:

� Cell Triangulation { Method of computation for determining the component of a
contour which intersects a single cell.

� Cell Search { Method for �nding all cells which contain components of the contour
� Cell Traversal { Order of cell visitation may be integrated with (or decided by)
the cell search technique, however it nevertheless a�ects the performance of the
isocontour extraction algorithm

In the remainder of this chapter, we will discuss several isocontouring algorithms
which address one or more of these components.

3.2 Cell Triangulation

Cell triangulation concerns the approximation of the component of a contour which
is interior to a given cell. Triangulation has two distinct components, interpolation
to determine a set of points and normals, and connectivity to determine the local
topology of the contour.

3.2.1 Interpolation

Cell-based contouring algorithms generally begin with a binary classi�cation of each
vertex of a given cell as positive (if greater than the isovalue) or negative (if less than or
equal to the isovalue), which we will refer to as black and white vertices, respectively.
For simplicity, most isocontouring algorithms adopt a simple interpolation approach
along the edges of cells. Each edge which has one black vertex and one white vertex
has exactly one intersection with the isocontour under the linear interpolation model,
and this intersection point is easily computed as a linear combination of the endpoints
of the edge. Any edge which has two vertices of the same color is appropriately dis-
regarded, as the linear interpolation cannot intersect the isosurface if both endpoints
are above or below the isovalue.
While linear interpolation along edges of cells is a widely used approach, interpola-

tion is often the most compute-intensive portion of isocontour extraction. As data sizes
increase and relative sizes of cells decrease, the e�ect of interpolating along cell edges
is less noticeable. Other strategies have been developed to reduce this computational
portion of isocontour approximation, such as selecting midpoints along intersected
edges [MSS94]. Midpoint selection in grids of regular topology and uniform spacing
has the added advantage that triangles extracted for the surface have relatively few
facet orientations, resulting in large planar regions which are more easily coalesced to
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Accelerated IsoContouring 9

produce a simpli�ed model of the isosurface for rapid rendering and compact repre-
sentation.
A primary reason for applying linear interpolation in isocontouring is the fact that

gradient information is often not present in the original data. If this is the case,
gradient information may be estimated for the purpose of smooth surface shading by
approximating gradients at the vertices and using linear interpolation of the gradient
vector components within each cell. However, the ability of higher degree interpolant
and associated gradient estimators to accurately represent the underlying data are
motivating work in this direction [MMMY96, BLM97].

3.2.2 Connectivity

The common approach of linear interpolation along cell edges is su�cient to obtain a
sampling of points which lie on the surface, but the problem of connecting the points
to form a surface still remains. A binary classi�cation of the 8 vertices of a regular
cell leads to a total of 28 or 256 possible con�gurations. Taking rotational symmetry
into account, this can been reduced to 22 distinct cases [LVG80, Sri81]. Marching
Cubes [LC87] further reduces the number of base cases by assigning complementary
triangulation for complementary vertex con�gurations (black to white), resulting in
15 distinct colorings, for which connectivity information can be assigned, as shown
in Figure 3.2. The full table of the 256 possible vertex con�gurations can easily be
generated from this table of 15 cases.

Figure 3.1 Topological inconsistency associated with the original marching cubes

The use of complementary triangulations reduces the number of base cases, but also
introduces a well-know topological inconsistency on certain con�gurations of shared
faces between cubes [Dur88], one case of which is illustrated in Figure 3.1. A number
of techniques have been proposed which o�er solutions to this inconsistency, which we
group into two classes. The �rst class attempts only to provide consistency along cell
faces, while then second class provides correctness with respect to a chosen model.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 3.2 15 distinct vertex colorings

3.2.2.1 Consistent Connectivity

In cases in which the connectivity is not determined by the color of the vertices alone,
continuous surfaces can be guaranteed by adopting a connectivity scheme which is
consistent at a face shared by two adjacent cells.
Consistency may be achieved simply by subdividing each cell into tetrahedra and

using a linear interpolant within each tetrahedron [DK91]. An e�cient approach to
consistency is to adopt a consistent decision rule, such as sampling the function at the
center of the ambiguous face to determine the local topology [WMW86].

