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Abstract Hierarchical linear models (HLMs) are a standard
approach for analyzing data where individuals are measured
repeatedly over time. However, such models are only appli-
cable to longitudinal studies of Euclidean data. This paper
develops the theory of hierarchical geodesic models (HGMs),
which generalize HLMs to the manifold setting. Our pro-
posed model quantifies longitudinal trends in shapes as a hi-
erarchy of geodesics in the group of diffeomorphisms. First,
individual-level geodesics represent the trajectory of shape
changes within individuals. Second, a group-level geodesic
represents the average trajectory of shape changes for the
population. Our proposed HGM is applicable to longitudi-
nal data from unbalanced designs, i.e., varying numbers of
timepoints for individuals, which is typical in medical stud-
ies. We derive the solution of HGMs on diffeomorphisms
to estimate individual-level geodesics, the group geodesic,
and the residual diffeomorphisms. We also propose an ef-
ficient parallel algorithm that easily scales to solve HGMs
on a large collection of 3D images of several individuals.
Finally, we present an effective model selection procedure
based on cross validation. We demonstrate the effectiveness
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of HGMs for longitudinal analysis of synthetically gener-
ated shapes and 3D MRI brain scans.
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1 Introduction

A longitudinal study of neuroanatomical aging, development
and disease progression necessitates modeling anatomical
changes over time. It is well known that the complex struc-
ture of tissues in the brain is affected by aging [(Sowell et al,
2003; Raz and Rodrigue, 2006)]. While the shapes of brains
of individuals across a population differ amongst each other,
their dynamics of change follow similar patterns. Moreover,
these patterns are affected in a characteristic way due to
disease. For example, Alzheimer’s disease is characterized
by the accelerated atrophy of gray and white matter tissues
in the brain, along with behavioral impairment and overall
cognitive decline [Fox and Schott (2004); Burke and Barnes
(2006)]. Several research questions interest neurologists and
motivate modeling of dynamical processes governing brain
tissue growth or decline. For instance, the study of the devel-
oping brain during early years of life and tissue atrophy in
later years are the two most important ends of the spectrum
of interest to neurologists. To summarize the characteristic
patterns of changes in structure of brain due to aging and
development, or disease are primary research goals in clin-
ical studies. Modeling progression of anatomical and func-
tional changes due to clinical intervention and therapy pro-
vide means to assess disease and treatment effects. In data
analysis, such studies fall into the broad category of statisti-
cal analysis of longitudinal data sets.

1.1 From cross-sectional to longitudinal modeling

Longitudinal analysis takes correlations within repeated mea-
surements of homologous entities into account. Such a study
involves summarizing variability within several measurements
of an individual and also provides a model for comparing
trends among different individuals. In clinical studies, longi-
tudinal modeling is needed whenever data is collected with
repeated measurements of several individuals over time. This
differs from the usual cross-sectional approach to data anal-
ysis, where correlations within the repeated measurements
of individuals are ignored. Cross-sectional analysis limits
the capabilities of the model when used for the analysis of
time-series data. Such a modeling is not appropriate for draw-
ing statistical conclusions about dynamics of change in pop-
ulation studies. For instance, Figure 2 demonstrates this with
a simple example of scalar measurement in Euclidean space.
It illustrates the importance of modeling correlations within
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each individual. Ignoring these correlations leaves us with a
simple linear regression fit to the data, which does not reflect
the longitudinal trends that individuals experience. In con-
trast, the group trend emerging out of longitudinal analysis
of the same data, better summarizes the average behavior of
the individual trends.

Well known methods of longitudinal analysis exist for
the analysis of scalar univariate and multivariate measure-
ments in Euclidean spaces. These methods seek to model
variability in time and its effect on individuals and the group
in a hierarchy and are termed as hierarchical or mixed-effects
models. The statistical theory for longitudinal analysis us-
ing mixed-effects models was developed by Laird and Ware
(1982). However, the extension of these models to manifold
data, e.g., representations of anatomical shapes, poses sig-
nificant challenges. The biggest challenge in longitudinal
analysis of anatomical shape is the inherent nonlinear and
high-dimensional nature of shape data. There is no consen-
sus on how to model complex shape changes in the brain
over time and across populations.

The difficulty in longitudinal modeling of shapes is fur-
ther compounded because of the unbalanced designs in the
acquired imaging and clinical data. The measurements not
only differ in age, but also in the number of times of clini-
cal follow up. This scenario of staggered measurements of
individuals commonly occurs in data arising out of almost
all medical studies. The existing manifold representations
of shapes have proven to be effective mostly for only cross-
sectional studies. Figure 1 depicts this longitudinal data de-
sign on a population of individuals in an abstract manifold
representation of brain shapes. In this paper, we introduce a
foundation for longitudinal studies on manifold-valued data.
We seek to address the challenge of modeling the shape
data with unbalanced designs arising as a result of follow-up
medical studies.

1.2 Related work

For modeling growth or decline, methods of regression to
represent trajectories of changes in anatomy under mani-
fold representations have been recently proposed [Nietham-
mer et al (2011); Thomas Fletcher (2013); Fishbaugh et al
(2013); Hong et al (2012); Hinkle et al (2012); Davis et al
(2010)]. However, when used for a population study, re-
gression does not model individual changes and hence is
often incorrectly interpreted. Regression is not applicable
for the same reason it fails for the simplest example pre-
sented in Figure 2 for the Euclidean case. Similarly, lon-
gitudinal shape models on maps of diffeomorphic transfor-
mations must also take into account the individual temporal
dependence in their group summary representations. Thus,
while models for cross-sectional analysis exist, computa-
tional anatomy, in particular, lacks a consistent framework

of longitudinal modeling in high-dimensional nonlinear spaces
of shapes. No natural generalization of the mixed effect mod-
els to the manifold of diffeomorphisms yet exist. In gen-
eral, the existing statistical tools for longitudinal analysis
of shapes under manifold representations are far from suf-
ficient.

Related works [Durrleman et al (2009); Fishbaugh et al
(2012); Lorenzi et al (2011, 2012)] estimate the group tra-
jectory by averaging individual trajectories in the diffeomor-
phic setting. Durrleman et al (2009) estimate a spatiotempo-
ral piecewise geodesic atlas. Although this method estimates
a continuous evolution of spatial change, it does not guaran-
tee smoothness of the resulting average estimate across the
time span. The average shape trajectory estimates by Fish-
baugh et al (2012) are also not guaranteed to be smooth
in time. Lorenzi et al (2011) have developed a hierarchi-
cal approach that combines subject specific tissue atrophy
to obtain population level longitudinal changes. This frame-
work is used to investigate the effects of positivity of CSF
AP _4 levels on brain atrophy in healthy aging. In the work
that followed, Lorenzi et al (2012) suggest a methodology
to decompose individual’s brain atrophy into complemen-
tary components comprised of AD specific and healthy ag-
ing based on the projections defined under stationary veloc-
ity fields (SVF) framework. This approach does not model
distances between trajectories, which makes it difficult to
compare the differences in trends for statistical analysis.

A more critical shortcoming of the contemporary meth-
ods of averaging trajectories is that they do not apply when
the time ranges of measurements of individuals are stag-
gered. For instance, Durrleman et al (2009) and Fishbaugh
et al (2012) both require extrapolation and resampling for
each individual trajectory estimates outside their time-range
before an average evolution of the population can be com-
puted. Muralidharan and Fletcher (2012) address these prob-
lems and estimate smooth geodesic representations for indi-
vidual and group trends for a population of staggered indi-
vidual measurements. They utilize a Sasaki metric on the
tangent bundle of the manifold of finite-dimensional shapes
to compare geodesic trends. However, their methods are dif-
ficult to apply to the infinite-dimensional space of diffeo-
morphic transformations, due to the need for curvature com-
putations of the underlying manifold.

In this paper, we present a hierarchical geodesic model
(HGM) on diffeomorphisms, which generalizes classical hi-
erarchical linear models (HLMs) on Euclidean spaces. HGMs
utilize the metric on the space of diffeomorphisms to define
the group geodesic given a population of geodesics. It ap-
plies to commonly occurring unbalanced designs in medical
imaging data where measurements are staggered, i.e., not
every individual is measured at the same time points. The
consequence of this modeling is an estimate of a smooth
“average geodesic” and a common reference coordinate sys-
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Individual

Fig. 1: Longitudinal analysis in manifold of shapes.

tem to represent longitudinal trends of multiple individuals
for longitudinal studies.

