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Chapter 1

Visualization techniques for vector fields

Vector fields play an important role in science and engineering. They allow us to describe
a wide variety of phenomena like fluid flow and electromagnetic fields. Large vector fields
often exhibit quite complex structures, which can be difficult to reveal. Making an efficient
visualization of a vector field is one of the current challenges in scientific visualization.

1.1 Hedgehogs and glyphs

A natural vector visualization technique is to draw an oriented, scaled line for each vector. The
line is drawn, starting at a grid point and is oriented in the direction of the vector components
associated with that point. The color and length of each line can be set by the vector magnitude.
This technique is often referred to as a hedgehog or oriented lines. To get a better impression of
the direction of the vector field, arrowheads can be added to the lines. Any 2D or 3D geometric
representation indicating vector magnitude and direction is called a glyph (see figure 1.1).
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Figure 1.1: Glyphs.

These techniques are best suited for small data sets. If the placements of the glyphs are
too dense and the variations in magnitude are too big, the images tends to be “cluttered” and
visually confusing.

The results can be improved if some form of thresholding is applied. One example which
can remove some of the clutter is to neglect the drawing of glyphs where the length of the
vector is below a certain value, ‖v‖ < c. The threshold τ is typically a normalized quantity
in the range [0, 1]. If τ = 0, every vector is displayed. If τ = 1, only the vectors with the
largest magnitude are present in the resulting image. Another method is to scale the vectors
so that the overlapping of the glyphs are reduced. In figure 1.2, we have used threshold and
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scale to emphasize regions where the information of the vector field is important. We see from
the bottom image that suppressing a larger number of the least significant vectors may show
relevant physical information more clearly.

1.2 Curve representation

A better way of representing the vector fields is to draw curves that reveal the orientation and
structure of the field. The lines can be colored according to vector magnitude, but also other
scalar quantities such as temperature or pressure may be used to color the lines. The com-
putation of path lines and streak lines strongly depends on the capabilities of the underlying
hardware. Both these techniques are time dependent, and vector data for multiple time steps
have to be stored in the computer during the calculations. The requirements in memory can
quickly be of many gigabytes, and not all computers are big enough to handle that.

A possible problem concerning the rendering of field lines is the spatial perception of the
objects in the scene. On common graphics workstations, field lines and other curves are dis-
played using flat shaded line segments, impairing the spatial impression of the image [1]. Phong
type shading models [2] are traditionally applied to surface elements, but can be generalized to
line primitives in R

3 [1]. Such generalizations have been used to render fur or human hair.
However, on current graphics workstations, there is no direct hardware support for the display
of illuminated line primitives [1]. Therefore major parts of the illumination calculations have to
be performed in software. In 1997 Stalling, Zöckler and Hege [1] presented a method to achieve
fast and accurate line illumination, by exploiting texture mapping capabilities of modern graph-
ics hardware. This shading technique allows the visualization of large numbers of field lines in
a vector field [1].

Other ways to enhance the three-dimensional impression of the vector field are to represent
the field lines by polygonal objects, for example like tubes. One of these techniques is called
streamribbons. A streamribbon can be constructed by generating two adjacent field lines and
then bridging the lines with a polygonal mesh. This technique works well as long as the field
lines remain relatively close to another [2]. If the field lines diverge, the resulting ribbons will
not accurately depict the vector field, because we expect the surface of a ribbon to be everywhere
tangent to the vector field (i.e., definition of field line).

A streamsurface is a collection of an infinite number of field lines passing through a curve.
The curve defines the starting points for the field lines and if the curve is closed, as in a circle,
the surface is closed and we get a streamtube. Streamsurfaces can be computed by generating
a set of field lines from selected points on the curve. A polygonal mesh is then constructed
by connecting adjacent field lines. Like in streamribbons the separation of the field lines can
introduce large errors into the surface.

A problem with all these techniques, with the exception of the one proposed by Stalling,
Zöckler and Hege [1]1, is the limitation of the number of field lines that can be displayed in
the scene, without cluttering the image. This makes the visualization dependent on the choice
of seed points. As mentioned before, it is not obvious how to distribute the field lines in space
without missing important details of the field. In figure 1.3, the image is a little cluttered because

1The Fast display of illuminated field lines method, allows the generation of images with thousands of field
lines at interactive rate [1]. This means that the positioning of an individual field line becomes less important.
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Figure 1.2: Visualization of a vector field using glyphs. In the top image we have set the
threshold τ = 0.01 and the scale s = 4 ∗ ∆h, where ∆h is the largest of the grid spacings ∆x,
∆y and ∆z. In the bottom image τ = 0.17 and s = 4 ∗ ∆h. The value s determine the length
of the largest glyphs.
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Figure 1.3: Visualization of a vector field using field lines. The red lines are at the “downstream”
side of the seed point whereas the green ones are at the “’upstream’ side.