3.2.2.2 Correct Connectivity

The core of the problem along shared cell faces lies in determining the topological
connectivity of vertices which are colored the same but which lie diagonally across a
face or body of a cell. A second class of connectivity solutions guarantee consistency
on a shared face by ensuring correctness with respect to a particular data model.
Nielson and Hamann propose generating a consistent decision on connectivity by

enforcing a topology which is correct with respect to the bilinear interpolant along the
face [NH91]. Kenwright derives a similar condition for disambiguating the connectivity
on the faces in terms of the gradient of the bilinear interpolant [Ken93]. Natarajan
further enforces consistency with the trilinear interpolant for the case of ambiguities
which are interior to a cell, which occur when diagonal vertices across the body of the
cell are similarly colored but have no edge-connected path of vertices of the same color
between them [Nat94]. Karron et al. [KCM94] further discuss the proper treatment
of criticalities in isocontouring, proposing a digital morse theory for describing the
topological transitions of isocontours of scalar �elds.
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Zhou et al. [ZCT95] make the point that a tetrahedral decomposition and linear
approximation change the function and may still result in incorrect, though consistent,
topology. They propose that a tetrahedral decomposition may be used, provided that
intersections along the introduced diagonals are computed for the cubic function which
results from sampling the trilinear function across the diagonal of a cell, rather than
applying linear interpolation along all edges.
Wilhelms and Van Gelder [WvG90, vGW94] provide a comprehensive review the

topological considerations in extracting isosurfaces, and demonstrate that gradient
heuristics applied at the vertices of a cell are necessary and su�cient to disambiguate
the topology of functions which are quadratic.

Saddle configuration w > F(xs) w < F(xs) w = F(xs)

Figure 3.3 A two dimensional bilinear saddle and its contour con�gurations

The solution suggested by Natarajan [Nat94] is particularly attractive due to its
simplicity of implementation and design to enforce consistency with the trilinear in-
terpolant, a commonly used interpolant for 3D reconstruction and visualization. The
situation on faces with colored vertices which are diagonally adjacent can be viewed
in two dimensions as in Figure 3.3. The unique saddle point at coordinate xs of the bi-
linear interpolant lies interior to the face, and the correct topology can be determined
by evaluating the function at the saddle point and comparing it with the isovalue as
shown. This topological consistency is carried out further by considering the unique
saddle point of the full trilinear interpolant in addition to the six possible face saddles.
A simple extension to a traditional case table requires sub-cases only for con�gurations
which contain saddles. The sub-cases are indexed by the saddle point evaluations in
order to determine a triangulation which is topologically consistent with the trilinear
interpolant [Nat94]
Matveyev further simpli�es the correctness in connectivity for the case of a regu-

lar cell by avoiding the explicit computation of the saddle points [Mat94]. With the
observation that the asymptotes of a saddle in a regular cell are parallel to the coor-
dinate axes, correct connectivity can be determined by sorting the intersections along
an axial direction. The nature of the bilinear interpolant ensures that pairs in the
sorting will be connected.
For the inconsistent case illustrated in Figure 3.1, several distinct topological trian-

gulations are possible, two of which are illustrated in Figure 3.4.
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Figure 3.4 Two topologically consistent triangulations with respect to the shared face.

Note that additional distinct con�gurations exist due to additional face saddles on the

non-shared faces

3.3 Cell Search

Because a contour only passes through a fraction of the cells of a mesh on average,
algorithms which perform an exhaustive covering of cells are found to be ine�cient,
spending a large portion of time traversing cells which do not contribute to the contour.
The straightforward approach of enumerating all cells to extract a contour leads to a
high overhead cost when the surface being sought intersects only a small number of
the cells.
Preprocessing of the scalar �eld permits the construction of search structures which

accelerate the repeated action of isocontouring, allowing for increased interactivity
during modi�cation of the isovalue. Many preprocessing approaches and search struc-
tures have been presented, which are conveniently classi�ed (similar to the classi�ca-
tion presented in [LSJ96]) based on whether the search is in domain space or range
space.

3.3.1 Domain Search

A straightforward search of the domain by enumerating all cells leads to an overhead
cost of O(nc). In the case when few cells are intersected, this overhead cost is a
dominant factor, leading to ine�cient computation.A spatial hierarchy for accelerating
the search process is a natural approach which has been explored by Wilhelms and
Van Gelder [WvG92, WG90]. For space e�ciency considerations, a partial octree
decomposition was developed which groups all cells at the highest level and adaptively
approximates the data through axis-aligned subdivisions which better approximate
the data. At each level in the tree, min and max values for the cells contained in the
subtree are stored, providing a means to e�ciently discard large spatial regions in the
search phase. An analysis presented in [LSJ96] suggests a worst-case computational
complexity of O(k+ k log nc

k ), where k is the size of the output and nc is the number
of cells.