This paper extends the preliminary ideas we presented
in recent conference papers [Singh et al (2013a, 2014)]. It
offers more details of our proposed method, additional ex-
periments for quantitative assessment, and more validation
on bigger longitudinal populations both for synthetic as well
as for 3D MRI data. We also introduce a model selection
procedure for HGMs, which is a critical component for au-
tomatically learning from the data the balance between the
terms in the objective function.

2 Hierarchical geodesic models

We begin by defining HGMs in the simplest scenario in
which the data lie in a Euclidean space. In this case, the
geodesic models of longitudinal trends reduce to straight
lines, and we give a procedure for estimation of model pa-
rameters defining the group-level trend in a hierarchical fash-
ion. We later present the generalization of this model and its
estimation to diffeomorphisms.

2.1 Hierarchical geodesic models in Euclidean space

Consider the univariate longitudinal case with independent
time variable, ¢, and dependent response variable, y. Say we
are given a population of N individuals with M; measure-
ments for the ith individual. The design can be unbalanced,
meaning there are potentially a different number of mea-
surements for each individual. Denote y;; as the jth mea-
surement of the ith individual at time #;;. Motivated by clas-

sical hierarchical linear models (Laird and Ware, 1982) for
repeated measurements, this is modeled in two levels as:

Group Level: Individual Level:
aj ~ N (o+ Bti, 67), yij ~ N (@i +bi(tij — o), 07).
bi ~ ’/V(Bv Gg)

Refer to Appendix A for a detailed review of linear mixed
effects models found in the literature and their connections
with the HGM and its assumptions.

The estimation of the parameters for this model proceeds
in two stages. First, the individual-level parameters, @; and
b;, are estimated. These estimates are then used to estimate
o and B at the group level. The solution to this model thus
corresponds to minimizing the negative log-likelihood at in-
dividual and group levels, respectively, where

1M
—log(p(vijlai, b)) = 752 Y (ij — (ai+biltij —1i0)))?,
i =1

(D
1 N
—log(p(ai,bila, B)) = 757 Y ((a+Btio) —a:)?
7 =1
i Ly (B—bi) 2)
20} l; Yo

2.1.1 Individual level

The solution for the slope-intercept pair, (a;,b;), in the in-
dividual level that minimize (1) is given by the standard or-
dinary least-squares regression solution. An equivalent so-
lution more directly generalizable to the diffeomorphic case
is to solve this problem as an optimal control. A derivation
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for the Euclidean case is also presented by Niethammer et al
(2011). It is done by adding Lagrange multipliers to con-
strain the curves to be straight lines and deriving the system
of equation termed the adjoint equations. We cover the so-
lution of group-level estimation problem in detail.

2.1.2 Group level

The maximum likelihood group estimate represents an aver-
age line, a(t), that best matches the individual lines, (a;,b;),
in least-squares sense. From an optimal control viewpoint,
we add Lagrange multipliers to constrain the curve, ¢(z), to
be a straight line. This is done by introducing time-dependent
adjoint variables, A% and AP, in the log-likelihood in (2),
giving
IN
0

g(a,ﬁ)=/ (A%(6c—B)+APB)dr
1Y /71 1
+ Ei; <c,2(°‘(’f) —a;)*+ g(ﬁ(n) bl-)2> ;

5

where we denote ¢(#;) to be a linear function of time, such
that oc(t;) = o+ Bt and B (¢;) to be a function, which is con-
stant such that 3(#;) = . Note that, with the slight abuse of
notations to increase readability, we have dropped the sec-
ond index on time at the group level since all the least-square
comparisons with a;’s and b;’s are at the first measurement
of every individual, i.e., #; := tjp.

The gradients of this functional are, 34(g)&" = —A%(07),
and 8g(0)& = —AP(07). These are evaluated by integrating
backwards the adjoint equations, —A%=0,and AP = -1,
subject to the following boundary and jump conditions:

A%(ty) = 6112<a(m> ~a),

M) =220 = = (B) — ),
N

AP (i) = —— (B(iv) = b)),

A~ A% = (@) — ).
O;

Notice that unlike least-squares regression, the velocity term
in the group log-likelihood at the group level also influences
the group estimate. In particular, the jumps in integrating 1.8
are interpreted as the forces by the initial velocities pulling
the group geodesic. The solution for o(0) and (0) in this
Euclidean case corresponds to the solution of the linear sys-

tem, Ax = b, where:
1 1 vN
A N% o7 Yiloli
=11 1 1L vN 2>
oz Yiloti N(?Sz + P Yitoti

1 yN
) o7 Li=odi
=\ LyN L yN :
7 Licoditi+ 3 Yitobi
1 N

Notice that if there is no slope term in the energy func-
tional, i.e., as 652 — oo, this reduces to the standard ordi-
nary least squares solution for linear regression. On the other
hand, the solution of this system is ill-determined when only
the matching of slopes is enforced, i.e., when C)',2 — oo,

An example of synthetically generated longitudinal data
is shown in Figure 2. This example illustrates the impor-
tance of modeling correlations within each individual by in-
cluding individual slope terms in the likelihood function. Ig-
noring these correlations leaves us with a simple linear re-
gression fit to the data, which does not reflect the longitudi-
nal trends that individuals experience. In contrast, the group
trend, o(¢), estimated in the hierarchical model by including
slope terms, better summarizes the average behavior of the
individual trends.

Before introducing our longitudinal model on manifolds
of anatomical shape changes, for the sake of notations, we
review some necessary background of the mathematical frame-
work of diffeomorphisms.

2.1.3 Diffeomorphisms

A common way to describe differences in geometry of ob-
jects in images is to summarize them using transformations.
Transformations are fundamental mathematical objects and
have long been known to effectively represent biological
changes in organisms (Thompson et al, 1942; Amit et al,
1991). The field of computational anatomy (Miller et al,
1997; Grenander and Miller, 1998; Thompson and Toga,
2002; Miller, 2004) provides a rich mathematical setting for
statistical analysis of complex geometrical structures seen in
3D medical images. At its core, computational anatomy is
based on the representation of anatomical shape and its vari-
ability using smooth and invertible transformations that are
elements of the nonflat manifold of diffeomorphisms with
an associated Riemannian structure. The large deformation
(LDDMM) framework of computational anatomy exploits
ideas from fluid mechanics and builds maps of diffeomor-
phisms as flows of smooth velocity fields (Younes, 2010;
Younes et al, 2009).

Diffeomorphisms offer a way to represent smooth and
invertible spatial transformations that match one shape to
another. For the purpose of this paper, the shapes refer to
objects embedded in 2D or 3D images. We define an image,
I, as a real-valued L? function on a domain £ C R¢, where
d =2 ord =3 for 2D or 3D images, respectively.

We define a diffeomorphism ¢ as a mapping of 2 that
assigns every point x €  a new position x' = ¢ (x) € Q. Un-
der this definition, we restrict to transformations that satisfy
the following rules of smooth bijection, ¢ should be:

1. Onto: All points in X’ € Q should be image of some point
in domain Q
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Fig. 2: Comparing HGM and OLS in Euclidean space. Modeling of population with repeated measurements. Blue model: Cross-sectional modeling
using ordinary linear regression results in decreasing trend. Red model: More meaningful trend emerges when correlations within subjects are

considered.

2. One-to-one: Two different points should not map to one
single point, i.e., §(x) = ¢(y) < x=y

3. Smooth: ¢ is C* or more generally C¥, i.e., k differen-
tiable.

4. Smooth inverse: ¢! is C* or more generally C¥, i.e., k
differentiable.

The deformation of an image I by ¢ is defined as the
action of the diffeomorphism, given by ¢ -/ =To¢~!. A
natural way for generating diffeomorphic transformations is
by the integration of ordinary differential equations (ODE)
on 2 defined via the smooth time-indexed velocity vector
fields v(t,x) : (¢ € [0,1],x € Q) — R3. The function ¢"(¢,x)
given by the solution of the ODE % =v(t,y) with the initial
condition y(0) = x defines a diffeomorphism of . Diffeo-
morphisms thus generated as flows of velocity fields form a
group under composition operation and denoted by Diff(Q2).
Such a definition imparts two important structures on this
space, a) a group structure and b) a C* differentiable struc-
ture.