Figure 1.4: Visualization of a vector field using Line Integral Convolution.

of the large number of field lines rendered in the vector field. As in figure 1.2, we have focused
on a region of interest by thresholding the distribution of seed points.

1.3 Texture based techniques

The use of texture based techniques is an alternative method for visualizing vector fields. Ex-
amples of these techniques are spot noise [3], [4] and Line Integral Convolution [5], [6], [7].
These techniques avoid some of the problems with vector visualization discussed in sections 1.1
and 1.2. Figure 1.4 shows the result after applying LIC on the same vector field as visualized
with other techniques in the figures 1.2 and 1.3. The vector field is obtained from [8].



Chapter 2

Line Integral Convolution

2.1 Introduction to Line Integral Convolution

Line Integral Convolution (LIC) is a powerful technique used to represent vector fields with
high accuracy. It is a texture based technique that can be used to display both two- and three-
dimensional fields. LIC is essentially a filtering technique that blurs a texture locally along
a given vector field, causes voxel intensities to be highly correlated along the field lines but
independent in directions perpendicular to them. It takes a pixel/voxel set and a vector field as
inputs and produces a new pixel/voxel set as output, see figure 2.1.

Voxel set

Vector field

Voxel setLIC

Figure 2.1: A vector field and a voxel set are inputs to the Line Integral Convolution resulting
in a new voxel set.

Since introduced in 1993 by Cabral and Leedom [5], Line Integral Convolution has been an
active field of research within the computer graphics and visualization community. Several re-
searchers have developed the LIC algorithm further and the method has found many application
areas, ranging from computer art to scientific visualization. Two examples of LIC images are
shown in figure 2.2.

2.2 Convolution

Convolution is a mathematical definition that can be applied to several areas, such as image
processing, optics and signal processing. The convolution of two real functions f = f(x) and
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Figure 2.2: Examples of LIC images. The image on the left depicts the computed velocity field
close to a racing car computed at the Italian Aerospace Research Center (CIRA). The image on
the right is a picture of flowers convolved by a given 2D vector field taken from [5].

g = g(x) is defined as

I(x) = f(x) ∗ g(x) = g(x) ∗ f(x) =

∫

∞

−∞

f(y)g(x − y)dy. (2.1)

If we convolve f(x) with the Dirac delta function

δ(x) =

{

0 (x 6= y),

∞ (x = y),
(2.2)

we obtain

f(x) ∗ δ(x) =

∫

∞

−∞

f(y)δ(x − y)dy = f(x). (2.3)

In figure 2.3, we see how a convolution with a “box” function leads to a smearing of the function
f .

f g (f  g)*

Figure 2.3: Convolution of the function f with a “box” function g.

Convolution is commonly used in image processing. The convolution is then typically rep-
resented by a two-dimensional convolution matrix A, where the matrix elements describe the
blurring effect applied to the image. The intensity of a pixel I(pij) in the new image is found
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by adding intensity values from “neighboring” pixels in the original image times the matrix
element matching the position to the pixels. If for example a picture is convolved by the 3 × 3
matrix

A =





0 0 0
0 1 0
0 0 0



 , (2.4)

the only pixel to contribute in the finding of I(pij), is pij itself. The result after such a convolu-
tion is the original image. The intensity of a pixel after convolution can be found by

Iij = n

K
∑

k=1

L
∑

l=1

AklIi+k−K/2,j+l−L/2, (2.5)

where Iij = I(pij) and n is a normalization constant. Figure 2.4 demonstrates the effect of
convolving an image by a 7 × 7 matrix. Notice the blurring effect in the right image.

Figure 2.4: Blurring of a picture.

2.3 Convolution along a vector

Line Integral Convolution is a modification of a technique called DDA convolution [5]. In this
method, each vector in a field is used to compute a DDA line which is oriented along the vector
and going in the positive and negative vector direction some distance L. A convolution is then
applied to the texture along the DDA line. The input texture pixels under the convolution kernel
are summed, normalized by the length of the convolution kernel, 2L, and placed in an output
pixel image for the vector position. Figure 2.5 illustrates this operation for a single vector in the
field.