3.3.2 Range Search

A large number of search techniques in the recent literature perform the search for
intersected cells in the range space of the function. As we are dealing only with scalar-
valued functions, range space search techniques have the advantage of being indepen-
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Figure 3.5 Spatial hierarchical cell decompositions for accelerating the search for isocon-

tours.

dent of the dimension of the domain. In range space, each cell c is associated with the
continuous set of values taken on by the function over the domain:

R(c) = [min
x2c

F(x);max
x2c

F(x)]

There are two approaches for representing the range space, the 1D value-space, in
which each range R(c) is considered as a segment, or interval, along the real line, and
the 2D span-space, in which each range R(c) is considered as a point in 2D [LSJ96],
as illustrated in Figure 3.6. While certain search structures are motivated by one
geometric representation or another, others may be e�ectively visualized in either
representation.

(a) (b)

min

max

min = max

w = w0

w = w0

value

Figure 3.6 The (a) 1D value space and (b) 2D span space representations for range-space

searches

Giles and Haimes introduce the use of lists of cells sorted by their minimum and
maximumvalues to accelerate searching. In addition to forming two sorted lists of cells,
the maximum cell range, �w, is determined. Cells containing an isosurface of value
w must have minimum value in the range [w��w;w], which may be determined by
binary search in the min-sorted array. This active set of cells is purged of cells whose
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range does not contain w. For small changes in w, the active list can be updated,
rather than wholly recomputed, by adding and purging new candidate cells to the
active list. In the worst case, complexity remains O(nc).
Shen and Johnson [SJ95] describe the Sweeping Simplices algorithm,which builds on

the min-max lists of Giles and Haimes and augments the approach with a hierarchical
decomposition of the value-space. The min-sorted list is augmented by pointers to the
associated cell in the max-sorted list, and the max-sorted list is augmented by a \dirty
bit." For a given isovalue, a binary search in the min-sorted list determines all cells
with minimum value below the isovalue. Pointers from the minimum value list to the
maximum value list are followed to set the corresponding dirty bit for each candidate
cell. At the same time, the candidate cell with the largest maximumvalue which is less
than the isovalue is determined. As a result, all marked (candidate) cells to the right
of this cell in the maximum list must intersect the contour, as they have minimum
value below the isovalue and maximum value above the isovalue. Optimizations may
be performed when the isovalue is changed by a small delta. One min-max list is
created for each level of a hierarchical decomposition of the min-max search space.
The overall complexity remains O(nc) in the worst case analysis.
Gallagher [Gal91] describes a span �ltering algorithm, in which the entire range

space of the scalar function is divided into a �xed number of buckets. Cells are grouped
into buckets based on the minimumvalue taken on by the function over the cell. Within
each bucket, cells are classi�ed into one of several lists, based on the number of buckets
which are spanned by the range of the cell. For an individual isovalue, cells which fall
into a given bucket need only be examined if their span extents to the bucket which
contains the isovalue. In the worst case, complexity remains O(nc).
Itoh and Koyamada [IK95] compute a graph of the extrema values in the scalar �eld.

Every connected component of an isocontour is guaranteed to intersect at least one
arc in the graph. Isocontours are generated by propagating contours from a seed point
detected along these arcs. Noisy data with many extrema will reduce the performance
of such a strategy. Livnat et al. [LSJ96] note that in the worst case the number of
arcs will be O(nc), and hence straightforward enumeration of the arcs is equivalent in
complexity to enumeration of the cells.
Livnat, Shen, and Johnson describe a new approach which operates on the 2D min-

max span space [LSJ96]. The span-space representation of the cells is preprocessed
using a Kd-tree, which allows O(k+

p
nc) worst case query time to determine the cells

which intersect the contour, where k is the size of the output. It is reported that in
the average case, k is the dominant factor, providing optimal average complexity.
The same authors, with Hansen [SHLJ96], have described a technique which demon-

strates improved empirical results by using an L�L lattice decomposition of the span
space, in addition to allowing for parallel implementation on a distributed memory ar-
chitecture. With certain assumptions on the distributions of points in the span space,

the worst-case query time improves to O(k + nc
L +

p
nc
L ).