Figure 3 depicts an example of the action of a diffeomor-
phism on a gray-scale image. This image consists of an em-
bedded shape, resembling a “plus” that smoothly deforms
into a shape, resembling a flower. It is helpful to think of
this deformation as a dynamic process that changes the im-
age as time passes. The initial velocity, at ¢ = 0, consists of
a smooth vector field over the coordinate grid. This vector
field associates an initial direction of motion at each pixel
location (red arrows). Integration of this vector field over
time generates the diffeomorphism, ¢. The column on the

right shows the results of the actions of this diffeomorphism
on the initial image as well as on the underlying image grid.
This means, we can: a) construct diffeomorphisms by in-
tegrating velocity fields, and b) combine diffeomorphisms
using compositions. This enables us to generate large defor-
mations while maintaining the diffeomorphic property. The
smooth differentiable structure on the group of diffeomor-
phisms makes it a Lie group. Lie group is a group that is
also a smooth manifold. Some of the standard texts to review
Lie groups include those by Chevalley (1999) and Adams
(1969). In the next section, we discuss the Riemannian struc-
ture of the group of diffeomorphisms.

2.1.4 Riemannian structure, deformation momenta and
EPDiff evolution

The tangent space at identity, V = TyDiff(£2), consists of all
vector fields with finite norm. Its dual space, V* = Ty Diff(£2),
consists of vector-valued distributions over €. The velocity,
v € V, maps to its dual deformation momenta, m € V*, via
the operator, L, such that, m = Lv and v = Km. The choice of
a self-adjoint differential operator, L, determines the right-
invariant Riemannian structure on the collection of velocity
fields with the norm defined as, ||v||> = [ (Lv(x),v(x))dx.
The operator, K : V* — V, denotes the inverse of L. Note
that constraining ¢ to be a geodesic with initial momen-
tum, m(0), implies that ¢,m, and I all evolve in a way en-
tirely determined by the metric, L, and that the deformation
is determined entirely by the initial deformation momenta,
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Fig. 3: Initial velocity as a smooth vector field and the corresponding diffeomorphic flow that transforms the shape, “plus” to “flower”.

m(0). Given the initial velocity, v(0) € V, or equivalently,
the initial momentum, m(0) € V*, the geodesic path, ¢ (¢), is
constructed as per the following EPDiff equations (Arnol’d,
1966; Miller et al, 2006):

dm = —ad’m = —(Dv)"'m — Dmv — (divv)m, 3)

where D denotes the Jacobian matrix, and the operator, ad*,
is the dual of the negative Jacobi-Lie bracket of vector fields
(Arnol’d, 1966; Miller et al, 2006; Younes et al, 2009) such
that, ad,w = —[v,w] = Dvw — Dwv. The deformed image,
1(t) =1(0) o ¢~ (1), evolves via: 9, = —v-VI.

2.2 Hierarchical geodesic models for diffeomorphisms

Similar to the setup discussed for Euclidean data, we are
given a population of N individuals with M; measurements
for the ith individual. There can be a variable number of
measurements for each individual. Denote H;; as the jth
measured image of the ith individual at time, f;;. Figure 4
shows a schematic of the HGM. We model geodesic trend
for an individual with a diffeomorphism, &;(¢) (brown). The
initial image, or intercept, J;(0), and the initial momenta, or
slope, n;(0), fully parameterize the trajectory for the ith in-
dividual. At the group level, we model the group geodesic
trend with the diffeomorphism, y(z), (red) starting at iden-
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Fig. 4: Hierarchical geodesic modeling in diffeomorphisms.

tity, parameterized by initial momenta, m(0). Let ¢; denote
the diffeomorphism that matches individual baseline, J;(0),
from identity and p; denote the residual geodesic between
w(t;) and ¢;: p; = ¢; o w~!(t;). The initial momenta, p;(0),
parameterize residual, p;.

We now present the hierarchical geodesic estimation pro-
cedure on diffeomorphisms in two stages. For the first stage,
we note that estimates at the individual level amounts to
solving N geodesic regression problems for each individ-
ual as proposed by Niethammer et al (2011) and Singh et al
(2013b). We briefly review it here under the vectorized de-
formation momenta formulation. In the second stage at the
group level, we address the more interesting question of av-
eraging the individual geodesics in the space of diffeomor-
phisms.

2.2.1 Individual level

Given M; observed images, H;;, at time points, #;;, for an
individual such that, j = 1,...,M;, the geodesic that passes
closest, in the least squares sense, to the data minimizes the
energy functional:

1 1M
Ellﬂi(0)||%+ oyl Y (i (i) — Hijl 7.
i =1

&(Ji(0),ni(0)) =

where J;(0) and 7;(0) are the initial “intercept” and “slope”
to be estimated that completely parameterize the geodesic
for the i" individual. Here, J;(t) = &(t) - J:(0), and ||.||x is
the norm defined by the kernel, K, in the dual space of mo-
menta, as per the metric induced by Sobolev operator, L, on
velocity fields (Davis et al, 2010). Note that the initial image,
Ji(0) is analogous to the intercept part of the random effect
term, a;, and the initial momenta, n;(0), are analogous to the
slope part of the random effect term, b; in the Euclidean for-
mulation at the individual level discussed in Section 2.1.
The above energy functional can be minimized by adding
time-dependent Lagrange multipliers, 7;,J;, and #;, to con-

strain &;(¢) to be along the EPDIff geodesic path:

» 1
E(1(0),mi(0)) = & + /O (it -+ adl, i) 2t
-1 1
+/0 (Ji,Ji+VJi-W[>L2dl‘+/() <W,’,n,’—Lw,‘>L2dl‘.

The variation of & with respect to the initial momenta is
8,,(0)& = K xn;(0) — 7;(0). “4)

The optimality conditions for n; and J; result in the time-
dependent adjoint system of ODEs which are integrated back-
ward in time to obtain #;(0) to compute gradient update
in (4). The variation of & with respect to the initial im-
age, 0y, (0)@‘3 , can be directly computed from the energy func-
tional, £. Since, J;(t) = &(t)-J;(0) = J;(0) o &' (1), achange
of variables for &;, followed by taking the derivative with re-
spect to J;(0), results in the closed form solution for opti-
mum initial image, J;(0), as

M;
7(0) Yl Hijo&i(tij) D& (1))
i = M; .
Zj:l |D§i(tij)|

The solution to the geodesic regression problem at the indi-
vidual level is presented in the Appendix B. In the discussion
that follows, for clarity and ease of notation, we will use,
Ji = Ji(0), to denote the initial “intercept” and n; = n;(0) to
denote initial “slope” for an individual.

2.2.2 Group level

At the group level (Figure 4), the idea is to estimate the aver-
age geodesic, y(t), that is a representative of the population
of geodesic trends denoted by the initial intercept-slope pair,
(Ji,n;), for N individuals, i = 1, ..., N. The required estimate
for w(¢) must span the entire range of time along which the
measurements are made for the population and must mini-
mize residual diffeomorphisms, p;, from y(z).
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Analogous to the Euclidean case, we propose a formu-
lation that includes influences from forces by initial veloc-
ities along with initial intercepts from each individual. The
following energy functional generalizes the log-likelihood
presented for the group estimate in the Euclidean case:

E(w,pi (1) = %d(e, w(1))?

Z( e.pif+ o 16) 3. )

N
pi-m
el

where d is the distance metric on diffeomorphisms, which
corresponds to the norm of initial momentum under unit-
time parameterization of the geodesic. The energy, &, is to
be minimized subject to geodesic constraints on y(¢) and
pifori=1,...,N. Here, 612 and GSZ represent the variances
corresponding to the likelihood for the intercept and slope
terms, respectively. Also, p; - I(t;), is the group action of
the residual diffeomorphism, p;, on the image, I(¢;), and
pi - m(t;) is its group action on the momenta, m(z;). This
group action on momenta also coincides with the co-adjoint
transport in the group of diffeomorphisms, and is written in
terms of the dual of the adjoint representation of Diff(£2).

Given a diffeomorphism, ¢, and a momenta, m € V*, the
co-adjoint group action on momenta is,

nl”Ka (5)

¢-m:Ad¢71m (6)

For the sake of clarity in notations, we will continue to use
‘> to mean action of diffeomorphisms. It would mean acting
operator, Ad-1, if ¢ is acting on a momenta. It would mean
a composition on the right by an inverse, if ¢ is acting on an
image.