The DDA approach depicts the vector field inaccurately. It assumes that the local vector
field can be approximated by a straight line. As a result, DDA convolution gives an uneven
rendering, treating linear portions of the field more accurately than areas with high curvature,
such as areas with small eddies or vortices. This becomes a problem in visualization of vector
fields, since details in the small scale structure are lost. Line Integral Convolution solves some
of this problem, as the convolution takes place along curved segments.
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Vector field

DDA line

Input texture

Output texture

Figure 2.5: Convolution along a vector. The pixel in the output texture is a weighted average of
all the input texture pixels covered by the DDA line.

2.4 LIC

For a given vector field F : R
3 → R

3, the idea of Line Integral Convolution is to blur an
input texture along field lines of F . The LIC algorithm carries out the blurring by applying an
one-dimensional convolution throughout the input texture. Each voxel in the output texture is
determined by the convolution kernel and the texture voxels along the local field line indicated
by the vector field. As a result, the intensity values of the output scalar field are strongly
correlated along the field lines, whereas perpendicular to them almost no correlations appear.
LIC images can therefore provide a clear visual impression of the directional structure of F .
This is illustrated in figure 2.6.

Given a field line σ, Line Integral Convolution can mathematically be described by

I(x0) =

∫ s0+L

so−L

k(s − s0) T (σ(s)) ds, (2.6)

where I(x0) is the intensity for a voxel located at x0 = σ(s0). In this equation k denotes the
filter kernel of length 2L and T denotes the input texture. The curve σ(s) is parameterized by
the arc-length s. The filter length or the convolution length determine how much the texture is
smeared in the direction of the vector field. With L equal to zero, the input texture is passed
through unchanged. As the value of L increases, the output texture is blurred to a greater extent.
Stalling and Hege [6] found good results by choosing the convolution length 2L to be 1/10th of
the image width.



10 Line Integral Convolution

Figure 2.6: A 2D example where line integral convolution is applied to a white noise input
texture. We see how the input texture is blurred along the field lines of the vector field. The
images are taken from [9].

In the algorithm (for 2D) proposed by Cabral and Leedom [5], referred to as CL-LIC here-
after, computation of field lines were done by a variable step Euler’s method. The local behavior
of the vector field is approximated by computing a local field line that starts at the center of a
pixel (x, y) and moves out in the “downstream” and “upstream” directions,

P0 = (x + 0.5, y + 0.5),

Pi = Pi−1 +
V (Pi−1)

∥

∥V (Pi−1)
∥

∥

∆si−1,

P ′

0 = P0,

P ′

i = P ′

i−1 −
V (P ′

i−1)
∥

∥V (P ′

i−1)
∥

∥

∆s′i−1,

(2.7)

The convolution is expressed as follows,

Fout(x, y) =

∑l
i=0

Fin(Pi)hi +
∑l′

i=0
Fin(P ′

i )h
′

i
∑l

i=0
hi +

∑l′

i=0
h′

i

,

hi =

∫ si+∆si

si

k(w) dw,

where

• V (Pi) is the vector from the input vector field at the point Pi.

• Fout(x, y) is the output pixel value at point (x, y).

• Fin(Pi) is the input pixel value at point Pi.

• l and l′ are the convolution distances along the positive and negative directions, respec-
tively.
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• Pi represent the ith cell the field line steps in the positive direction, and P ′

i represent the
ith cell in the negative direction.

• k(w) is the convolution filter function.

• ∆si is the arc length between the point si and si+1 along the field line.

• s0 = 0

This is done for each pixel, eventually making an output LIC image.

2.5 Fast LIC

The algorithm suggested by Cabral and Leedom [5] is very compute intensive. Even in 2D,
the algorithm involves a large number of arithmetic operations and can be rather slow. In 1995
Stalling and Hege [6] proposed a fast and more accurate LIC algorithm. In the LIC algorithm
proposed by Cabral and Leedom, for each pixel in the output image, a separate field line segment
and a separate convolution integral are computed. Stalling and Hege points out two types of
redundancies in this approach. First, a single field line usually covers lots of image pixels.
Therefore in CL-LIC large parts of a field line are recomputed very frequently. Second, for a
constant filter kernel k very similar convolution integrals occur for pixels covered by the same
field line. This is not utilized by Cabral and Leedom’s algorithm. Consider two points located
on the same field line, x1 = σ(s1) and x2 = σ(s2). Assume, that the points are separated by a
small distance ∆s = s2 − s1. Then for a constant filter kernel k the convolution integral (2.6)
for x2 can be written as

