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In this article we describe a software system for 
developing interactive scientific visualization applica- 
tions quickly, with a minimum of programming effort. 

This Application Visualization System (AVS) is an appli- 
cation framework targeted at scientists and engineers. 

The goal of the system is to make applications that 

combine interactive graphics and high computational 
requirements easier to develop for both programmers 

and nonprogrammers. AVS is designed around the con- 

cept of software building blocks, or modules, that can 
be interconnected to form visualization applications. 

AVS allows flow networks of existing modules to be 

constructed using a direct-manipulation user interface, 
and it automatically generates a simple user interface 
to each module. 
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the performance that interactive visualization applica- 

tions require. 

Our system unifies work done in a number of areas. 

Traditional animation and rendering-application envi- 

ronments provide a base for developing  application^,^.' 
while Oscar' describes abstractions for implementing 

object-oriented graphics applications. Grapeg and 

Frames" present graphics application development 

systems based on building blocks connected into a net- 

work. AVS has a similar execution mode to Grape, based 

on directed acyclic graphs, but combines it with a vis- 

ual programming paradigm. Conman" presents a sys- 
tem for developing graphics applications using a 

network-oriented visual language similar to ours. There 

are also projects in visualization environments under 

way at a number of academic and research centers such 

as Ohio State University, the National Center for Super- 

computing Applications, and the State University of 

New York at Stonybrook. 

We have borrowed heavily from research into object- 

oriented application development environments.'*-'' All 

of these environments are designed for developing 2D 

bit-mapped graphics applications, but many of their cen- 

tral concepts carry over to 3D applications as well. In 

particular we have tried to extend to higher dimensions 

the concept of an application framework that provides 

a simple application which can easily be modified to 

generate new applications. 

The visualization model 
To deal with the problems of multiple disciplines in the 

computational sciences effectively, it is useful to begin 
by developing a coherent picture of the various steps a 

scientist takes while simulating a natural process using 

a computational  model."^" This way we can capitalize 

on the similarities between the requirements of each tar- 

get discipline. The process of numerical simulation (see 

Figure 1) involves the transformation of basic physical 

equations (for example, the Navier-Stokes, Schroedenger, 

or Maxwell equations) into a computer program. These 
approximations must then be augmented with a speci- 

fication of the domain to be simulated (that is, a computa- 

tional grid, initial conditions, boundary conditions, etc.). 

Together, these constitute a complete description of the 

problem whose solution can now be computed, typically 

by numerical simulation. Once a set of data has been 

produced, the next step is the analysis of the results. The 

outcome of this analysis determines what follows. If the 

analysis reveals problems with the numerical approxi- 

mation, the scientist returns to the programming stage. 

If the structures seen in the solution are not finely 

enough resolved, the computational grid is refined in the 

specification stage. If a problem is discovered in the pro- 
gram or the theory from which the program is derived, 

the program or theory must be modified. If the analysis 

reveals none of these (or other) deficiencies, then the 

researcher summarizes the results. In general, this is a 

very iterative process that can require months or years 

for large complicated calculations. 

The analysis step in the cycle is where computer 

visualization plays a large role. This step can be broken 

down into its constituent parts (see Figure 2) to reveal 

several operations common to all simulations (and a 

great number of experimental processes). The analysis 

process is itself a cycle which is executed repeatedly until 
all questions are resolved. The processes a researcher or 

engineer executes are the following: 

0 Filtering the basic data from the simulation into 

another form which is more informative and perhaps 

less voluminous (filtering data into data). 

32 IEEE Computer Graphics & Applications 
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can provide a powerful mechanism for interactive ex- 

ploration of a variety of mapping methods [see Figure 

2). 

The dataflow abstraction is ideal for remote execu- 

tion and parallel operation. Network computing envi- 

ronments are commonplace, and distributed 

computation is a requirement for maximum resource 

use. Dataflow systems can naturally distribute each 

execution element on a separate machine or proces- 

sor. Because our notion of dataflow is data-driven and 

not demand-driven, we also get the benefit of parallel 

execution for time-dependent or multiframe data sets. 

Figure 1. The visualization pipeline. 

formats; we wished to avoid 

life 'Pm was less than OUT interest in the project. 
a system whose Each element operates not under the control of some 

authority but only as input data, frame bound- 
Efforts in the mid-eighties at the Computer Graphics 

aries, and other local conditions dictate. Successive 
Research Group known as the Advanced 'Om- 

puting Center for the Arts and at Ohio State 

University led us to select a dataflow model for the 

steps followed in visualizing scientific data. Most re- 

computational or experimental simulation, and con- 

cluding with interpretation.6 Intermediate steps in- 

elements in a visualization pipeline can be operating 

on separate groups of data, all in concert, without any 

additional interaction. This notion of distributed 

computing reflects the situation researchers often 

face-finding far from their super- 

power. 

system* Dataflow maps to the 

searchers a five-step  process^ beginning with a 
computers but possibly near local computing 

Once we were firmly committed to the dataflow 
preparation* and rendering Ithe prep concept, we examined the requirements for a data 

language. Incompatible binary formats are common in 

a heterogeneous network environment. While trans- 

'We is occasiondlY Omitted Or merged with the 

stage)' Ideally, the Of can be fed 

back into the original experiment or simulation. This mission of data as text files would mitigate this prob- 
kind Of feedback is as steering9 and has been lem, the operational overhead for such transmissions 
used with great success in limited applications.' New was out of the question in an interactive system. Thus 

software technology is needed to investigate the steer- 
a dataflow language was born, designed not only to 

represent common data elements from the scientific 
ing issue completely. 