With these notations, the energy functional is written in
terms of initial conditions of the group geodesic as:

£(v.1,m(0), i(0).1(0))
= S IO
N
+ 57 LUPO+ i-v(0) 10) 1)

I i=1

=

1
+TGZZ ||pl (tl)'

m(0) — ni%. @)

—_

This optimization problem corresponds to jointly estimating
the group geodesic flow, ¥, and residual geodesic flows, p;,
and the group baseline template, 1(0). Note that the initial
image, 1(0) is analogous to the intercept part of the random
effect term, o, and the initial momenta, m(0), are analo-
gous to the slope part of the random effect term, 3 in the
Euclidean formulation at the group level discussed in Sec-
tion 2.1.

2.3 Gradients

We introduce the time-dependent Lagrange multipliers, 171, I, ¥,
to constrain the group trend, v, to be a geodesic and p;, p;, i;
to constrain the residuals, p;, to be geodesics. We write the
augmented energy as:

&=+
1 1
/ (i, ri - adZm) i + / (1,14 VI-v)2dt
0 0
1
—i—/ (P,m— Lv) 2 dt
0
N1 1
+Z/0 <ﬁi,pi+ad;ipi>des+/0 (@, pi — Lui) j2ds
i=1

1
+/0 (pispiop; " —ui)pads. (®)
The variation of the energy functional, &, with respect
to all time dependent variables results in ODEs in the form
of dependent adjoint equations with boundary conditions
and added jump conditions. For clarity we report deriva-
tives first for the residual geodesics followed by that for the
group geodesic. The detailed derivations for the adjoint sys-
tem and gradients for estimating residual geodesics and the
group geodesic are presented in Appendix C.

2.3.1 For the residual geodesics, p;, parameterized by s

The resulting adjoint systems for the residual geodesics for
i=1,...,N are:

i — I;i +adu,~l§i =0

pi — Lit; —adj pi =0 ) )
—pi—ad; pi =0

with boundary conditions:

pi(1) =0, and

o 1 - -

pl(l):_;;[(l(tl)opl I_JZ)]V(I(IZ)Opl l) , (10)

-1 ’"(li)*”i]Ad;i*I m(ti))

The gradients for update of initial momenta, p;, for residual
diffeomorphisms are:

8p0)8 = 5 Kxpi(0) = pi(0). (11)
1

The initial momenta, p;(0), for each individual is updated

via gradient descent, using the gradient in (11), by first eval-

uating p;(0) via backward integration of N adjoint systems

in (9) starting from initial conditions in (10) for each individ-

ual. It is important to note that the residual diffeomorphisms,
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pi, are not estimated using the usual image matching solu-
tion. Rather, this estimate maximizes the combined match-
ing of both the base image, J;, with I(¢;), under the group
action on images, and the momentum, »;, with m(z;), under
the co-adjoint transport, jointly over all the individuals.

2.3.2 For the group geodesic parameterized by t

The resulting adjoint system for the group geodesic:
—m+adi+9=—-0
[-V-(v)=-0¢,
adim+IVI—L6 =0

12)

with boundary conditions:

I(1)=0, and (1) =0, (13)

with added jumps at measurements, #;, such that,

o poi— 1 -
1) =1 ):g|DPi|(1(fi)OPi '—Ji)op;
1
AL A — 1 *
m(t ™) —m(') = G—SzAdpifl (K*(Adpi,lm(ti) fn,-))
(14)

Finally, the gradients for update of the initial group momen-
tum is:

806 = Kxm(0) —(0). (15)

The variation of & with respect to the group initial image,

0y, &, can be directly computed from the energy functional,

&. Since, p; - w(t;) - 1(0) = 1(0) oy~ (1) o p; (1) = 1(0) o

¢!, achange of variable for ¢; followed by taking the deriva-
tive with respect to 7(0) results in the closed form solution

for optimum initial image, 1(0), for the group geodesic as:

Y J 0 ¢;|Dg;|

1(0) =
== e,

(16)

During the joint optimization for computing group geodesic,

the initial momenta, m(0), is updated via gradient descent,
using the gradient in (15), by first evaluating /(0) via back-
ward integration of the adjoint system for the group in (12)
starting from initial conditions in (13) with added jumps in
(14). This can be interpreted as forces influencing the group
geodesic by the individual initial images, J;, and the mo-
menta, n;, that parameterize the individual trends. Thus, in
effect, such a formulation incorporates the pull arising from
the “differences” in the individual trajectories with the group
trajectories and not just their base images. The energy func-
tional at the group level is jointly minimized such that the
group estimates, 1(0),m(0), and all the N residual estimates,
pi(1), pi(0), are updated at each iteration of gradient descent
according to (11), (15) and (16).

2.4 Choice of transport

Another alternative to the co-adjoint transport mentioned in
Equation (5) is the parallel transport. The main motivation
to use co-adjoint transport instead of the parallel transport
is because parallel transport will involve curvature computa-
tions while evaluating derivatives of the transport term in the
log-likelihood. Computing curvature and numerically esti-
mating it on the manifold of diffeomorphisms is nontrivial
and in itself an open problem. See Micheli et al (2012) for
in-depth discussion.

Additionally, the co-adjoint transport has two interest-
ing theoretical properties that also makes it a good candi-
date for transports: a) for image registration, it preserves the
horizontality of the deformation momenta, i.e., the momenta
remains aligned to the gradient of the image after the trans-
port, and b) the co-adjoint transport is also a group action,
which means unlike the parallel transport, it is independent
of the path and only depends on the final diffeomorphism.
Younes et al (2008) proves (a) and (b) and covers a detailed
discussion on the choice of transports for diffeomorphisms.

Moreover, we present a general model within which par-
allel transport could be used effectively as long as its deriva-
tive can be evaluated and numerically computed. Such an
analysis could be possible for finite dimensional Rieman-
nian manifolds, e.g., using Sasaki analysis on Kendall shape
space as in Muralidharan and Fletcher (2012).

3 Parallel algorithm for HGM

The estimation of the initial conditions of the group geodesic,
as presented above, is computationally intensive and also
has massive memory requirements. A naive serial compu-
tation of gradient updates results in a very slow algorithm.
Additionally, the single-GPU based implementations easily
hit the limits of the available memory in the state-of-the-art
computing architectures even for a small population study.
In this section, we discuss a fast and parallel GPU-based al-
gorithm, which easily scales to big longitudinal studies.

Equation (15) suggests that the gradient depends upon
the adjoint variable, /72(0), corresponding to momenta, m, at
t = 0. At a given iteration of gradient descent, 71(0) must
be computed by a backward integration of the adjoint sys-
tem (12). To realize the parallelism in the computation, we
must note that in each iteration of the optimization algo-
rithm:

1. The backward integration of the adjoint system (12) is
conditional on the estimates of geodesic paths, W and
pi’s.

2. The jumps added to ri1(¢) as per (14) during this integra-
tion are independent of each other.
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3. Integration is a linear operator. In fact, the objective func-
tion in (7) is separable for N individual. Thus, the jumps
are also linearly separable.

The above imply that the M(0) is a result of accumu-
lating the integrated jumps that are independent and linearly
separable, given the current estimates of the group and resid-
ual geodesics. The backward integration thus lends itself to
a division into parallel computations of the jumps indepen-
dently, followed by their independent backward integrations
along the group geodesic. This computation is divided over
L subsets of the full population. Each of the L processes
computes the adjoint variable for % individuals and results
in its own version of /7(0), denoted as the 7;(0). This results
in /7y (0) (for I = 1...L), which represent effects of the pull
by only the respective subset of individuals. Due to linearity
of integration, the 72(0) is the sum of the adjoints computed
over the L subsets such that:

L
Mm(0) =Y iy (0). 17
I

Note that the image update step in Equation 16 is trivially
parallel since it does not involve any backward integration
and only relies on current estimates of the geodesics. Both
the numerator and the denominator in Equation 16 can be
parallelly computed along with the L subprocesses. If we
denote A =YY | Jio ¢;|D¢;| and B= Y | |D¢;|, such that 4,
and By are the accumulated sums only on the /th subset, then
we have:

L L
A:;MJMB:;&

A pseudo-code for this parallel computation is detailed

in Algorithm 1. Step 3 in this algorithm computes the geodesics

all the way to baseline points of the individual subjects along
their respective residual geodesics. Step 4 performs the back-
ward integration of adjoint variables starting from these end
points to the initial baseline time of the group geodesic. Both
of these steps work parallelly as L processes on L subsets of
the population.