Several authors have recently demonstrated improved worst-case performance
bounds with the use of the interval tree and segment tree data structures [BPS96,
CMPS97, vK96]. Both structures provide a search complexity of O(k+ lognu), where
nu is the number of unique extreme values of the segments which de�ne the tree and
k is the number of reported segments intersected.
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3.3.2.1 Range Queries

The fundamental isocontouring query concerns the enumeration of all cells c such that
w 2 R(c) for the input isovalue w. In this section, four data structures supporting the
range query are described in more detail, including discussion of storage complexity,
time complexity for creation of the structure, and query complexity for reporting cells
intersected given an isovalue.

1 2 3 4 5 76

I0

I1

I2 I3 I4

I5 I6

Figure 3.7 A set of segments representing cell ranges

In the following sections we review the interval tree, segment tree, and bucket search
structures as applied to the contour query problem described. Example search struc-
tures are illustrated for the input set of intervals shown in Figure 3.7. For each search
structure, the complexity measures are based on the insertion of ns cells (value-space
intervals) into the search structure. In the case that interval endpoints are taken from
a small set of values (such as a limited set of the integers), the number of unique
interval values is called nu.

3.3.2.2 Interval Tree

An interval tree is made up of a binary tree over the set of interval min/max val-
ues [McC85]. Each internal node holds a split value s, with which intervals are com-
pared during insertion into the tree. If the interval is entirely less than the split value
it is inserted into the left subtree, while intervals greater than the split value are
recursively inserted into the right subtree.
In the case that the interval spans the split value (min < s < max), the recursion

terminates and the given interval is stored at the current node. Each nodes maintains
two list of spanning cells. The �rst list is stored in increasing order by the min, the
second in decreasing order by the max value. Because the intervals are not split in the
recursive insertion, each interval is stored only twice, and the storage complexity is
O(ns).

3.3.2.3 Segment Tree

A segment tree also consists of a binary search tree over the set of min and max

values of all the seed cells [Meh84, Mul94]. The primary di�erence from the interval
tree is the manner in which the segments are stored. Nodes in a segment tree form a
multi-resolution hierarchy of intervals, with the root representing the in�nite line, and
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I5; I2; I3; I1

I02

1 3

(1; 2) (2; 3) (3; 4)(�1; 1)

6

5 7

(5; 6) (6; 7)(4; 5) (7;1)

4 I3; I2; I1; I5

I0

I6; I4
I4; I6

Figure 3.8 Interval tree for the intervals given in Figure 3.7

with each node dividing the parent interval at a split value (see Figure 3.9). When a
segment is inserted into the tree, it is recursively split and propagated downward in
the tree, to be inserted into the group of nodes whose intervals collectively sum to the
entire range of the segment. Each segment identi�er will be stored at most O(lognu)
times, where lognu is the height of the tree, resulting in worst case storage complexity
of O(ns lognu) in the improbable case that all min-max values are distinct, and all
intervals �lter all the way down to the leaves. The query complexity for reporting the
k intersected cells for a given isovalue w is O(k + lognu).

I0

I0 I5

I2; I5

� 2

� 1

< 1 < 2 < 3

� 3

< 4

(1; 2) 2 (2; 3) 3 (3; 4) 4(�1; 1) 1

� 4

I2

I1 I4; I6I6

� 6

� 5

< 6 < 7

� 7

(5; 6) 6 (6; 7) 7

< 5

(4; 5) 5 (7;1)

Figure 3.9 Segment tree for the segments given in Figure 3.7

3.3.2.4 Bucket Search

Much of the scienti�c data that one are concerned with comes in the form of integer
values in a small range. For example, Computed Tomography (CT) data generally
have a 12-bit integer range of values. This regular subdivision allows a simple bucket
search strategy with nu � 1 buckets each representing a unit interval (h; h + 1). For
each cell, an identi�er is stored in each bucket which is spanned by the cell. Clearly,
the worst case storage complexity of this strategy is O(nsnu), which may be infeasible
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in the case in which all cells are stored. Given the approach of forming a small set
of seed cells, such a technique may prove feasible, with the added bene�t of allowing
intersected cells to be reported in O(k) time, linear in the number of reported cells.