The stage is *e to the visualization 

Pipeline, shown in Figure Often it is 
domain (such as grids and variables) but also such 

common forms as objects, images, and geometries. 
the hardest step' Data preparation 

With the system mapped out, we began to plan its 
normalization or other mathematical steps already 

implementation. we recognized early on that tradi- 
well known t o  most researchers, and rendering is in tional programming methods for design, communica- 
the domain Of the graphics and has been 

tion, and maintenance would be insufficient for this 
beaten to death in variety* The 

effort. It was also clear that a project of this size could 

ning the work, especially with a limited staff and bud- 

get. The advantages of working within the academic 

world are enormous, but it meant we would have to 

ument, and support it. 

stage is the juncture Of scientific and graphical 
not be fully planned and documented prior to begin- 

data. Vendors often proclaim certain workstations or 

software products to be ideal for visualization, be- 

they produce polygons per second Or 

vectors Per minute* but are Only 
design and implement the system as well as test, doc- 

one step in the pipeline, and not providing a visual- 

ization solution. Visualization is much more than 

high-quality rendering, radiosity, or real-time texture 

mapping. For the needs of most scientists, the com- 

puter-graphics community has solved the rendering 

stage of the pipeline. What the graphics community 

has not provided to date is an effective method for 

converting generic scientific data into graphical 

forms. The dataflow model is an attractive abstraction 

because it naturally highlights the mapping stage and 

Building any beast 
Our approach in determining the needs and goals of 

the software system prior to implementation may 

sound obvious, but it is often abandoned in favor of 

rapid, market-driven development. We were guided 

by four simple principles. 
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V isualization in scientific computing is not a new 

idea. Scientists have long known the value of pictures 

in the analysis of information. Our ability to generate 

scientific data, though, far outstrips our ability to turn 

that information into pictures. As the definition of 

visualization has widened to include everything from 

CAD to CFD, so too have the demands increased upon 

an embarrassingly weak graphics software base. 

Advances in computer hardware dwarf advances in 

software technology. Large software systems can re- 

quire years to complete and are obsolete long before 

they reach users. An increasingly complex array of 

problems could benefit bom visual methods, but the 

software tools simply do not exist. We must build a 

software architecture that can grow with its users, that 

can be supported and maintained for many years, and 
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3D scalar field 

Polygonal surface Parametric surface 

Figure 3. Mapping approaches for 3D scalar fields; 

0 Mapping the resulting data into geometric primitives 
which can be rendered (mapping data into geometry). 

0 Rendering the geometric data into pictures (render- 

ing geometry into images). 

Filtering operations include computing derived quan- 

tities such as the gradient of an input scalar field, integra- 
tive processes (for example, deriving flow lines from a 

velocity field), or simply extracting a portion of the solu- 

tion. Filtering can also take data directly to an image, 

bypassing the mapping operation, as is the case with vol- 

ume rendering. 
With this new, derived data in hand, the researcher 

then maps this information into geometric primitives. 

The possibilities at this step are the broad suite of geo- 

metric primitives commonly used in traditional com- 

puter graphics: points, lines, splines, polygons, surfaces, 

and spheres. A single set of data, such as a scalar field 

in 3D, could be transformed into geometric primitives 
in a number of ways, as shown in Figure 3. 

Once a collection of geometric primitives is chosen 

and calculated, a variety of rendering parameters must 

be specified. In this rendering step, the user selects the 

visual representation characteristics of coloring, place- 

ment, illumination, and surface properties to transform 
this geometry data into imagery. The majority of visuali- 

zation programs available to date are devoted to this por- 

tion of the problem. There are some tools available” 

which go beyond this to incorporate a programming 

environment as well. 

In general, this analysis cycle is executed over and over 

until the user is convinced that the physical mechanism 

under study is understood. Our visualization environ- 
ment is designed to deliver the tools needed to enhance 

these processes interactively to the greatest extent 

possible. 

The application visualization system 

We are developing AVS to meet the requirements 

described above. AVS allows software components to be 

combined into executable flow networks, or directed acy- 

clic graphs, to construct a visualization application. The 

components, called modules, implement specific func- 

tions in the visualization cycle: filtering, mapping, or 

rendering. The flow networks are built from a menu of 

modules by using a direct-manipulation visual program- 

ming interface. In many cases researchers can use sup- 

plied modules to construct an entire visualization 
application through this visual interface, without resort- 

ing to any traditional procedural programming. 

Given the nature of scientific visualization and the 

need for extensibility, it is also important to support the 
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have parameters used to control the module’s computa- 

tion. AVS generates the user interfaces to a module by 

automatically associating parameters with either graphi- 

cal control panels (buttons, sliders, etc.) or peripheral 
input devices (dials, joysticks, etc.). Parameters may also 

be global, in that they are not directly associated with a 

single module but can be accessed by all modules in the 

environment. Global parameters are used to provide 

overall controls, such as a simulation time base or frame 

control in an animation. They are represented in the sys- 

tem by parameter managers, and can be modified via 

control panels just as module parameters are. When the 

frame parameter is changed, for example, AVS recalcu- 

lates the values of all module parameters based on values 

set in key frames and then generates an image cor- 

responding to the new parameter values. 

AVS implementation 

AVS is implemented as outlined in the following 

sections. 

Flow network construction and execution 

Through the object-oriented design of AVS, most of the 

complexity of the implementation is abstracted into a 

base module. The base module implements both proce- 

dures that pass data through the flow network and proce- 

dures that present the flow network on the user’s screen. 

To encourage the development of a wide range of mod- 

ules and to make it easy for users to integrate their code 

into the AVS environment, a number of tools are 

provided to construct the modules’ “glue” automatically. 

In particular, each module can be described starting with 

a template file and a name for the module, its input and 

output data types, and the parameters that can be 
accessed from the control panel. This approach requires 

module writers to implement only the functionality 

required by their algorithm in the module. Inputs and 

outputs can be represented by arguments based on the 

description in the template. 

The module writer will usually write only a transfor- 

mation procedure that performs the processing unique 

to the module. This will be called either when there is 

new input or when a parameter has changed. Cus- 

tomized modules that go beyond the default skeleton 

need to supply an initialization function (in addition to 

the user-supplied transformation procedure) that tells 

AVS about its inputs, outputs, and parameters. The rela- 

tionship between the base module glue and the user’s 
application-specific code is shown in Figure 4. 