The source code for our CPU and GPU based imple-
mentations of the parallel HGM can be found at: https:
//bitbucket.org/scicompanat/vectormomentum

Algorithm 1: HGMParallel
input : Initial image and momenta pair (J;, n;) for individual
geodesics i =1...N.
output: Initial image and momenta pair for the group geodesic

(1(0),m(0))

1 begin
2 while not converged do
// spawn L processes, each working on
N/L individuals, e.g., using MPI
3 (w(t;),p1) < ForwardEvolveGeodesics(1(0),m(0))
4 (1 (0), A, Br) <
BackwardIntegrateAdjoints(J;,n;, w(#),p1)
// E.g. MPIReduce y(0),A;,B;
5 m(0) <— SumAcrossProcesses(r; (0))
6 A < SumAcrossProcesses(4;)
7 B < SumAcrossProcesses(B;)
// Updates as per Equations (15) and (16)
8 m(0) < UpdateMomenta(m(0),/7(0))
9 1(0) « UpdateImage(A,B)
10 end
1 return (1(0),m(0))
12 end
4 Results

We evaluate our proposed model using synthetic and 3D
structural MRI data. Our focus in these experiments is to
evaluate our primary proposed contribution, i.e., the estima-
tion of group level trajectory given a population of trajecto-
ries. In these experiments, the kernel, K, corresponds to the
invertible and self-adjoint Sobolev operator, L = —aV? —
bV (V-)+¢, witha =0.01, b =0.01, and ¢ = 0.001.

4.1 Validation with synthetic data

To test the group estimation in HGM, we generated the syn-
thetic data using the forward model. We first generated a
ground truth group geodesic in diffeomorphisms by solv-
ing the image matching problem to give initial conditions,
1(0), and m(0). The image, (), and momenta, m(z), can be
generated along the group geodesic via the EPDiff evolu-
tion equations. Figure 5 (first row) visualizes the trajectory
of this group trend in terms of sampled shapes along this
geodesic: plus to flower.

To generate the individual, random perturbations from
the group trend were computed. This was done by gener-
ating initial conditions: images, J;(0), and momenta, n;(0),
for the i individual at time, #;.. In particular, the Ji(0) are
constructed by shooting the image, I(¢;), along the group
geodesic at time, f#;, with a randomly generated momenta
that consequently also defines a residual geodesic diffeo-
morphism, p;, for this individual. Correspondingly, the ini-
tial individual momenta, n;(0), are generated by co-adjoint
transport of m(t;) along the diffeomorphisms, p;. In Fig-
ure 5 (second row), we visualize one such individual’s own
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Fig. 5: First row: Synthetically generated ground truth group shape geodesic. Second Row: An example of a perturbed individual starting at
t=0.2. Twenty-four randomly perturbed individuals along the span of the geodesics were generated. Only the initial conditions of the perturbed
individuals were used in the group trend estimation. Third Row: Recovered ground truth geodesic by HGM overlaid with difference in intensities

relative to ground truth (in red).

EPDiff geodesic evolution, for which the initial conditions
are generated at time, t = 0.2. Using this procedure, we
generate 24 such randomly perturbed trends from the group
trend. The HGM algorithm only uses the initial conditions of
the individual geodesics as input, i.e., images, J;(0), and ini-
tial momenta, n;(0), for all individuals, i = 1,...,24, for es-
timation of the group geodesics initial conditions, m(0), and
1(0). The resulting estimated group trend closely matched
the ground truth geodesic, Figure 5 (third row). Head-to-
head comparison of the initial conditions between estimated
and ground truth are depicted in Figure 6, together with an
example of one of the individual’s perturbed initial condi-
tions.

4.2 HGM on structural MR brain images

We performed the HGM analysis on longitudinal MRI se-

quences for individuals downloaded from the OASIS database.

Note that the demented group is comprised of individuals
with very mild to mild AD. This discrimination is based on
the CDR score. Marcus et al (2010) explain this in detail.
We used the Freesurfer longitudinal stream for skull strip-
ping and intensity normalization of images. For each indi-
vidual, this pipeline aligns each time-point of this subject to
a common unbiased within-subject template generated us-

ing all its timepoints (Reuter et al, 2012, 2010). Each image
was visually verified for errors in skull stripping. Images
for about ten individuals were discarded due to bad skull
stripping by Freesurfer. Table 1 mentions the details of the
remaining imaging data. The maximum scan range for indi-
viduals across the entire population is 5 years. The age range
for the population is 60-90 years. The number of timepoints
for individuals vary from two to four. At the individual level
of HGM, individual geodesic regressions are performed in-
dependently on the time-series of scans. At the group level,
the initial conditions of the average geodesic are estimated
based on the estimated initial conditions of individuals at
individual level.

Table 1: OASIS longitudinal imaging data

[ Group | Nondemented | Demented |
N 69 51
Age range (yrs) 60-90 61-90
Scan range (yrs) 1-5 1-5
Number of timepoints 2-4 2-4
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Fig. 6: Left: Initial conditions, intercept image and slope for ground truth group geodesic. Center: Example of the initial conditions for one
perturbed individual from the group trend. Right: Recovered initial conditions for the group geodesic from randomly perturbed initial conditions

using 24 individuals.

4.3 Model selection for HGMs: Estimation of variance
parameters

Based on the assumption of fixed covariance structures at
the group and individual levels, the proposed longitudinal
model is interpreted as a generative model. In particular, us-
ing the forward model, the group estimates can be propa-
gated along geodesics trajectories to summarize subject spe-
cific trends. Recall that the following are the estimates from
the HGM model:

1. The group geodesic, parameterized by its initial condi-
tions, 7(0) and m(0).

2. Residual geodesics, parameterized by its initial condi-
tions, /(¢;) and p;(0).

3. Individual geodesics, parameterized by its initial condi-
tions, J;(0) and n;(0).

The initial conditions of the group geodesic are evolved along
these estimated geodesics using the group action of diffeo-
morphisms on image and momenta. A transport of the ini-
tial image and the initial momenta, i.e., the pair (1(0),m(0)),
from ¢ = 0 to each time-point of every individual involve the
three transports:

1. First, transport (1(0),m(0)) along w(r) to get (y()-
1(0), w(t;) - m(0)) at baseline time of an individual.

2. Second, transport (y(t;) - 1(0),y(z;) - m(0)) along the
geodesic of the residual specific to that individual, p;(s).

This results in transported quantities, (p(1)-y(z;)-1(0),p(1)

() -m(0)).
3. Finally, images of this individual at different age are
generated by traversing along the individual geodesic

parameterized by (p(1)- y(5;)-1(0), p(1) - w(t;) - m(0))

The results of this transport from the forward model are
used to define the measure of “goodness” of the fit by the

HGM model. The generated images of individuals for all
their timepoints are compared against the actual measure-
ments using the L? metric on images. This is also in accor-
dance with the likelihood of the data defined by the HGM
model in Equation 5.

4.3.1 Leave-one-out on 2D images

We propose a leave-one-out cross validation strategy for the
selection of the variance parameters in the HGM. The ac-
curacy of the trained model is evaluated by comparing the
generated images at each time-point for an “unseen” indi-
vidual, not used in estimation of the model. In each itera-
tion of the leave-one-out procedure, for a fixed o; and oy,
the HGM model is created on the training set of individuals
and tested on the left-out individual. The residual geodesic
for the left-out individual is estimated by solving the opti-
mization problem of matching of slope and intercept. The
individuals initial conditions are matched to those obtained
by transporting group intercept and slope along the group
geodesic estimated on training data to the baseline time of
that individual. The initial conditions of the trained group
geodesic are first evolved along the trained group geodesic,
followed by the residual geodesic, and finally along the in-
dividual geodesic as described in the previous section.

The testing error is based on the sum of L2-based dif-
ferences of generated images from the actual scans at each
time-point for the test individual. This is repeated for each
of the N individuals in the population. The total leave-one-
out accuracy for a choice of variance parameters is the sum
across all N runs.