I(x2) = I(x1) − k

∫ s1−L+∆s

s1−L

T (σ(s)) ds + k

∫ s1+L+∆s

s1+L

T (σ(s)) ds. (2.8)

The intensities differ by only two small correction terms that are rapidly computed by a numer-
ical integrator. By calculating long field line segments that cover many pixels and by restricting
to a constant filter kernel, we avoid both types of redundancies being present in CL-LIC. The
length of the field line or the field line length is typically larger than the convolution length.
In designing the fast-LIC algorithm, Stalling and Hege suggest an approach which relies on
computing the convolution integral by sampling the input texture T at evenly spaced loca-
tions xi along a pre-computed field line σ(s). First a field line is computed for some location
x0 = σ(s0) (see figure 2.7). The convolution integral (2.6) for this location is approximated as

I(x0) = k

n
∑

i=−n

T (xi), (2.9)

with xi = σ(s0 + iht), where ht is the distance between different sample points. To ensure
normalization we set k = 1/(2n + 1). After having computed I(x0), we step in both directions
along the current field line, updating the convolution as follows

I(xm+1) = I(xm) + k
[

T (xm+1+n) − T (xm−n)
]

, m = 0, 1, . . . ,M

I(xm−1) = I(xm) + k
[

T (xm−1−n) − T (xm+n)
]

. m = 0,−1, . . . ,−M.
(2.10)
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Figure 2.7: The input texture is sampled at evenly spaced locations xi along a field line σ. For
each location the convolution integral I(xi) is added to the pixel or voxel in 3D containing xi.
A new field line is computed only for those pixels or voxels where the number of samples does
not already exceed a user-defined limit.

For each sample point the corresponding output image pixel is determined and the current inten-
sity is added to that pixel. In this way, we efficiently obtain intensities for many pixels covered
by the same field line. Running through all output image pixels, the algorithm requires the total
number of hits already occurred in each pixel to be larger than some minimum. If the number
of hits in a pixel is smaller then the minimum, a new field line is computed. Otherwise that
pixel is skipped. At the end, accumulated intensities for all pixels has to be normalized against
the number of hits. The algorithm referred to as fast-LIC can be described by the pseudocode
presented in figure 2.8.

for each pixel p
if (numHits(p) < minNumHits) then

initiate field line computation with x0 = center of p
Compute convolution I(x0)

add result to pixel
set m=1
while m < some limit M

Update convolution I(xm) and I(x−m)

add result to pixels containing xm and x−m

set m = m + 1

for each pixel p
normalize intensity according to numHits(p)

Figure 2.8: Pseudocode of fast-LIC.

Accuracy is especially important in fast-LIC because multiple field lines determine the in-
tensity of a single pixel. If these lines are incorrectly computed, the LIC pattern gets disturbed.
This is most evident near the center of a vortex in the vector field. The LIC-algorithm proposed
by Cabral and Leedom, used a variable step Euler’s method in the computation of field lines.
Stalling and Hege [6] employ a fourth-order Runge-Kutta method, thus making the algorithm
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more accurate.
If the step size between the sample points is too big, we may miss some of the pixels (voxels

in 3D) along the computed field line. This can lead to images with aliasing [2] problems.
Stalling and Hege have found a step size of ht = 0.5 times the width of a texture cell to be
sufficient.

2.6 Some improvements

After the first LIC-algorithm was introduced in 1993, a number of suggested improvements
have been made. In 1994, Forsell [10] describes an extension that makes it possible to map
flat LIC images onto curvelinear surfaces. So far the algorithm only worked for vector fields
over regular two-dimensional Cartesian grids. In 1995, Stalling and Hege [6] proposed the
fast-LIC algorithm discussed in section 2.5. Shen, Johnson and Ma [11] introduced in 1996 a
technique for injecting dye into the LIC field to highlight the flow field’s local feature. The dye
insertion method utilizes the LIC’s natural “smearing” to simulate advection of dye within the
flow field. The simulation of dye injection is done by assigning colors to isolated local regions
in the input white noise texture. Cells whose streamline pass through such regions receive color
contributions from the dye.