As an example, a module that returns a 2D slice of a 

3D scalar field would define itself to have a 3D scalar 

field as its single input and a 2D scalar field as its single 

output. It would declare one parameter that would deter- 

mine which slice to return and would implement a sin- 

gle procedure that would accept a 3D array of 

July 1989 
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output 

implementation 

AVS module implementation 

Figure 4. Conceptual model of a module. 

floating-point numbers and fill in a 2D array with the 

return value. 

Data passing, types, and memory 

Data is communicated between modules through 

ports. Each output port has a specific data type it 

produces and each input port has a collection of data 

types it accepts. When connecting an output port of one 

module to an input port of another, the user interface 

queries the target module to discover whether it accepts 

the type produced. If not, an error is signaled. Output 

from a single port can be sent to multiple destinations. 

Each destination is notified when a change occurs and 

can request the data as needed. In some cases multiple 

output ports can also be connected to a single input port. 

The renderer module, for example, has a single input 

port that can have an arbitrary number of connections, 

each of which provides a geometric object. All of the 

modules connected to this port are treated identically, 

and their objects are placed in a 3D environment and 

rendered to produce a single image. For all modules data 

is cached, or buffered, on the output ports to reduce 

unnecessary recomputation, and it is stored with a refer- 

ence count to avoid copying it unnecessarily. 
One goal in designing data handling within AVS is to 

allow modules to handle generic data. For example, a sin- 

gle module can linearly interpolate between two data 

objects that are of the same type-by using functions 

within the data objects to determine the type and 

contents-and it operates appropriately. This module, for 

example, could interpolate between two 3D scalar fields, 

or between two lists of 3D points. 

The execution model 

The flow of data between modules in an AVS flow net- 

work is primarily demand-driven in “lazy evaluation” 
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Figure 9. Example of a computational flow network. 

and get a good feeling for the microscopic behavior 

of the fluid. As the number of particles grows to a 

hundred or so, this no longer becomes possible, so 

the method is almost useless. It is only when large 

numbers of very small, almost transparent particles 

are used that the method again becomes useful. In 

this regime the representation ceases to be discrete 

and begins to resemble a cloud of fluid, bearing a 

remarkable resemblance to experimental fluid-flow 

visualization techniques. The particle advection 

technique is invaluable for determining the source 

of turbulence once its effects have been isolated. 

These and other techniques are presented in more 

detail in the l i t e r a t ~ r e . ~ ' . ~ ~  

Running the example 

These four techniques are used to gain insight into the 

simulated phenomena and have been implemented in 

the network seen in Figure 9. 

The user selects the representation-interactive or 

high-quality volume rendering, iso-surface tiling, or par- 

ticle advection-that is most appropriate for the type of 

information needed at this point in the exploration pro- 

cess. The user then directs the correct data into that sub- 

network, selects parameters, and requests the output. As 
the network is demand-driven, this output request is 

transmitted up through the directed network graph until 

all source modules have received the request. Once these 

have computed their results, the modules connected to 

their output ports execute, and so on until the terminal 

module has delivered the requested output, an image on 
the screen as seen in Figures 7 and 8. 

Conclusion 
We believe that providing an integrated, extensible 

environment for scientific visualization to scientists and 

engineers will enable them to enhance their use of 

powerful new computing and display systems in 

research and development. AVS allows users to integrate 

existing software modules with those that implement 

new algorithms, providing functionality that cuts across 

the scientific and engineering disciplines. It also helps 
minimize the programming required to modify existing 

modules or to implement new modules, allowing appli- 

cations to be tailored to individual needs. 

AVS is currently under development. As of this writ- 

ing (May 1989), the rendering subsystem, AVS I, has seen 

wide use in displaying geometric databases from a vari- 

ety of sources. In addition, a prototype of the visual pro- 
gramming system, AVS 11, has been used to create a 

number of visualization applications. Early experiences 

with AVS in the hands of users have helped direct and 

validate the design. Users have demonstrated that the 

environment can be extended without exerting large 

effort. One user developed a graphics application with- 

out AVS based on numerical code from another machine 

in about two weeks. With AVS the same task took about 

one day. Currently, users' responses to the prototype have 

been employed to refine the look and feel of the user 
interface and the execution model. 

During the early use of AVS, several issues have been 

raised. One such issue is whether the visual program- 
ming interface is the most appropriate for this user com- 

munity. Early adopters find it intuitive, but are these 

users typical? We will continue to develop our current 
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C o n M a n :  A V i s u a l  P r o g r a m m i n g  L a n g u a g e  f o r  I n t e r a c t i v e  G r a p h i c s  

Paul E. Haeberli 

Silicon Graphics, Inc. 

Mountain View, CA 94043 

ABSTRACT 

Traditionally, interactive applications have 

been difficult to build, modify  and extend. 

These integrated applications provide bounded 

functionality,  have a single thread of  control and 

a fixed user interface that must  anticipate every- 

thing the user will need. 

Current workstations allow several 

processes to share the screen. With proper com-  

municat ion between processes, it is possible to 

escape previous models  for application develop- 

ment  and evolution. 

ConMan is a high-level visual language we 

use on an IRIS workstation that lets users 

dynamical ly  build and modify  graphics applica- 

tions. To do this, a system designer dis- 

integrates complex applications into modular  

components .  By  interactively connect ing simple 

components ,  the user constructs a complete  

graphics application that matches the needs of  a 

task. A connect ion manager  controls the flow of  

data between individual components .  As a 

result, we  replace the usual user-machine dialog 

with a dynamic  live performance that is orches- 

trated by the user. 

CR Categories and Subject Descriptors: D.2.2 [Software 
Engineering]: Tools and Techniques - User interfaces, D.3.2 [Pro- 
gramming Languages]: Language Classifications - Data-flow 
languages, Nonprocedural languages; 1.3.6 [Computer Graphics]: 
Methodology and Techniques - Interaction techniques, Languages; 

Additional Key Words and Phrases: Visual Programming 
Languages. 
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Introduction 

Often we think of  a user interface toolkit as a set of  

facilities that a developer can use to shape the feel o f  an 

application. For  example, to make a choice available a 

developer  can use a pop-up menu or a screen button. But 

after the developer  compiles  an application, the user is left 

with a static user-interface that reflects the developer 's  

vision. I f  the user ' s  task doesn ' t  fit into the developer ' s  

model ,  then the user must  use a different approach or try 

to find another application that does a better job. 

