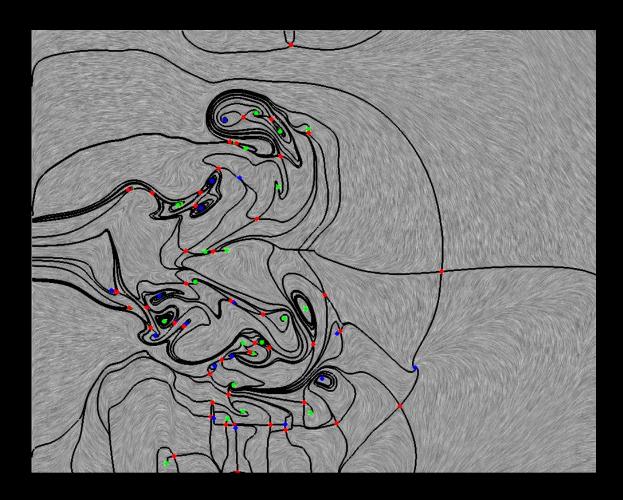
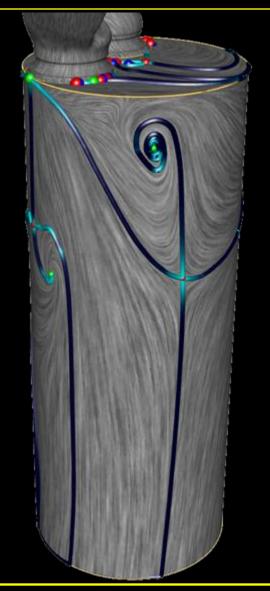
Vector Field Topology

Thanks to Xavier Tricoche

Examples

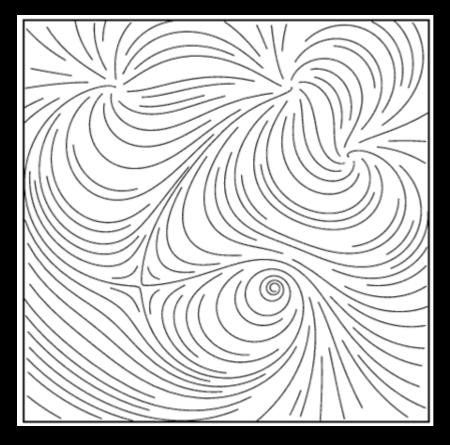




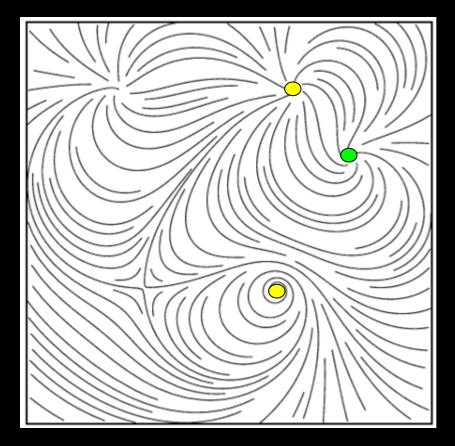
- Abstract representation of flow field
- Characterization of global flow structures
- Basic idea (steady case):
 - Interpret flow in terms of streamlines
 - Classify them w.r.t. their limit sets
 - Determine regions of homogenous behavior
- Graph depiction
- Fast computation

- Limit sets of a point $\mathbf{x} \in \mathbb{R}^n$
 - $\omega(\mathbf{x})$: omega limit set of $\mathbf{x} =$ point (or curve) reached after forward integration by streamline seeded at \mathbf{x}
 - $\alpha(\mathbf{x})$: alpha limit set of $\mathbf{x} =$ point (or curve) reached after **backward** integration by streamline seeded at \mathbf{x}
- Sources (α) and sinks (ω) of the flow
- Basin: region of influence of a limit set