In 1997, Wegenkittl, Gröller and Purgathofer [12] presented Oriented Line Integral Convo-
lution (OLIC), where also the information about the orientation of the vector field is present
in the resulting image. And in 1998, Interrante and Grosch [7] looked at some techniques for
visualizing 3D flow through a volume.



Chapter 3

Volume LIC

Although Line Integral Convolution is most commonly used to depict 2D flows, or flows over a
surface in 3D, LIC methods can equivalently be used to depict 3D flows through a volume [7].
When LIC is applied to a solid noise texture, the output is a solid LIC texture that is blurred
along the directions of the vector field. For 2D vector fields and surfaces in 3D this works well,
because the resulting LIC texture are two-dimensional. But when working with volumetric data,
it can be difficult to get a good impression of the vector field from a series of solid or partially
opaque 2D slices rendered via direct volume rendering (see figure 3.1). The image of the vector
field will be incomplete and the inner details are completely lost.

Figure 3.1: Left: A solid white noise input 3D texture. Right: The output texture after LIC.

3.1 Choice of input texture

3.1.1 Region Of Interest

When working with scientific data, we can make use of scalar values like temperature and
absolute value of velocity to specify a critical region in the volume where the information of
the vector field is especially important [7]. Hence, the presentation of the data can be clarified
by isolating and emphasizing information in these critical regions. Interrante and Grosch [7]
found that when LIC is used together with a Region Of Interest (ROI), better results can be
achieved if the ROI mask is applied as a preprocess to the input texture, before the Line Integral
Convolution, rather than as a postprocess to the output afterwards. In the first case, in which the
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ROI mask is applied before LIC, the Region Of Interest mask is guided by the flow itself, with
the result that the boundaries of the ROI will be everywhere aligned with the direction of the
vector field. In the second case, the visible portion of the vector field in the LIC texture will be
completely determined by ROI mask, making boundaries which will not in general follow the
direction of the flow. Figure 3.2 shows the result after applying LIC to an input texture that has
been masked by a Region Of Interest. The visualized vector field is a vorticity field obtained
from a simulation done at FFI [8]. The vorticity magnitude was used to specify the ROI mask.
The textures were defined to be twice as large as the vector field (594× 394× 194), so that the
details could be seen more easily.

Figure 3.2: Left: The masked input texture. Right: The resulting LIC texture.

3.1.2 Sparse input texture

When Line Integral Convolution is applied to a solid noise texture, even one that has been
masked by a Region Of Interest function, the output image looks more or less like a solid
“object”. The details of the vector field can still be difficult to depict. Applying LIC over an
input texture consisting of a sparse set of points([7] , [13]) produces an output image which
gives a much better impression of the vector field. Instead of a solid object it now produce a
collection of densely placed field lines.

One of the strengths with Line Integral Convolution applied to dense (white noise) input
textures, is that it is not dependent on the choice of seed points. When LIC is applied to a sparse
input texture though, this is not the case. The LIC texture is then computed by generating strokes
through the volume by advecting the distributed points in the input texture with the empty space
between them. As a result, the output texture is dependent on the placements of the distributed
points. However, since texture based techniques allow the display of a much larger number of
lines simultaneously in an image, making the position of each stroke less important, statistical
methods for distributing the points in the volume can be applied.
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Figure 3.3: The input texture where 9514 points are distributed after the vorticity magnitude
and the resulting LIC texture.

We have tried different approaches in distributing the points or voxels in the 3D texture. In
the first approach the idea was to make a texture where the points was distributed after the scalar
value that was used in making the ROI mask. Hence, we get output images where regions with
high scalar values are more emphasized than other regions with lower values. In this approach,
the regions with the highest scalar values becomes more cluttered than the regions with lower
scalar values. Another option is a more random approach. This method leads to a LIC texture
where the field lines are more evenly distributed and with some datasets it can give a better
impression of the vector field. Figures (3.3, 3.4, 3.5) show some examples of Line Integral
Convolution applied to input textures with different distribution functions. In figure 3.3, the
points in the input texture are distributed according to the vorticity magnitude. While in the
figures 3.4 and 3.5, a random approach is used. The number of points or spots in the input
texture in figures 3.3 and 3.4, are about 9500. In figure 3.5, about 20000 spots are used.

The algorithm for computing a random input texture can be described by the pseudocode in
figure 3.6.