An  alternative is to present users with a toolkit and 

let them match it to a given task. In the UNIX* world, 

there are lots o f  simple tools a user can combine  to solve 

different problems. The mechanism that joins these tools 

is a pipe, a simple one-directional interprocess communi-  

cation (IPC) facility. This is an approach where the power  

of  the sum is much greater than the power  of  the indivi- 

dual parts. ConMan  (Connect ion Manager)  provides a 

conceptual ly  similar graphical facility for connecting 

visually-oriented tools. With  ConMan,  developers can 

concentrate on the purity of  simple components .  With 

good components  that perform individual tasks well, a 

user can find a combinat ion to solve problems that the 

designers d idn ' t  envision. 

To escape the mechanical  world o f  tools and tool_kits, 

we ' l l  use the culinary metaphor  o f  a sandwich. Conven- 

tional systems present you  with a ready made sandwich. 

You can add mustard and relish, but most  choices have 

been made by the sandwich maker  and your  job  is to find 

a sandwich that is closest  to your  needs. ConMan gives 

you the ingredients for the sandwich and leaves it to you 

to design a good one. This glosses over an important  

point:  if you aren ' t  a good cook, then the sandwich w o n ' t  

be very tasty. This isn ' t  entirely facetious - the t radeoff  

between an expressive system and a ready-made system 

will a lways benefit some users and leave others 

unsatisfied. 

Background 

Although there have been amazing advances in 

graphics display hardware in the last ten years, applica- 

tions have been slow in using the new capabilities pro- 

* UNIX is a trademark of Bell Laboratories. 
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Other Useful Data-Flow Components 

Many other components have been developed for this 

data-flow environment. A watch component lets the user 

inspect data that is flowing across the screen, and a simple 

interface to the file system has also been developed. A 

mixer has two input ports and one output port, This com- 

ponent can be used to interpolate between two views, two 

shapes or two rgb colors. The mixer can also be used to 

concatenate the two inputs or randomly interpolate 

between individual components of  the inputs. 

A component called tolines converts an image into 

outline geometry. Figure 8 shows this component being 

used with sweep and render to make an extruded logo. A 

low-pass filter component can be placed between a view 

editor and another component to filter view transforma- 

tions over time (See Figure 9). With this component in 

place, a sudden step translation will result in the geometric 

model moving along an exponential curve towards the 

new position in time. This kind of pseudo-dynamics gives 

the model a feeling of mass. The low-pass filter com- 

ponent is also competely generic - it can be applied to 

changing geometry as well. 

A graftal plant [Smith 84] component accepts a gene 

description on one of  its input ports, a leaf shape and view 

transform on other input ports. Figure 10 shows this com- 

posite application. 

As a final illustration, figure 11 shows a paint com- 

ponent that gets the current drawing color from a simple 

color editor, and the brush shape from a curve editor, The 

curve editor output is connected to a component that 

transforms a geometric shape. This gives the user control 

over the scale and rotation of  the brush. 

Implementation 

ConMan runs on the Silicon Graphfcs IRIS Worksta- 

tion under the Mex window manager [Rhodes 85]. Each 

component process is programmed in the C programming 

language using the IRIS graphics library [Silicon 84] for 

graphic display. A detailed description of how this system 

is implemented can be found in [Haeberli 86]. 

The connection manager ConMan is a user process 

running under the window manager. Client components 

need to describe text labels for input and output ports, 

The user needs to be able to alter the interconnection of 
components. 

When a client component starts up, it sends messages 

to ConMan indicating the input and output ports it uses, 

with a text string to label each port. The user can interact 

with the connection manager to add or delete connections 

between different ports on different components. The 

structure of  the interconnection is maintained by the con- 

nection manager. 

The graphics system supports an input queue to 

deliver events to each component. User, system and 

interprocess communication (IPC) events appear in this 

input queue. User events indicate changes in the mouse 

Figure 8. Extracting geometry from an image to make an extruded logo. 

108 

¢ SIGGRAPH '88, Atlanta, August 1-5, 1988 

vided by the current generation of interactive graphics 

workstations. The structure of interactive applications has 

changed very little. 

A typical application is integrated and self-contained 

with a single process and address space. The user 

interface is compiled into the program, or read in from an 

external description as in [Schulert 85]. The behavior of 

the application is described by a textual language that is 

compiled into an executable program. Functional binding 

happens at compile time and is static. 

Users are prevented from expanding the design space 

interactively because the scope of  an application is often 

limited by the vision of its designer. Also, traditional 

graphics applications are anti-social because they don' t  

play nicely with other applications. 

These characteristics often result in the user being 

dominated by applications. Instead of the user driving an 

application, the user is often driven and constrained by the 

application. 

We want to use the facilities of the modern interac- 

tive medium more effectively to give the user more 

expressive power and freedom to construct and modify 

applications in a flexible way. Why isn't  application 

development more like making a bacon, lettuce, and 

tomato, cucumber, salami, avocado, OolI-O®t [Heckbert 

87] and sushi sandwich? Can't  we use the interactive 

medium itself to help us? 

Visual P r og r am mi ng  

Visual programming describes any system that lets 

the user specify a program using a two dimensional nota- 

tion. Instead of  editing a one dimensional stream of char- 

acters, the user interacts with a two dimensional represen- 

tation. A good discussion of various visual programming 
languages is given in [Myers 86]. 

Smith's Alternate Reality Kit [Smith 86] is a 

dynamic simulation environment with a visual interface. 

Objects have mass, velocity and a visual representation. 

The user can interact with the objects and change how one 

object influences another, 

Other interesting visual programming systems are 

described in [Kimura 86a], [Kimura 86b], [Cardelli 86], 

[Blythe 86], and [Galloway 87]. These use two dimen- 

sional data-flow constructs to describe program behavior. 