This procedure is repeated for different choices of vari-
ance parameters. Note that the 67 and oy are also interpreted
as the relative weights on the intercept and slope match terms.
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Table 2: Leave-one-out cross validation error

Op 0.1 0.1

0.1 0.1 0.1 0.1

Os 10.00 1.00 0.50

0.10 0.05 0.01 0.001

Total L” image error | 3.28538 | 3.27613 | 3.26578 | 3.10849 | 3.11085 | 7.25445 | 10.72304 |

Therefore, we study the effect of increasing weights on the
slope terms in the model. We achieve this by varying oy
from 10 to 0.001 while keeping the o7 constant at 0.1. We
report the results for leave-one-out crossvalidation for 2D
axial slices from structural brain images of 51 subjects cat-
egorized as demented (Marcus et al, 2010) from the OASIS
database (Figure 7 and Table 2). For fair assessment across
parameters, we use identical integration schemes and the
constant stepsize gradient descent with identical stepsizes
for optimization for og € 10.0,1.0,0.50,0.10,0.05. The al-
gorithm had trouble converging when oy was very low and
hence smaller stepsizes were used for o5 = 0.01 and o5 =
0.001.

We observe that changing oy results in a different esti-
mate of group initial image (Figure 7). The group initial im-
age changes when we enforce matching of the slope along
with intercepts. We observe increased contrast between gray
matter and white matter regions in estimated initial image
for oy = 0.1 when compared to that obtained for og = 0.001.
We also observe that for higher variance on the momenta
matching term, the resulting deformation directions exhibit
patterns of deformation across the whole brain (Figure 7
middle and bottom row). This is because variability across
the subjects is very high. These deformations are capturing
variability in brain shape across the population more than
representing an average trajectory within an individual and
hence are not a representative of the longitudinal trend in the
population.

Lowering the variance in the momenta matching term
results in deformation patterns around regions expected to
be changing for an individual as time progresses. The infor-
mation about individual trajectories are taken into account
in the averaging process more than intersubject variability
information, thus resulting in an average shape change that
represents the longitudinal trend in the population. This is
evident from dispersed patterns of momenta across the whole
brain for g = 10.0 when compared to os = 0.1. This is in
accordance with the simple Euclidean case presented earlier
(Figure 2) where the the average line obtained using ordi-
nary least squares regression does not represent the longitu-
dinal variability in the population. It thus fails to represent
an average trajectory of changes in the dependent variable.
Further, the deformation grids obtained for traversing along
the geodesic paths also suggests that more information about
longitudinal variability in the population is taken into ac-
count when we include the slope term.

Overall, this analysis suggests that resulting estimates
are of the best quality when a balance in the slope and mo-
menta match is achieved. In other words, an optimal combi-
nation of these parameters results in a better quality of group
image when compared to that obtained for high image match
only or high slope match only configurations in the model.
Table 2 reports the leave-one-out accuracy in terms of the
L2-error as a function of these parameters. It suggests that a
minimum in the error occurs at 6; = 0.1 and 65 = 0.1. The
quantitative assessment of error as well as the visual assess-
ment of estimated group initial conditions result in the same
conclusion.

While a grid search on an entire 2D parameter space
is an alternative, the computational expense of solving the
HGM on longitudinal population of images for Nk’ times
(where k is the grid size and N is the study size) makes
it impractical even for an efficient implementation of the
HGM on longitudinal image datasets. On the other hand,
our approach estimates the relative weighting of slope and
intercept terms, which is a 1D parameter space. Given the
computational considerations, this is a fair compromise and
provides an effective estimation strategy, which works well
for approximating the values of these parameters in practi-
cal scenarios. Another strategy is to investigate a more prin-
cipled Bayesian approach to estimating the variance and the

metric parameters rather than using crossvalidation. This would

be similar to the works of Zhang et al (2013) on estimating
registration parameters under the diffeomorphic atlas im-
age construction using Hamiltonian Monte Carlo sampling
methods on the manifold of diffeomorphisms.

4.4 Population study using HGM on 3D MR brain images

Using the parameters found by leave-one-out crossvalida-
tion on 2D slices of MR images, we now construct models
on the longitudinal dataset of 3D MR images. The group
geodesic estimates of HGM are presented for 3D structural
MR images for the demented and the nondemented group
in Figure 8. We notice from visual inspection that the esti-
mated initial conditions at age, 60 years, for the two groups
are different. We must also note that the demented group is
comprised of individuals with very mild to mild Alzheimer’s
disease. The top two rows display the group initial image
and the group initial momenta estimated for the two popu-
lations using HGM at the age of 60. While there is a slight
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Fig. 7: HGM model estimates for different choices of 0. Top row: Group initial images, /(0) . Middle row: Group initial momenta, m(0). Bottom
row: Diffeomorphisms along group geodesic path, y(1). Colored boxes highlight regions in the brain that exhibit differences between the two

groups.

difference in the estimated initial images for the two groups,
their initial momenta direction markedly differs. For details
about the imaging data, please refer to Table 1.

The deformation momenta at the age of 60 depict real-
istic directions of atrophy in the average representation of
longitudinal changes in the population. The initial deforma-
tion direction suggests accelerated changes for the demented
group in the frontal lobe compared to that for the nonde-
mented group (blue block). Additionally, a higher concen-
tration of momenta vectors near the hippocampus region for
the demented group suggests an increased shrinkage for this
group (cyan block). Overall, this group shows more expan-
sions in the lateral ventricles as compared to that seen for
the nondemented group (violet block). The bottom row dis-
plays the smooth deformation of the coordinate grid when
the group image is deformed along the group geodesic for
30 years from the age of 60 years. In this visualization, we
again notice clearly expanding ventricular regions accom-
panied by shrinking subcortical regions for both the groups.
The difference between the two groups is also evident in this
visualization (red block).

4.4.1 Quantitative summaries

As seen above, the visual analysis of the deformations and
momenta provide a good qualitative assessment of the overal
trend in the population and exhibit clear differences in the
two groups. Owing to the Riemannian structure on diffeo-

morphisms, the HGM also enables quantification of the model
parameters using the metric on the diffeomorphisms.

The Sobolev metric norm, normalized by the number of
voxels, of the initial momenta for the nondemented group
is 1.312e-03, while that for the demented group is 1.736e-
03. This implies that the demented group on average exhibit
more longitudinal changes than the nondemented group. We
also compared the decomposed average residual for the two
groups, i.e., the average slope residuals and the average in-
tercept residuals per voxel. We interpret these measures as
the inter-subject varibilities decomposed into variabilities in
baseline intercept images and the variabilities in their indi-
vidual longitudinal changes across the group. We could also
interpret these as the measures of “goodness” of the HGM
fits for the two groups.

The average intercept residuals are similar for both the
nondemented and the demented group with a value of 2.42
and 2.45, respectively. However, the average slope residu-
als differ for the nondemented and the demented group with
a value of 0.46 and 0.74, respectively. In other words, the
slope residuals for demented group was larger by 60.86%
compared to that estimated for the nondemented group. This
implies that the inter-subject variabilities across the two groups
in their absolute shapes were similar but the two groups
markedly differ in terms of variabilities in their longitudi-
nal trajectories. Also note that the standard measure of R is
not applicable to the HGM since it is not a regression model.

We also perform the two-sample hypothesis test on the
group differences in longitudinal brain atrophy between non-
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T

Fig. 8: Hierarchical geodesic model for a population study using 3D MRI. Top Row: Estimated baseline image at age 60 for the group. Middle
Row: Estimated initial direction of atrophy at 60 for the group. Bottom Row: Smooth deformation grid for 30 year deformation, i.e., from 60 to 90
yIS.

demented individuals and the demented group using the Sobolev
metric norm of estimated momenta for each individual. Fig-
ure 9 displays the significant differences in longitudinal at-
rophy in the two groups with a p-value of 2.2352e-05.
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Fig. 9: Group differences in rates of longitudinal atrophy in demented
and nondemented group. The two groups significantly differ with a p-
value of 2.2352e-05.

5 Discussion

large populations. This implementation exploits the inher-
ent parallelism resulting from linear separability in objec-
tive function. Leave-one-out validation methods based on
the “goodness of fit” criteria according to the data likelihood
were presented for the selection of variance parameters in
this model. This also solves the problem of model selection
for HGMs.

The models presented in this paper summarize longitu-
dinal trajectory for a population of geodesics but there are
several open questions that need to be addressed.