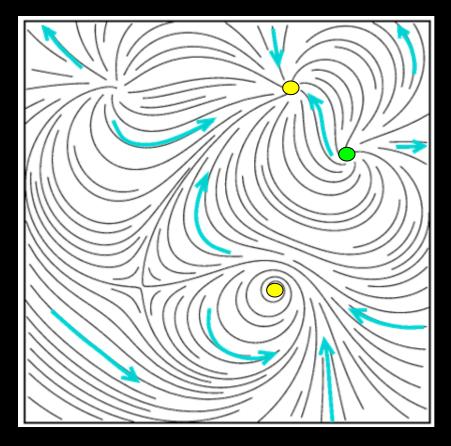
• Phase portrait



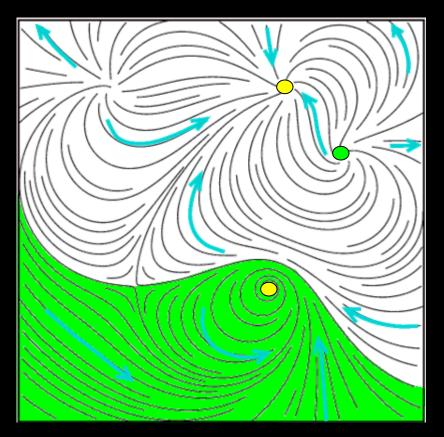
• Limit sets



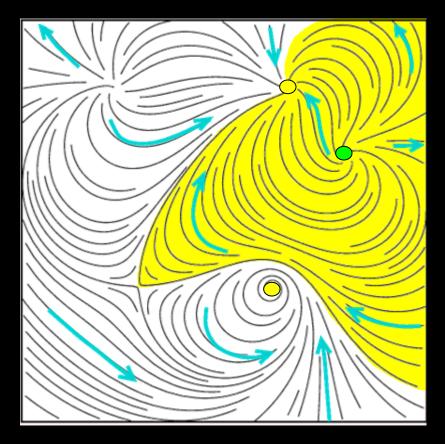
• Flow direction



ω-basin of sink

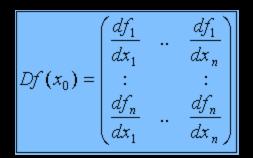


• α -basin of source



- Equilibrium
 - $-\vec{v}(\mathbf{x}_0) = \vec{0}$
 - Streamline reduced to a single point
- Remarks
 - Asymptotic flow convergence / divergence
 - Streamlines "intersect" at critical points
- Type of critical point determines local flow pattern around it

- Jacobian has full rank
 No zero eigenvalue
- Major cases

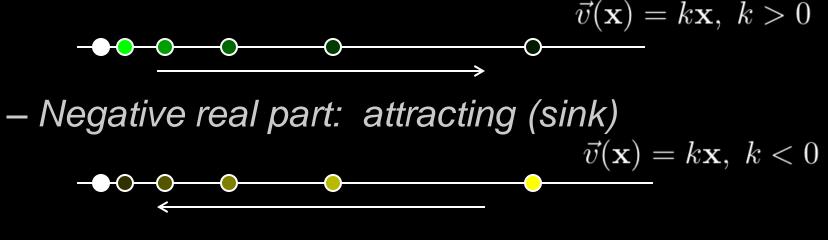




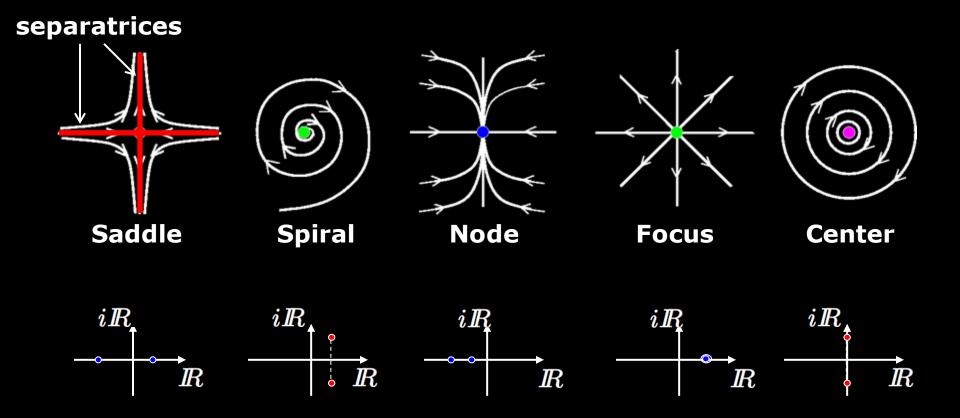
Hyperbolic / non-hyperbolic

 Type determined by Jacobian's eigenvalues:

- Positive real part: repelling (source)



- Complex: rotation



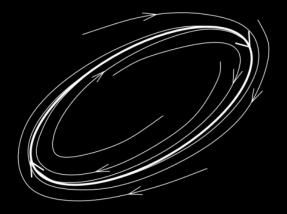
Critical Point Extraction

Cell-wise analysis

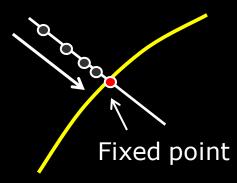
- Solve linear / quadratic equation to determine position of critical point in cell
- Compute Jacobian at that position
- Compute eigenvalues
- If type is saddle, compute eigenvectors

Closed Orbits

- Curve-type limit set
- Sink / source behavior
- Poincaré map:

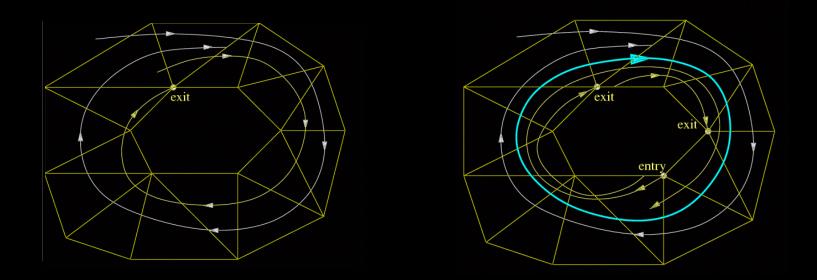


- Defined over cross section
- Map each position to next intersection with cross section along flow
- Discrete map
- Cycle intersects at fixed point
- Hyperbolic / non-hyperbolic



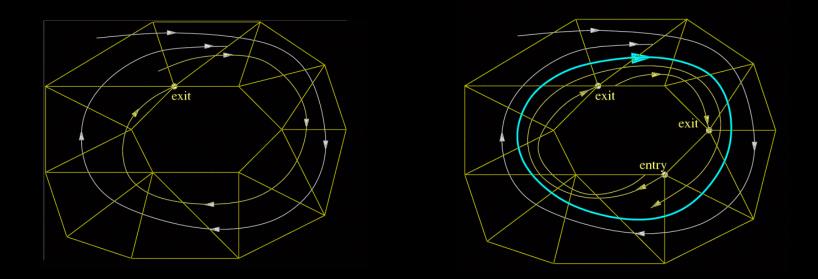
Closed Orbit Extraction

- Poincaré-Bendixson theorem:
 - If a region contains a limit set and no critical point, it contains a closed orbit



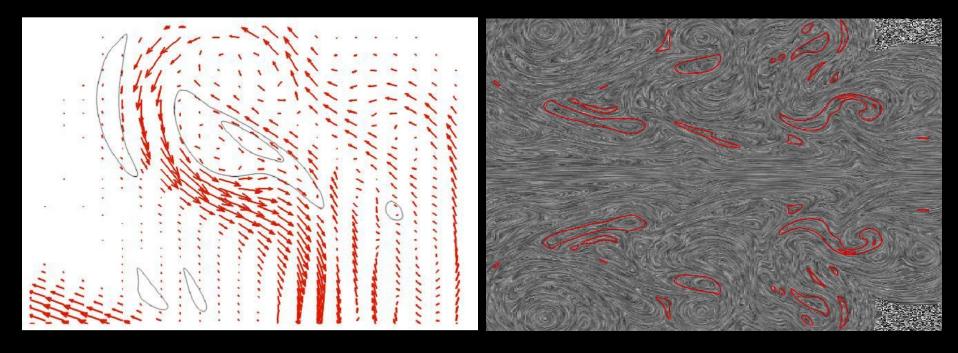
Closed Orbit Extraction

- Detect closed cell cycle
- Check for flow exit along boundary
- Find exact position with Poincaré map



Closed Orbit Extraction

Results



Topological Graph

• Graph

- Nodes: critical points
- Edges: separatrices and closed orbits
- Remark
 - All streamlines in a given region have same α and ω -limit set
- Problem
 - Definition does not account for bounded domain

Topological Graph