Kimura's system, Show and Tell,  runs on the Macintosh 

computer. It 's a general purpose system that handles pic- 

torial and textual data. It has some interesting graphical 

constructs for conditionals and iteration. 

Cardelli has developed a conceptual framework for a 

system he calls Fragments of  Behavior.  In his system, 

each fragment has an interface for communicating with 

other fragments and possibly a dialog for communicating 

with users. The behavior of each fragment is described in 

the Squeak language [Cardelli 85], which resembles 

Hoare's  language for communicating sequential processes 

[Hoare 78]. 

"~ JotI-O • is a trademark of General Foods. 
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The systems by' Blythe and Galloway use data-flow 

constructs to control music synthesis and design digital 

filters interactively. 

Tanner 's  Switchboard [Tanner 86] supports flexible 

communication between a population of processes run- 

ning under the Harmony operating system. 

The World of  ConMan 

In ConMan, we also use a data flow metaphor. The 

user constructs and modifies applications by creating com- 

ponents that are interconnected on the screen. The win- 

dow manager supports creation and deletion of individual 

components, while the user changes the interconnection 

by interacting with ConMan, the connection manager. 

Figure 1 shows how this interconnection can be 

described by a directed graph with components as nodes, 

and connections as edges. Connections establish depen- 

dencies between one component and another. Each com- 

ponent can have up to eight input ports and up to eight 

output ports. By interacting with the connection manager, 

the user may alter this dependency graph at any time, 

without the knowledge of the components. 

Figure 1. A directed graph representation. 

Any dynamic interaction is easier to demonstrate than 

to describe. To show how ConMan works, we'l l  discuss a 

composite application that lets the user interactively 

design swept surfaces. This example will use six simple 

components: 

• view-ed with sliders. This component controls 

the view of a surface with a set of sliders. 

• view-ed with hemispherical control. This com- 

ponent allows the user to control the view of a 

surface with hemispherical control. 

• curv-ed.  A simple curve editor lets the user 

interactively enter or modify two dimensional 

shapes. 

• sweep.  The sweep component takes a shape, for 

example a curve from curv-ed, and sweeps it 

through space to create a surface. 
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Abstract 

This paper describes an implementation of Cook's "shade trees" 

in which shaders are described as networks of modules, building" 

blocks, whose connections can be defined interactively. 

The high level interface to the shaders is a graphical editor 

which permits users to construct complex shaders by connecting 

shading elements in a network, in effect a graphical shading 

language. A low level baerface to the shaders is also provided. 

In the low level interface, shading elements are programmed in a 

standard programming language and compiled into modules 

which can linked either at run time or compile time. 

Each link in the shading network represents a subroutine call. In 

essence, execution of the network is analogous to the execution of 

an interpreted language. 

CR Categories and Subject Descriptors: 1.3.3 [Computer 
Graphics]: Picture/Image Generations - Display Algorithms; 

1.3.6 [Computer Graphics] Methodology and Techniques - 

interactive techniques; 1.3.7 [Computer Graphics] Three- 

dimensional Graphics and Realism - Color, shading, shadowing, 

and texture. 

Additional Key Words and Phrases: shade trees, visual pro- 

gramming. 

Access to Shaders 

The realism seen in synthetic images is largely due to the 

advanced techniques now available for simulating the effects of  

illumination and reflection, collectively called shading. How- 

ever, access to the best of  these teclmiques has generally been 

limited to programmers. In this paper we describe a method that 

provides interactive access to shading techniques for non- 

programmers. 

Permission to copy without fee all or part of this material is granted 

provided that the copies are not made or distributed for direct 

commercial advantage, the ACM copyright notice and the title of the 

publication and its date appear, and notice is given that copying is by 

permission of the Association for Computing Machinery. To copy 

otherwise, or to republish, requires a fee and/or specific permission. 

Currently available commercial rendering systems provide a 

level of access that is too high to provide needed flexibility, i.e. 

monolithic shading procedures, or too low to be convenient, i.e. 

shading languages. Our approach is to provide an intermediate 

level of access which is flexible and yet interactive. In this inter- 

mediate level interface, shaders are assembled from building 

block modules by defining the connections between modules. 

This paper defines the building block elements, the range of 

effects that can be achieved with collections of  building blocks, 

and the interface for editing shaders. 

Evol~ion 

When shaded display was in its infancy, the simple Lambert law 

shader was the only function available. A typical rendering pro- 

gram operated on a single primitive surface type, used a single 

algorithm for determining visibility, and used a hard-wired 

shader. As better shading models were developed, a common 

strategy was to hard-wire the best available shader and obtain a 

wide range of  appearances by varying the shading parameters. 

Shading parameters include coefficients to determine the amount 

of  diffuse reflection, specular reflection, surface shininess, etc. 

The amount of control that a user can gain over a shader is 

extended tremendously through the addition of  tables which 

modify the shading function. Texture maps which tabulate the 

color, ambient light (environment maps), displacement, or nor- 

real perturbation (bump maps) of  a surface are the best known 

examples. In fact, anywhere that a coefficient is used in a shading 

calculation is a point at which a tabulated array of coefficients 

can add flexibility to the shader. 

Designers of  most modern rendering packages recognize the need 

for more flexibility in the shader. One way to provide this is to 

make several built-in lighting models available to the user [10], 

[12]. This provides coarse control of appearance using shader 

selection and fine control with shader parameters. It also pro- 

vides efficiency since slower shaders are only used when the sur- 

face type calls for it. 

Cook's "shade trees" [2] are collections of  shading components 

arranged as a tree. Intermediate shading results are propagated 

up the tree urttil the root returns a final shade value. Because of 

their flexibility shade trees are a wonderfully convenient concep- 

tual model for "do-it-yourself" shader construction. 