I2

I0; I2 ; I5

I0; I1 ; I5

I0; I1; I3

I0; I1; I6

I4; I6

1 2 3 4 5 76

Figure 3.10 Bucket search structure for the intervals given in Figure 3.7

3.3.2.5 Search Structure Discussion

In this section we discuss the storage cost of each of the three presented search struc-
tures. Table 3.1 summarizes the theoretical space and query complexities.

Search Structure Storage Complexity Query Complexity
Interval Tree O(ns) O(k + lognu)
Segment Tree O(ns lognu) O(k + lognu)

Bucket O(nsnu) O(k)

Table 3.1 Comparison of the theoretical complexities of the three search structures for

performing an interval query.

3.4 Cell Traversal

The order in which cells are visited can impact the e�ciency of contouring algorithms
in several ways. Coherent traversal algorithms, such as a regular traversal scheme or
contour propagation (breadth �rst traversal of a connected component), can poten-
tially be implemented more e�ciently than a random cell visitation order. One issue
is the e�ciency of avoiding re-computation (recomputing intersection along shared
edges of cells). Through regular traversal and contour propagation, information can
be saved more e�ciently than in a random order visitation which is required by some
cell search techniques.

3.4.1 Contour Propagation

Contour propagation [AFH80, HB94, IK95, BPS96] is a surface tracking method which
is based on continuity of the scalar �eld, and hence of the isocontours derived from the
�eld. Given a single seed cell on a connected component of a contour, the entire com-
ponent is traced by breadth-�rst traversal through the face-adjacencies. The traversal
is terminated when a cell which has already been processed is met again, which is usu-
ally determined by a set of mark bits, which indicate for each cell whether processing
has taken place. The procedure is illustrated in Figure 3.11. In a contour propagation
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framework, as in a marching order traversal, optimization can be performed based
on the fact that with each step, information from adjacent cells is available which
can be used to avoid re-computation. In addition, the extracted contours are more
easily transformed into representations such as triangle strips for e�cient storage and
rendering.

A

B

C

Active Cell Queue: Contour Action:

C

C

C

A B Enqueue B, C

B

B

A Dequeue B; Compute contour

A Dequeue C; Compute contour

A Dequeue A; Compute contour

Figure 3.11 Illustration of contour propagation. The active surface is traced through ad-

jacent cells.

Cignoni et al. introduce a limited propagation scheme for regular grids based on a
\checkerboard" seed set, as illustrated in Figure 3.12. By selecting a regular pattern
of cells, it is guaranteed that all contours will intersect a black or grey cell. Modi�ed
contour propagation rules are applied to reach white cells from the selected black or
grey cells. Determining the seed set requires very little computation, thus preprocessing
is essentially limited to building the range search structure, in this case an interval
tree.

Figure 3.12 Illustration of the \checkerboard" approach to su�cient seed sampling. Black

cells are on the checkerboard, while a number of grey cells are also required in the seed set.
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3.4.2 Seed Set Construction

Several of the cell search techniques presented above depend upon a subsequent cell
traversal algorithm such as contour propagation. The use of a subsequent cell traversal
algorithm allows a reduction in the size of the search structure, because a cell which
will be processed by traversal need not be entered into the primary search structure.
The traversal stage can thus be considered a secondary search phase.
Propagation from seed cells requires a su�cient subset of cells which guarantee

that every connected component for any arbitrary isovalue intersects at least one cell
in the subset, called a seed set. A general de�nition of seed sets and framework for
construction of seed sets is presented in [BPS96].

3.4.2.1 Optimal Seed Sets

In [vvB+97], the theory of optimal seed sets is discussed, which suggests that optimal
(minimal) seed sets can be constructed in time which is polynomial in the number of
cells, though the cost for minimal seed sets remains prohibitive for most cases.
The cost of implementation and computation for optimal seed sets is generally

restrictive for all but the smallest of input meshes. Therefore, considerable work has
been devoted to approximation algorithms.Algorithms for computing \good" seed sets
are free to balance the desire for small (close to optimal) seed sets with the competing
desire for low space/time complexity. As a result, seed set approaches can be tailored
to suit a wide variety of settings and applications, depending on the available resources
which can be dedicated to the computation. We review a selected subset of seed set
construction algorithms.