The density of the distributed points in the input texture is determined by the density factor.
The final set of points chosen are set to 255. The rest of the voxels are set to zero. To differ-
entiate the strokes in the output texture, the use of white noise data has been common when
applying LIC to a dense input texture. When applying LIC to a sparse input texture though, the
use of various level of grey is not necessary. Instead, we differentiate the individual field lines
by employing a shading technique called limb darkening. This will be discussed in 4.3.

Best results were achieved when requiring a minimum distance between the selected points
in the input texture. This prevents the spots in the input texture and thus the field lines in the
output image from getting too close. In this approach, the details of the vector field are displayed
more clearly. To prevent the lines from getting too close, ideally, the distribution of the field
lines itself should be controlled, rather than the distribution of points [1]. However, by limiting
the total length of the field line and if the field lines are integrated an equal distance in upstream
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Figure 3.4: The input texture where 9528 points are distributed randomly and the resulting LIC
texture.

Figure 3.5: The input texture where 20724 points are distributed randomly and the resulting
LIC texture.
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for each voxel v
set input texture value to zero

for each voxel v
if (scalar value(v) > threshold value) then

compute random number ([0,1])
if (random number > density factor ([0,1]))

input texture value(v) = 255

Figure 3.6: Pseudocode for a random input texture.

and downstream direction (as in LIC), reasonable results are obtained by just controlling the
position of the points.

3.1.3 Detail enlargement

It is possible to adjust the size of the input texture so that a single texture cell is covered by lots
of output texture cells (voxels). This leads to smoother and more accurate strokes in the LIC
texture. Hence, we get images where the details can be more easily seen.

To avoid aliasing, a smaller step size between the sample points have to be used when
computing the convolution integrals (2.9) and (2.10). This is to ensure that most of the voxels
still are covered by the field line. If we for example use textures twice as large as the vector
field, we should reduce the step size by a factor of two. Some examples of detail enlargement
are shown in figure 3.7.

3.2 Seed LIC

For large 3D data sets (5123 or greater), even the Fast LIC algorithm proposed by Stalling
and Hege is very computationally intensive. We present a new method for computing 3D LIC
textures Seed LIC [14]. This method exploits the sparsity of the input texture by calculating
field lines and computing the convolution starting from a set of distributed points (the seed
points) only. The seed points can either be chosen utilizing certain properties of the field to be
visualized, for example the vector magnitude, or they can be distributed randomly.

The algorithm, which we have called Seed LIC, is based upon fast-LIC and can be described
by the pseudocode in figure 3.8.

The algorithm behaves similar to fast-LIC. The main difference is that in Seed LIC, we ini-
tiate the field lines and compute the convolution starting from the seed points only. In addition,
we normalize the intensity of the voxels so that the voxel values vary from 0-255. Hence, the
range of the data is increased.

The Seed LIC does not give quite as smooth result as the fast-LIC. In Stalling and Hege’s [6]
algorithm, the values in every voxel of the output image are computed, while in our algorithm
we only compute some of them. As a result, some of the information in the final image is
lost. Nevertheless, we see from figure 3.9 that Seed LIC results in images where the directional
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Figure 3.7: Details of a synthetic vector field displayed at different “resolution” factors (1,2 and
4).

structure of the vector field is clearly visible, though the details are not as clear as for the fast-
LIC.

Figure 3.10 shows the result of Seed LIC applied to a little more dense input texture of
resolution 256× 256× 256. It took 70.9 seconds to compute the LIC texture. By increasing the
resolution and using a proper sparse input texture, we can reveal the details of the vector field.
In comparison, it took 752 seconds to create the fast-LIC image in figure 3.9.

The Seed LIC algorithm can be faster than the Fast LIC algorithm by more than an order
of magnitude, and can thus be used in an interactive setting. Instead of a computational time
of several hours, the CPU time used for generating the LIC textures can be reduced to a few
minutes or even seconds.