© 1 9 9 0  ACM-0-89791-344-2/90/008/0283 $00.75 283 
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In the last example (figure 8), the can labels consist of gold over- 

laid on a textured plastic surface. The select process uses a spe- 

cialized texture map to determine whether the given point lies in 

the gold or plastic regions of the label. One of two subtrees is 

executed, one producing the gold detail via a Cook/Torrance 

metal shader and one producing the plastic appearance. A single 

texture map containing the universal price code (and otherwise 

transparent) is aRached to the metal shader to show the UPC 

overlaying the gold. The plastic surface has two texture maps 

applied over a base of white: the first transparent except for the 

blue stripes and the second, the universal price c~xte. The result- 

ing tree is shown in figure 9. 

In each of the two examples the building block approach pro- 

vided the flexibility needed to produce images with a degree of 

realism that could not be achieved with simpler shaders. 

Summary 

The usefulness of a building block shader depends both on the 

ease with which elements are connected and the care with which 

built-ln elements are designed. This paper contrasts the higher 

level building block approach with the general purpose language 

approach and gives examples that illustrate how blocks are con- 

netted. The approach outlined in this paper is a graphical shad- 

ing language which is interpreted rather than compiled. 

Acknowledgements 
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Figure 8. Two Cola-Cola cans. 

Figure 9. The Cola-Cola can shader. 
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In this tutorial we introduce basic concepts
behind the Visualization Toolkit (VTK). An

overview of the system, plus some detailed examples,
will assist you in learning this system. The tutorial tar-
gets researchers of any discipline who have 2D or 3D
data and want more control over the visualization
process than a turn-key system can provide. It also
assists developers who would like to incorporate VTK
into an application as a visualization or data process-
ing engine. Although this tutorial can only provide an
introduction to this extensive toolkit, we’ve provided
references to additional material.

What is VTK?
VTK1 is an open-source (see the sidebar “Open

Source Breakout”), portable (WinTel/Unix), object-ori-
ented software system for 3D computer graphics, visu-
alization, and image processing. Implemented in C++,
VTK also supports Tcl, Python, and Java language bind-
ings, permitting complex applications, rapid applica-
tion prototyping, and simple scripts. Although VTK
doesn’t provide any user interface components, it can be
integrated with existing widget sets such as Tk or
X/Motif.

VTK provides a variety of data representations includ-
ing unorganized point sets, polygonal data, images, vol-
umes, and structured, rectilinear, and unstructured
grids. VTK comes with readers/importers and writ-
ers/exporters to exchange data with other applications.
Hundreds of data processing filters are available to oper-
ate on these data, ranging from image convolution to
Delaunay triangulation. VTK’s rendering model sup-
ports 2D, polygonal, volumetric, and texture-based
approaches that can be used in any combination.

VTK is one of several visualization systems available
today. AVS2 was one of the first commercial systems
available. IBM’s Data Explorer (DX),3 originally a com-
mercial product, is now open source and known as
OpenDX. NAG Explorer4 and Template Graphics Amira
(see http://www.tgs.com/Amira/index.html) are other
well-known commercial systems.

VTK is a general-purpose system used in a variety of
applications, as seen in Figure 1. Because VTK is open
source, faculty at many universities—including Rens-

selaer Polytechnic Institute, State University of New York
at Stony Brook, the Ohio State University, Stanford, and
Brigham and Women’s Hospital use VTK to teach cours-
es and as a research tool. National labs such as Los Alam-
os are adapting VTK to large-scale parallel processing.
Commercial firms are building proprietary applications
on top of the open-source foundation, including med-
ical visualization, volume visualization, oil exploration,
acoustics, fluid mechanics, finite element analysis, and
surface reconstruction from laser-digitized, unorga-
nized point-clouds.

VTK began in December 1993 as companion software
to the text The Visualization Toolkit: An Object-Oriented
Approach to 3D Graphics by Will Schroeder, Ken Martin,
and Bill Lorensen (Prentice Hall). In 1998 the second
edition of the text appeared, with additional authors
Lisa Avila, Rick Avila, and Charles Law. Since that time
a sizable community has grown up around the software,
including dozens of others as developers, often submit-
ting bug fixes or full-blown class implementations.
These community efforts have helped the software
evolve. For example, David Gobbi in the Imaging
Research Laboratories at the John P. Robarts Research
Institute, University of Western Ontario, has reworked
VTK’s transformation classes and is now an active 
developer.

Architecture
VTK consists of two major pieces: a compiled core

(implemented in C++) and an automatically generated
interpreted layer. The interpreted layer currently sup-
ports Tcl, Java, and Python.

C++ core
Data structures, algorithms, and time-critical system

functions are implemented in the C++ core. Common
design patterns such as object factories and virtual func-
tions insure portability and extensibility. Since VTK is
independent of any graphical user interface (GUI), it
doesn’t depend on the windowing system. Hooks into
the window ID and event loop let developers plug VTK
into their own applications. An abstract graphics model
(described in the next section) achieves graphics
portability.

0272-1716/00/$10.00 © 2000 IEEE
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and edges represent data streams: each 
node or module corresponds to a pro-
cedure that’s applied on the input data 
and generates some output data as a re-
sult. The flow of data in the graph de-
termines the order in which a dataflow 
system executes the processing nodes. 
In visualization, we commonly refer to 
a dataflow network as a visualization 
pipeline. (For this article, we use the 
terms workflow, data flow, and pipe-
line interchangeably.) Figure 1b shows 
an example of the data flow used to 
derive the images shown in Figure 1c. 
The green rectangles represent mod-
ules, and the black lines represent con-
nections. Most of the modules Figure 
1 shows are from VTK, and labels on 
each module indicate the correspond-
ing VTK class. In this figure, we nat-
urally think of data flowing from top 
to bottom, eventually being rendered 
and presented for display.

We can use different mechanisms 
for creating visualization pipelines—

for example, “scripting” in a modern 
dynamic language, such as Python. 
Consider Figure 1a, which defines the 
workflow via a script written in Py-
thon that uses VTK to read a volume 
data set from a file, extract an isosur-
face, map the isosurface to renderable 
geometry, and then finally render it in 
an interactive window.