3.4.2.2 Extrema Graphs

Itoh and Koyamada [IK95] introduce the use of extrema graphs for accelerating the
search for isocontours. They observe that any closed contour must enclose an extremum
of the scalar �eld, or be constant (or empty) within. By combining a search along a
graph of the extreme points with a search of the boundary cells of the mesh, it is
assured that at least one cell for each connected component of an isocontour is found.
Cells extracted in this search are used as seed cells for an isocontour tracking algorithm,
similar to the slicing algorithm described by Speray and Kennon [SK90].

3.4.2.3 Volume Thinning

Extending the extrema graph approach, Itoh et al. [IYK96] have applied image thin-
ning techniques to progressively remove cells from a volume mesh which are not nec-
essary in the \skeleton" of the function. Cells which are on the current boundary are
iteratively visited, and may be removed subject to conditions on the connectivity of
the neighboring cells which remain in the mesh. They report that the number of cells
extracted by volume thinning are signi�cantly fewer than those extracted using ex-
trema graphs, partially due to the fact that boundaries are no longer considered as a
special case. Furthermore, the computational complexity of volume thinning is virtu-
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ally independent of the number of extrema, and thus the thinning approach results in
faster preprocessing in many cases.

3.4.2.4 Greedy Climbing

For computation of a nearly optimal seed sets Bajaj et al. [BPS97b] develop a greedy
technique which progressively covers the domain with seed cells by explicitly comput-
ing the coverage of each seed cell introduced. This climbing algorithm can be applied
to both regular and unstructured grids of any cell type provided that the appropriate
function R is given which computes the range of a cell or face.
The algorithm begins by considering the universal seed set S consisting of all cells

c. Processing continues by iteratively selecting a cell in the seed set and tracing the
set of all contours from the selected cell, e�ectively performing contour propagation
for an interval of values. During the interval propagation, cells which are found to be
unnecessary can be removed from the seed set. Figure 3.13 illustrates the selection
and removal process.

x

y

x

y

x

y

x

y

(a) (b)

(c)
(d)

Figure 3.13 Greedy climbing approach to seed cell selection. Grey cells represent the

selected seed cells. Yellow cells have been processed and removed from consideration, while

red cells represent the current front of cells from which the next seed cell will be chosen.
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3.4.2.5 Sweep Filtering

Bajaj et al. [BPS97b] present a seed selection algorithmwith simple selection criteria,
motivated by practical considerations when dealing with extremely large data. The
seed selection is conceptually easiest to understand as a sweep of the cells in a particu-
lar direction. The algorithm has the property that selected seeds fall on the extrema of
the contours in the given sweep direction. Detection of contour extrema is based on a
simple comparison of the gradient within each cell and its immediate neighbors. With
such a seed set, contouring may be performed coherently and e�ciently by executing
a contouring sweep, with only a slice of data required to be resident in memory at
any given time, resulting in e�cient computation for visualization of large out-of-core
datasets.
The seed selection stage is illustrated as a left-to-right sweep in Figure 3.14. Con-

ceptually, the sweep line l is moved from left to right to determine the order in which
cells are processed. Note that this ordering is not required by the selection algorithm,
and so cells which are stored in main memory can be processed in any order, or even
in parallel. When a cell c is met which contains a local maximum of an isocontour
along the sweep direction ~l? the cell c is added to the seed set.

x

y

~l

Figure 3.14 One-pass seed selection by forward sweep

Sweep �ltering requires O(nc) time for considering each cell, and no additional stor-
age beyond that of the extracted seed set (and the portion of the mesh kept in mem-
ory). In addition to facilitating out-of-core computation, the sweep �ltering approach
provides an extremely e�cient method for computing a small seed set. Moreover, due
to the local criteria for seed selection, cells may be considered in any order, allow-
ing for parallel implementation with little or no communication overhead during the
preprocessing.
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T(y)

T(y0)

T(x0)