3.3 Aliasing

Aliasing [2] can be a problem when using voxel graphics. Representing a field line with voxels,
as in LIC, results typically in a “stair-stepped” appearance. Some of the aliasing present in the
output texture is removed by the trilinear interpolation performed during the rendering1. The
reason is when Line Integral Convolution is applied to a sparse input texture, the resulting field

1Both Viz and Volumizer 2 have support for trilinear interpolation.
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for each voxel v
set voxel value to zero

for each voxel v
if (Input texture value(v) > 0) then

initiate field line computation with x0 = center of v
Compute convolution I(x0)

add result to voxel
set m=1
while m < some limit M

Update convolution I(xm) and I(x−m)

add result to voxels containing xm and x−m

set m = m + 1

for each voxel v
normalize intensity according to numHits(v)

for each voxel v
normalize intensity so that highest value is 255

Figure 3.8: Pseudocode of Seed LIC.

lines in the LIC texture are mostly covered by very “low” values, and interpolations between
these values and the core values, results in smoother field lines. Figure 3.11 demonstrates the
effect of the interpolation. Trilinear interpolation not only reduces aliasing but also, with proper
color and opacity tables, creates a halo effect which makes it easier to separate the individual
lines from one another. The halo effect will be discussed in section 4.3.

The Seed LIC is more influenced by aliasing than the fast-LIC. This is due to the fewer
number of voxels calculated in the Seed LIC algorithm. While this algorithm only assigns
values to the voxels along the field lines from the seed points, the fast-LIC assigns values to
“nearby” voxels which leads to a smearing of the field line.

Some aliasing present in the Seed LIC texture can be reduced by convolving the output
texture with a 3 × 3 × 3 filter. Convolving the texture with a convolution filter A, where a222

= 1 and the rest of the entries are set to for example 0.25, leads to a smearing of the field lines,
resulting in smoother strokes. Figure 3.12 shows both the results obtained from Seed LIC and
the combined Seed LIC and convolution technique.

Convolving the output texture leads to thicker strokes. If preserving the thickness of the
individual strokes is wanted, this can be achieved by increasing the resolution of the input and
output texture by a factor of three prior to the convolution.

It should be mentioned that the goal in scientific visualization is not to render the scene in
a photo-realistic way, but to generate images which provide maximum insight into the data and
the underlying processes. Nevertheless, the convolution technique leads to a smearing of the
data and can with the appropriate color table provide a better spatial perception of the rendered
LIC volume.

The voxel sets used to compare the visualization techniques depicted in the figures 3.11 and
3.12 are subsets of the computed textures. While the fast-LIC texture took about 25 hours to
compute, the Seed LIC only took 26.86 seconds. The convolution of the LIC texture took 206.19
seconds to calculate. Although convolution increases the computation time, it still computes
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Figure 3.9: Left: The output image after applying fast-LIC to an input texture of resolution
128 × 128 × 128. Right: The output image after applying the Seed LIC to the same input
texture. The texture computed with fast-LIC took 752 seconds while the texture computed with
Seed LIC took 4.7 seconds. While the Seed LIC algorithm only assigns values to the voxels
along the field lines from the seed points, the fast-LIC assigns values to “nearby” voxels which
leads to a smearing of the field lines.

Figure 3.10: Visualization of a texture after Seed LIC was applied to an input texture of resolu-
tion 256 × 256 × 256, where the number of seed points were 17341.
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Figure 3.11: The effect of trilinear interpolation. Left: A rendered LIC texture without the use
of trilinear interpolation. Right: A rendered LIC texture with the use of trilinear interpolation.
Both the LIC textures are computed with fast-LIC. Trilinear interpolation leads to smoother
field lines.

Figure 3.12: Left: The result after applying seedLIC. Right: The result after convolving the
output texture obtained from Seed LIC. Convolving the LIC texture leads to smoother field
lines.
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much faster than fast-LIC. The complete fast-LIC texture and the convolved Seed LIC texture
are displayed in the figures 3.13 and 3.14. The resolution of the textures are 398 × 298 × 798.

Figure 3.13: Visualization of a vorticity field, obtained from [15], using fast-LIC.
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Figure 3.14: Visualization of a vorticity field, obtained from [15], using Seed LIC and convolu-
tion.



Chapter 4

Volume visualization with LIC

4.1 Assignment of color and opacity values

Some graphics systems allow interactive modification of the texture lookup tables used for the
assignment of color and opacity values. This is an indispensable feature that simplifies the
process of finding an appropriate color table and to produce a meaningful visualization of the
LIC texture. A possible problem in representing volume LIC textures, is how to clearly and
effectively convey the inner details of the texture and the 3D shape and relative depth relations
among the similarly directed, densely clustered field lines traced by LIC. From subsection 3.1.2,
we have seen that the use of a sparse input texture is one way to reveal the inner details of
a vector field. The manipulation of the opacity value is another possibility. Suppressing or
assigning low opacity to the lowest scalar values results in a semi-transparent representation of
the LIC texture and can be used as an alternative to the use of sparse input textures [16]. Figure
4.1 shows how the transfer function for the opacity or the alpha values affect the visualization
of a dense LIC texture.