The field of computational anatomy is deficient, in gen-
eral, on the theory of statistical inference under intrinsic
models on manifold of diffeomorphisms. It is because no
consensus on the theory of probability distributions in such
spaces yet exists. However, one possibility is to use nonpara-
metric ways of inference in these spaces and use intrinsic
geodesic distances to define a test statistic. For example, the
idea of Hoteling’s T2 test (Winer, 1962) for testing differ-
ences in groups could be generalized to use the test statis-
tics derived out of metric distances of residual geodesics in
HGM. Random permutations could be used to simulate the

In this paper, we presented hierarchical geodesic models (HGM) empirical distribution of the null hypothesis.

in diffeomorphisms for longitudinal modelings of popula-
tion of shapes. The HGMs are a generalization of classical
hierarchical linear models (HLMs). We derived the solution
to estimate parameters of the HGM for diffeomorphisms and
presented a gradient descent scheme for estimating initial
conditions of the group geodesic and residual geodesics. Hi-
erarchical geodesic models under multilevel nested designs
explain the group and individual variability over time for a
population of shapes represented in the group of diffeomor-
phisms.

This research built the mathematical foundation of lon-
gitudinal analysis on manifolds. In particular, a hierarchi-
cal geodesic model was invented for longitudinal analysis
of shapes represented in the group of diffeomorphisms. It is
natural in the sense that:

1. it generalizes the likelihood in the classical hierarchical
linear models (Laird and Ware, 1982), and

2. it uses only the intrinsic distances and geodesics in the
manifold of diffeomorphisms.

The model uses the hierarchy of geodesics in diffeomor-
phisms. All geodesics are parameterized using vector mo-
mentum (Singh et al, 2013b). The individual level geodesics
represent the trajectory of shape changes within individu-
als. The group level geodesic represents the average trajec-
tory of shape changes for the population. The derivation for
the solution to HGMs on diffeomorphisms to estimate indi-
vidual level geodesics, the group geodesic, and the residual
geodesics was presented.

An efficient implementation of the HGM was also de-
veloped which makes it accessible for clinical studies with

One of the questions that needs attention is about the
theoretical bounds on confidence of the estimates of HGMs.
Both the spatial as well as the temporal uncertainty in esti-
mates need to be quantified. An immediately accessible goal
should be to devise empirical methods to quantify these lim-
its of confidence. For instance, Monte-Carlo methods hold
promise for exploring empirical distributions on estimates
of initial momenta.

Our proposed model presents a way to define and esti-
mate an average longitudinal trajectory over a population of
staggered geodesic segments in time, which include individ-
uals at different stages of the disease. As seen from the ad-
joint system our model also has an underlying interpretation
of a physical system. In particular, the group estimation opti-
mization problem is analogous to estimating a physical equi-
librium of a rod which is acted upon by forces along it that
depend only an individual’s intercept and slope and their lo-
cation along the rod. The effect of each individuals longitu-
dinal influences the group estimates in the form of jumps or
pulls that provide force and moment balance equations that
are local to the group geodesic along the time axis. This in-
terpretation is also discussed in Niethammer et al (2011) for
estimation parameters of regression problem on diffeomor-
phisms using optimal control formulation for the geodesic
regression of the image time series data.

Although, we think modeling both the group and in-
dividual trajectories as geodesics is a good initial step to-
wards building the foundations of the longitudinal models
for diffeomorphisms, we also believe that the restriction on
the group trend to be a geodesic is too strict. A guadratic-
like or an acceleration-controlled trajectories for the group
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could be a better model for the group. This would poten-
tially allow to capture heterogeniety and changes in the rate
of atrophy in brain tissues for the group trend along the time
axis, which the geodesic (or constant velocity) models do
not. We recently proposed preliminary ideas on the notion
of splines and quadratic curves on the group of diffeomor-
phisms (Singh and Niethammer, 2014), which are promis-
ing models that could be integrated in HGM to model more
flexible group trends.

The sequence of the parameter estimation in HGM as
presented in this work is unidirectional. The group geodesic
estimation takes into account individual variability but the
estimation for individual geodesics does not incorporate in-
formation about the group variability. A possible improve-
ment is to derive the gradient updates based on the joint
likelihood for the group and individual variability. Another
challenge for joint estimation would be to devise an effec-
tive implementation capable of handling data for population
studies. For a complete joint optimization, at both levels,
computations and memory requirements will explode even
with few subjects in the population.
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A Review of classical mixed-effects models and the
HGM simplifications

Our proposed hierarchical geodesic models (HGM) is inspired by the
work of Laird and Ware (1982) who proposed mixed-effects models in
linear Euclidean space. In this section, we briefly review the classical
hierarchical linear models or mixed-effects models seen in the litera-
ture. We then discuss the differences in modeling and the assumptions
on variance parameters we make in our HGM compared to the standard
models. See the book from Fitzmaurice et al (2012) and the works of
Laird and Ware (1982) and Pinheiro and Bates (1995) for more details.

Similar to the data setup explained in Section 2.1, say we have data
for a sequence of M; measurements for N individuals, fori =1...N,
such that j™ measurement of i™ individual is denoted by y;j. Let us

Yio
further denote the individual measurements by a vector, Y; = ( : > .
YiM;
The standard linear mixed effects model is expressed in two ways,
(a) single-stage formulation, (b) two-stage formulation (see Fitzmau-
rice et al (2012, page 200)).
Single-stage formulation: The standard linear mixed effects model ex-
presses the model as a combination of fixed and random effects as,

Y, =X;B+Zb;+e;, (18)

where X; and Z; are the matrix of covariates, B is the vector of fixed
effect and b; is a vector of random effects. The randome effects are
normally dstributed such that b; ~ .4#(0,G), such that G is an arbitrary

covariance matrix. The vector of errors, ¢;, can be thought of as mea-
surement or sampling errors and are normally distributed with identical
variance and zero mean, i.e., ¢; ~ .4(0, Glei), where Iy, denotes the
(M; x M;) identity matrix. The matrix Z; is known and links the matrix
of random effects, b; to Y;. In fact, the columns of Z; are a subset of
the columns of X;. This can be seen clearly using the two-stage random
effects formulation of the same model.

Two-stage formulation: The above mixed effects model can be better
motivated as arising from its two-stage specification, where the random
and the fixed effects are split in two separate stages. The model at Stage
1 is written at the individual level as,

Y, =ZBi+ei, (19)

where, as in the single-stage formulation above, e; are the vector of
errors distributed as, e; ~ .4(0,62Iy,). Such a specification says that
the longitudinal responses on the i individuals are assumed to follow
the individual-specific response path given by Z;B; with a certain added
sampling error given by e;.

The model at Stage 2 at the group level assumes that the individual
effects, f3;, are random with mean given by a linear function of the
matrix of fixed effect B and the covariance G. In particular, the model
at this stage takes the form,

B; =A;B+b;, (20)

where b; ~ .4 (0,G). This specification says that the /™ individual de-
viates from the population mean response by a random amount repre-
sented by b;.

Finally, to see the equivalence between the above two specifica-
tions of the mixed effects model, we substitute, the subject specific
effect, B;, from Eq. (20) in Eq. (19) to get,

Y, =Z;(AiB+Db;) +ei,
=ZAiB+Zb; +e;,

which reduces to the single-stage model by observing that X; = Z;A;.

A.1 From linear mixed-effects models to the HGMs

We now discuss the connections of the above model with the Euclidean
version of our proposed HGM in Section 2.1 that we subsequently gen-
eralize to the manifold of diffeomorphisms in Section 2.2.

Our model at the individual level reduces to Eq. (19) of the Stage
1 with time as the covariates and for the simplest case when tjyp = 0,
when we observe that,

1 tp
and e~ e/V(O,GZIM[).
1 i

For the case when ¢, is not zero, subtract the second column of Z; with
tip to see the equivalence.

Similarly, the group level for HGM reduces to Eq. (19) of the Stage
2, when we observe that,

b= () A= (b) o= (7 2)

For the case when #;y is not zero, the second entry in the matrix A; is
replaced by #;.

We induce some critical simplifying assumptions in HGM that
makes the its generalization possible to the manifold of diffeomor-
phisms and subsequently the estimation of the model parameters in
the intrinsic sense. The simplifications are that:
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1. the individual random intercepts a; are modeled at starting point
of each individual,

2. we perform a stage-wise estimation of model parameters, and

3. the variance parameters of the models are known a priori.