Visual programming interfaces for 
designing data flows have become 
popular and several systems, such as 
SCIRun, have adopted them. These 
interfaces give users a more intuitive 
view of the pipeline. They also dy-
namically perform type checking and 
guide the connection between mod-
ules’ input and output ports—once the 
user selects a module’s output, con-
nections are allowed only to the target 
module’s appropriate input. VisTrails 
automatically pulls edges toward the 
correct input port. As we discuss later, 
another benefit of having a high-level, 
structured workflow description is 

that we can use expressive languages 
for querying and updating workflows.

Comparing and Exploring 
Multiple Visualizations
Regardless of the specific mechanism 
we use to define a pipeline, the visu-
alization process’s end goal is to gain 
insight from the data. To obtain such 
insight, users must often generate and 
compare multiple visualizations. Go-
ing back to our scenario, several al-
ternatives exist for rendering our CT 
data. Isosurfacing is a commonly used 
technique. Given a function f: Rn  R 
and a value a, an isosurface consists of 
the set of points in a domain that map 
to a—that is, Sa = {x  Rn: f(x) = a}.

The range of a values determines 
all possible isosurfaces that the user 
can generate. To identify “good” a 
values that represent a data set’s im-
portant features, we can look at the 
range of values taken by a, and their 
frequency, in the form of a histogram. 

(a) (b) (c)

Figure 1. Dataflow programming for visualization. (a) We commonly use a script to describe a pipeline from existing 
libraries such as the Visualization Toolkit (VTK). (b) Visual programming interfaces, such as the one VisTrails provides, 
facilitate the creation and maintenance of these dataflow pipelines. The green rectangles represent modules, and 
the black lines represent connections. (c) The end result of the script or the VisTrails pipeline is a set of interactive 
visualizations.
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user selects a module’s output, con-
nections are allowed only to the target 
module’s appropriate input. VisTrails 
automatically pulls edges toward the 
correct input port. As we discuss later, 
another benefit of having a high-level, 
structured workflow description is 

that we can use expressive languages 
for querying and updating workflows.

Comparing and Exploring 
Multiple Visualizations
Regardless of the specific mechanism 
we use to define a pipeline, the visu-
alization process’s end goal is to gain 
insight from the data. To obtain such 
insight, users must often generate and 
compare multiple visualizations. Go-
ing back to our scenario, several al-
ternatives exist for rendering our CT 
data. Isosurfacing is a commonly used 
technique. Given a function f: Rn  R 
and a value a, an isosurface consists of 
the set of points in a domain that map 
to a—that is, Sa = {x  Rn: f(x) = a}.

The range of a values determines 
all possible isosurfaces that the user 
can generate. To identify “good” a 
values that represent a data set’s im-
portant features, we can look at the 
range of values taken by a, and their 
frequency, in the form of a histogram. 

(a) (b) (c)

Figure 1. Dataflow programming for visualization. (a) We commonly use a script to describe a pipeline from existing 
libraries such as the Visualization Toolkit (VTK). (b) Visual programming interfaces, such as the one VisTrails provides, 
facilitate the creation and maintenance of these dataflow pipelines. The green rectangles represent modules, and 
the black lines represent connections. (c) The end result of the script or the VisTrails pipeline is a set of interactive 
visualizations.
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Figure 3.2: The dataflow builder interface of VisTrails for the simple VTK script shown

previously.

• Scalable Derivation of Data Products and Parameter Exploration. A series
of operations is supported by VisTrails for the simultaneous generation of
multiple data products, including an interface that allows users to specify
sets of values for different parameters in a workflow. The results of a param-
eter exploration can be displayed side by side in the VisTrails Spreadsheet
for easy comparison.

• Task Creation by Analogy. Analogies are supported as first-class operations
to guide semi-automated changes to multiple workflows, without requiring
users to directly manipulate or edit the workflow specifications.

The VisTrails community web site is located at http://www.vistrails.org. There
you will find information including instructions for obtaining the software, online
documentation, video tutorial, and pointers to papers and presentations. Each
chapter in this book has an associated vistrail with a node corresponding to every
image. Thus, every visualization in the book is reproducible using the VisTrails
system. We encourage the reader to explore the examples provided with the Vis-
Trails system while reading this book.

The VisTrails system consists of three major components. The Builder is used
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Figure 1. Dataflow programming for visualization. (a) We commonly use a script to describe a pipeline from existing 
libraries such as the Visualization Toolkit (VTK). (b) Visual programming interfaces, such as the one VisTrails provides, 
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ical model displays to the screen. The graphical model consists mainly of the
following basic objects:

• Render Windows: The object which manages a window on the display de-
vice.

• Renderers: The object which coordinates the lights, cameras, and actors of
the scene and draws them into the render window.

• Props: The objects added to the renderers to create a scene. The props are
the things that you see in the scene.

• Mappers: The object that refer to an input data object and knows how to
transform and render it.

• Properties: The object that contains rendering parameters such as color and
material properties.

These objects are abstract base classes in VTK, and their derived objects are nodes
that can be connected together to form a scene graph, an acyclic, directed graph
that defines the rendering process.

The visualization model of VTK uses the graphical model in a dataflow paradigm
to create visualization pipelines. There are two object types in the visualization
model:

• Process Objects: The sources, filters, and mapper algorithms that manipu-
late the data.

• Data Objects: The datasets that define the dataflow through the network.

The process objects are the modules that are connected into a dataflow network
using SetInput() and GetOutput() methods. The execution of the dataflow within
VTK is controlled in response to demands for the data (demand-driven) or in
response to user input (event-driven).

As a simple example, consider the Python script in Figure 3.1 that describes
a simple VTK pipeline for extracting and displaying an isosurface (or contour)
from a 3D structured dataset. First, the vtkStructuredPointsReader source
module reads the data object from a file. Next, a vtkCountourFilter filter
module takes the data object and produces another different data object. The
vtkPolyDataMapper mapper module then transforms the data object into geo-
metric primitives which are managed by a vtkActormodule. Finally, the vtkRenderer
module is responsible for drawing an image from the geometric primitives into a
window that is managed by the vtkRenderWindow module.