Color and opacity can also be used to enhance the contrast between the various strokes
present in the output texture. This is especially needed when applying Line Integral Convolution
to sparse input textures, since most of the voxels values in the resulting LIC texture have a
tendency to be rather low. Good results are achieved with a ramp-like function for alpha and
value (in the HSVA model) that increases from low to high data values (see figure 4.1).

4.2 Clipping functionality

The use of clip planes is another approach that allows the user to explore the interior structures
of the LIC texture. By interactively moving a clip plane inside the volume, we are able to follow
the direction of the field lines more clearly and significantly improve the spatial understanding
of the vector field. Since the surfaces of the clip planes do not generally follow the direction
of the field lines, best results are achieved when the field lines are separated from one another.
This can be done, either by using sparse input texture or manipulation with the opacity values.
If a dense texture is used, it can be difficult to get an impression of the directional structures
of the vector field because of the apparently missing correlation (see figure 4.2). Figure 4.3
demonstrate the effect of interactive clip planes in a volume renderer application.



26 Volume visualization with LIC

Figure 4.1: Visualization of a dense LIC texture with different alpha and value functions.

Figure 4.2: Visualization of a dense LIC texture using a clip plane.
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Figure 4.3: Visualization of a LIC texture using a clip plane to reveal the inner structures of the
vector field.
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Figure 4.4: Limb darkening used to visualize field lines in a LIC texture. Left: By letting alpha
change from zero to higher opacity values and the value V go from dark to bright, we obtain
a deep three-dimensional rendering of the field lines. Right: In contrast, if a constant value
(V = 1) is applied to all the voxels in the LIC volume, a flatter appearance results.

4.3 Shading

To reveal the depth relation among the field lines, a shading, or halo technique called limb
darkening is used. The technique has its name because the effect obtained is similar to what
is well known in astrophysics. Looking at the sun with a small telescope, it has been evident
that the center is brighter compared to the limb. This is due to the fact that when watching
the center of the sun we see deeper into its atmosphere where the temperature is higher than
in the layers we see closer to the edge. Since higher temperatures are visible as brighter, we
observe a darkening effect at the limb. This can be utilized in volume visualization as well. By
assigning darker values and decreasing the opacity near the edges of an "object" we obtain a
more three-dimensional look. This is illustrated in the figure 4.4.

To emphasize the halo effect and to reduce aliasing effects due to the use of voxels to rep-
resent the field lines, the textures are oversampled by a factor of 2 to 4 in each dimension and
then convolved with an isotropic 3× 3× 3 filter. This approach smears the field lines outwards,
making the strokes in the output texture thicker and smoother, improving the 3D perception of
the LIC texture.
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4.4 Two fields visualization

Direct volume rendering is very useful when studying multiple fields at the same time, and there
exists several options for doing this. The rendering of two fields, can for example be achieved
by using two independent sets of color and opacity tables. Another approach is to let one of
the fields define the structure or the "body" through opacity and the other field to determine the
color.

Figure 4.5 shows an example of the first approach by visualizing two fields simultaneously:
vorticity (ω = ∇ × u), represented by the LIC texture and enstrophy (η = ‖ω‖2). Figure
4.6 shows the second approach to depict the directional structures of the vorticity field within
vortices obtained from [15]. In this method, which we have called “polkagris” or "candy cane"
visualization, the enstrophy is used to define the opacity while the LIC texture displaying the
vorticity field is used to define the color. Since enstrophy expresses the vortical structures of
the flow, we get images of vortex tubes colored by the LIC texture conveying the directional
structure of the vorticity field. The field lines of the vorticity field twist around the vortices,
resulting in "objects" similar to "candy canes".
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Figure 4.5: Top: Visualization of the enstrophy field. The color varies from yellow to red
with increasing enstrophy value. Middle: Visualization of the vorticity field using LIC. Bot-
tom: Visualization of the vorticity field using LIC. Bottom: Two field visualization, using two
independent sets of color and opacity tables. Both fields are displayed simultaneously.
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Figure 4.6: Two-field visualization, using enstrophy to define the opacity abd the vorticity field
represented by the LIC texture to define the color. The field lines of the vorticity field twist
around the vortices, resulting in features reminiscent of "candy canes".

Figure 4.7: Polkagris visualization.
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