T(x), range propagated from the left

T(y), range propaged from below

T(I), total incoming range

Figure 3.15 Illustration of responsibility propagation. Each cell processes input responsi-

bilities and produces output responsibilities

3.4.2.6 Responsibility Propagation

In earlier work, Bajaj et al. [BPS96] described a plane sweep approach to seed set
computation for regular grids. Results from the responsibility propagation algorithm
fall between the general sweep �ltering and the contour climbing. Processing of cells
is performed in a regular traversal order, with ranges of responsibility propagated
along the directions of the traversal. Illustrated in Figure 3.15, the traversal order
is left-to-right and bottom-to-top. Incoming responsibility ranges are denoted T(x)
and T(y), and computed propagated responsibilities are T(x0) and T(y0). Propagated
responsibilities are computed using set arithmetic on the incoming responsibilities.
The range propagation method for selecting seed cells requires O(n(d�1)=d) storage

to maintain the propagated ranges for a sweep line or plane, where d is the dimension
of the regular grid.

3.5 Hierarchical and Out-of-core Processing

Extremely large data often require special care and processing. Two approaches in
particular have been explored with respect to contouring of extremely large scalar
�elds.
Zhou et al. [ZCK97] describe a hierarchical tetrahedral representation for volume

data and discuss an approach to adaptive isocontouring from the multi-resolution
volume representation. The hierarchy is constructed by recursive application of a set
of three tetrahedron \splitting" rules. Isosurfaces can be extracted from the at a user-
de�ned level of detail.
Chiang and Silva [CS97] use an I/O-optimal interval tree to perform e�cient con-

touring of data which cannot be stored in primary memory. Results have indicated
that isocontouring can be performed on data residing on secondary storage such that
the I/O operations required are not the limiting factor of the computation. The only
primary memory required includes a small constant amount to store a portion of the
mesh and storage for the isosurface being constructed.
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3.6 Summary

A key to e�cient computation is in exploiting coherence. The isocontouring approaches
described above can be loosely classi�ed and analyzed based on the coherence which
is exploited.

Spatial Coherence { We assume a minimum of C0 continuity in our scalar �eld.
Continuity along shared cell faces is exploited by many contouring approaches de-
scribed above. The octree decomposition exploits spatial coherence in a hierarchical
manner. As should be expected, the analysis in [LSJ96] reveals that the complexity
gain breaks down when the spatial frequency is high, forcing large portions of the
octree to be traversed.

Range-Space Coherence { Searches in range-space have demonstrated improved
worst-case query complexity with performance which is independent of spatial fre-
quency. Such advances, however, come at the cost of decreased ability to exploit
spatial coherence. Assuming a continuous scalar �eld over a cell representation,
cells which are spatially adjacent also overlap in the value space for the range of
the shared face. However, the construction of value-space search structures such
as the interval tree and segment tree are completely independent of assumptions
such as scalar �eld continuity. While this may be an advantage in the case that
discontinuous �elds or disjoint groups of cells are considered, for most purposes it
means that spatial coherence is under-utilized.

In general, domain-space and range-space searches exploit coherence in one sense
by sacri�cing coherence in another. The seed set approaches are best understood as
a hybrid of spatial and value-space approaches, with the goal and result of exploiting
both range-space and domain-space coherence.
The approach is based on a fragmentation of the search for intersected cells into

range-space and domain-space phases, taking advantage of coherence in both. Range-
space searches exhibit improved worst-case complexity bounds due to their indepen-
dence from the spatial frequencies of the input data. By adopting contour propagation
to compute each connected component, full advantage of spatial coherence during cell
traversal is realized. Contour propagation also has the advantage of requiring only one
seed cell for each connected component from which to begin tracing the contour, al-
lowing for a much smaller search structure compared to algorithms which must search
over the entire set of cells.

3.7 Future Directions

The use of interval tree and segment tree data structures has reduced the cost of
searching for intersected cells to the point that contouring cost is highly dominated
by the triangulation phase, and principally by the interpolation along mesh edges.
Future avenues for interactive isocontouring will include improved approximate and
hierarchical contouring algorithms. Hierarchical algorithms which are progressive will
be developed, allowing computation to proceed at a speci�ed rate for e�ective inter-
action use in real-time environments.
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Another promising direction in making isocontouring more useful is through auto-
mated isovalue selection processes. Quantitative user interfaces such as the Contour
Spectrum [BPS97a] both aid the user in selecting relevant isovalues while also pro-
viding a framework within which the relevance of isovalues can be directly computed,
removing from the user much of the need for blindly exploring the space of isosurfaces.
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