VTK Graphical Model
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VTK Object Types
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Figure 3.2: The dataflow builder interface of VisTrails for the simple VTK script shown

previously.

• Scalable Derivation of Data Products and Parameter Exploration. A series
of operations is supported by VisTrails for the simultaneous generation of
multiple data products, including an interface that allows users to specify
sets of values for different parameters in a workflow. The results of a param-
eter exploration can be displayed side by side in the VisTrails Spreadsheet
for easy comparison.

• Task Creation by Analogy. Analogies are supported as first-class operations
to guide semi-automated changes to multiple workflows, without requiring
users to directly manipulate or edit the workflow specifications.

The VisTrails community web site is located at http://www.vistrails.org. There
you will find information including instructions for obtaining the software, online
documentation, video tutorial, and pointers to papers and presentations. Each
chapter in this book has an associated vistrail with a node corresponding to every
image. Thus, every visualization in the book is reproducible using the VisTrails
system. We encourage the reader to explore the examples provided with the Vis-
Trails system while reading this book.

The VisTrails system consists of three major components. The Builder is used
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User interaction
 vtkRenderWindowInteractor – allow the user to interact with the

graphics objects
 Try the following keypresses:
    w: wireframe mode
    s: surface mode
    r: reset the transformation
    3: toggle stereo
    button 3: zoom; botton 2: pan; button1: rotate;
    c/o: camera mode or object mode
    j/t: joy stick or tracer ball mode
    e: exit
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Figure 3.1: The Python script for a simple VTK example the resulting visualization.

3.4 Dataflow Programming with VisTrails

Scripting provides the power to rapidly create visualization pipelines. However,
there are limitations to using scripts for anything but small tasks. In particular, the
user needs to expend substantial effort managing the data (e.g., scripts, raw data,
data products, images, and notes) and maintaining complex scripts is difficult for
anyone but the creator. Visual programming interfaces have been developed to
simplify the task of workflow creation, modification, and reuse. They have the
following advantages over scripting: they allow modular reuse and application
interoperability, debugging and monitoring of the workflow execution, automated
data managemement (e.g., provenance ), and immediate validation (e.g., data,

Provenance refers to all
information needed to re-
produce a certain piece of
data or assertion. It is
also referred to as audit
trail, lineage, or pedigree.

structural, and semantic typing) [?]. Some examples of systems for visual pro-
gramming workflows are VisTrails [?], MayaVi [?], SCIRun [?], AVS [?], and
OpenDX [?]. In this book, we use the VisTrails system for our exploratory visu-
alizations due to its unique feature set.

VisTrails(http://www.vistrails.org) is a system that provides a comprehensive
provenance management infrastructure that can be easily combined with existing
visualization libraries (e.g., VTK). Unlike other visualization systems, VisTrails
captures detailed provenance of the exploratory process. VisTrails uses an action-
based provenance model that uniformly captures both changes to parameter values
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Figure 3.3: Multiple libraries are combined to create two seperate visualizations of the same

data. The histogram uses Matplotlib.

to visually create and maintain the visualization pipelines. The History Tree pro-
vides an interface for accessing the complete provenance of the exploration pro-
cess. Finally, the Spreadsheet is used for comparative visualization of the pipeline
executions. More detail on creating and managing workflows with VisTrails is
available in the user’s guide [?] on the project web page.

Dataflow programming in VisTrails Builder is straightforward. Figure 3.2
shows the VTK script described in the previous section as a pipeline within Vis-
Trails. Modules are shown as gray rectangles with input ports on top, and output
ports on bottom. Connections defining the dataflow between modules are shown
with curved black lines. Labels on each module indicate the corresponding VTK
class. In this figure, it is natural to think of data flowing from top to bottom,
eventually being rendered, and presented for display.

Regardless of the specific mechanism used to define a pipeline, the end goal
of the visualization process is to gain insight from the data. And often, to obtain
insight, users must generate and compare multiple visualizations. Going back to
our example, there are several alternatives to render structured volume data. The
option we used above is the commonly used technique of isosurfacing. Given a
function f : Rn → R and a value a, an isosurface consists of the set of points in
the domain that map to a, i.e., Sa = {x ∈ Rn : f (x) = a}.



Cone.tcl
catch {load vtktcl}

# user interface command widget

source ../../examplesTcl/vtkInt.tcl

# create a rendering window and renderer

vtkRenderer ren1

vtkRenderWindow renWin

    renWin AddRenderer ren1

vtkRenderWindowInteractor iren

    iren SetRenderWindow renWin

# create an actor and give it cone geometry

vtkConeSource cone

  cone SetResolution 8

vtkPolyDataMapper coneMapper

  coneMapper SetInput [cone GetOutput]

vtkActor coneActor

  coneActor SetMapper coneMapper

# assign our actor to the renderer

ren1 AddActor coneActor

# enable user interface interactor

iren SetUserMethod {wm deiconify .vtkInteract}

iren Initialize

# prevent the tk window from showing up then start the event loop

wm withdraw .

sphere.tcl

vtkSphere sphere

    sphere SetRadius 1

vtkSampleFunction sample

    sample SetImplicitFunction sphere

vtkContourFilter iso

    iso SetInput [sample GetOutput]

    iso SetValue 0 0.0

vtkPolyDataMapper isoMapper

    isoMapper SetInput [iso GetOutput]

    isoMapper ScalarVisibilityOff

vtkActor isoActor

    isoActor SetMapper isoMapper

    eval [isoActor GetProperty] SetColor $peacock

vtkOutlineFilter outline

    outline SetInput [sample GetOutput]

vtkPolyDataMapper outlineMapper

    outlineMapper SetInput [outline GetOutput]

vtkActor outlineActor

    outlineActor SetMapper outlineMapper

    [outlineActor GetProperty] SetColor 0 0 0

ren1 AddActor outlineActor

ren1 AddActor isoActor
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