The first assumption is critical to the HGM because unlike the Eu-
clidean case, the group of diffeomorphisms is not flat and has a nonzero
curvature to it. This necessitates that the slope comparisons must be
performed within a tangent space specific to the individual.

For the second assumption, similar to the standard mixed-effects
parameter estimation, we can estimate the models parameters using
EM based approach and integrate out a; and b;. However, this is not
feasible on manifolds of diffeomorphisms. This is because the slope-
intercept parameter pairs are the elements of the tangent bundle and
the theoretical development and analysis of distributions on the tan-
gent bundle is itself an open problem. Instead, a possible improvement
over our proposed method is to estimate the group and the individual
level parameters jointly by minimizing the joint log-likelihood using
the single-stage combined model rather than estimating it in two stages.
The main challenge with such a formulation would be to address the
computational expense and memory requirement for a joint optimiza-
tion scheme before it is feasible for practical applications. Another di-
rection of future improvements could be to explore approximations to
log-likelihood that could be generalized to curved spaces, similar to
those proposed in the works of Pinheiro and Bates (1995) for Euclidean
cases. We make the last assumption also to reduce the computational
expense of the algorithm. One strategy could be to investigate sampling
based methods on the manifold of diffeomorphisms to estimate these
model parameters similar to that proposed by Zhang et al (2013) for
image registration and atlas estimation.

B Derivations for regression with vector momenta

The forward evolution along geodesics in diffeomorphisms is governed
by the set of three time dependent constraints written as the following
PDEs:

I+VI-v=0
om+adym =0 1)
m—Lv=0

Along the geodesic, each one of m(t),1(z),v(t), evolve with time.
The energy functional for geodesic regression with M measured image
scans is of the form:

1 1 Ml . )
& (m(0)) = 2 (m(0), Kxm(0))p> + =5 ;) IUBENIE (22

Here ¢! are the timepoints where the noisy data, Ji*s are observed and
0 <=1' <= 1. Extending the functional, . with the Lagrange multi-
pliers (adjoint variables), we get:

1
y?:er/o (i +-adim) 2 (23)
1 A .
n /0 (14 24)
1
+ /0 (5,m—Lv)2 25)

We now evalute variations of .¥ with respect to paths of each of
the time-dependent variables, m, I, v.

For the variation of the energy functional, S, with respect to mo-
menta, m, we have:

O = (6m(0),K xm(0)) + ai

+/ (P,m+€dm— Lv)

/ (1, 6rin+ ad;; 6m) +/

— (5m(0),K xm(0 / / Ui ad;Sm) + /0 (9, &m)

= (6m(0),Kxm(0

= (5m(0), K xm(0)) + (i, 5m>

t=0
_/Ol<n*1’6m)+/O.l(advﬁ1,5m>+/(;l<A

Thus the variation takes the form:

I = (8m(0), Kxm(0)) + (i(1), 8m(1)) — (i7(0), 5m(0))

- / i om)+ [ (adys, Sm) + / "o, 6m) 26)
0 0 0

For the variation of energy functional, S, with respect to image, 1,
we have:

1 M—1

a7 = = ¥ (816),1() =)
i=0

+

(/01 (I,0;(I+¢&81)+ V(I +€8I) ~v>>

0

o
Il

) 1
" (S, 1t )fJ’>+/0 (1,61 +V8I-v)

N aohy

Al—- 9l- 9|- Fv
I

(316,16~ + [ .60+ [ 1.961v)

t=1

- /0 Yi e

Iy
Lo

" (81(6). 1)~ 1)+ {1.81)

Il
=}

(I[,V3I-v)

+
h_
~

<51( D, (t") = J') + (I(1), 81(1)) = (1(0), 81(0))

Il
Q‘_.
ME

Il
o

I+ / (i, V1)

Thus the variation takes the form:

— (1(0),81(0))

/ <i 81) — / ]<v (v), 81) @7)

</1 (i, O (m+ £5m) + ad’ (m + £6m))



Hierarchical Geodesic Models in Diffeomorphisms 19

For the variation of energy functional, S, with respect to velocity, ~ B.1 Backward integration of adjoint system
v, we have:
Note that the solution to equation for / under no jump conditions is:

5 0 v . LI . R
7 =36l </o (i ad ogm) + [ (LI+VI-(+e80)2 He) = Dovali(1) 00 (36)
N /I T £5v)>) With jumps in [ along the integral, the solution takes the form:
9 1 1 (1) = D@1 |I(1) 0 911 + Z ID@1,160 ., (37)
5ol ([ e+ [ 1491 e300
| e=0 \ 0 70 Notice, we can further simplify Equation (37) using splatting op-
+ / (P,m—L(v+ 55\)))) erators Sy (a) = [D¢~'ao ™" .:
0
P 1 (1) = Sg,, (1) + Y S, (8 (38)
- </ (—ad(v+£8v),m +/ LI4VI-(v+edv), =
e=0 \ /0
v,m—L
+/o (Bm—L{v+ 86‘)))) B.2 Closed form update for 7(0)
1 1 1
= /0 (—ady 8v,m) + /0 (I,VI-6v)+ /0 (9, —L(8v)) Looking closely at the original energy functional in (22), we notice
o T ® that the second term is the only dependence on /(0) by noting that
= / (—adjm, 6v) +/ (IvI,8v) — / (LD, 8v) (28) I(t') = 1(0) © ¢,i o The norm in the second term is expanded to write:
0 0 Jo

—

Z(m(0),1(0)) = §<m(0)’K*m(O)>L2

Collecting all variations together:

—fitadi+9=0 2(1)_2 AI/IZ;,:/ )0 By o(x) = J'(x),1(0) 0 @i (x) — J' (x)) 2dx
V() =0 (29) (39)
—adim+IVI-Lo=0 A change of variable, x = ¢, (y) such that dx = |D¢y i (y)|dy gives,
subject to boundary condition, S (m(0),1(0)) = %(m(O),K*m(O))Lz
(1) =0 LY [ 00/0) 000,00, 10)0) ~ 0 0, 00) 2100, )1
i(l) 0} 30) 20_2 ; @y i »)s y 00,1 (V) 12|D@g i (v)|dy
(40)
and, adding jump conditions at observed data points t Ni=1,--- M, which gives,

(while integrating [ backwards) i.., for, /(") —I(1'~) = L (1(t") = J')

Ry — fitY) 4 §i 1
1) =) +8" ) Gh + 307 L 00 =060,/ 1Dgy 1| (4D

where /() and /(") denote the values of the integrated I just the
right and left, respectively, of the observed data point at#'. Also, jumps,
8 =L -J)Vi=0,--- . M—1.

Finally the variation of .¥ with respect to §m(0) is

~ M-1
0.7 = (K»m(0) —m(0), 5m(0)) (32) = 0) —J o @y i dils /i
i;)((l( ) =" 0 90,4i)1/ 1Dl 1/ 1DDo,i)

M-1

This implies the derivative with respect to I(0) becomes:

M-1 )
0 =Y, o) |l(1(0) =T 0y ,1)1 /1Dyl
i=0

and, the variation of . with respect to 81(0) is

=Y (1(0) = J 0 9g,1) Dy, 42)
R N i=0
0.7 = (-1(0),81(0)) (33) . .
Equating (42) to zero at optimal,
Note that Equation set (29) can be written as: M-1 ;
Y. (1(0) =J" 0 g,i) D@y 1| =0
A A * i=0
—r4adyii 4 K  (IVI — —adym) = —0 34 Mo Mol
i-v. (IV) =0 Z 1(0)|D¢0,t"| - Z J! O‘P(),t"‘Dq)O,til =0
i=0 i=0
or equivalentl = M
q ¥ 1(0) Y. (Do il = Y, I 0 ¢y,i|Dgyil
i=0 i=0
—ih+adyi —adl v+ —K x (IVI) = —0 M=1Jio o Do
m . . (35) I(O) _ Zz:O — ¢O‘r | ‘1’0‘1 ‘ (43)
I-V-(Ilv)=0 Yizo Dol
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C Derivations for Hierarchical Geodesic Model

C.1 Group geodesic initial conditions in hierarchical
geodesic model (HGM)

At the group level (see Figure 4), the idea is to estimate the average
geodesic, y(1), that is a representative of the population of geodesic
trends denoted by the initial intercept-slope pair, (J;,n;), for N individ-
uals, i = 1,...,N. The required estimate for y(¢) must span the entire
range of time along which the measurements are made for the popula-
tion and must minimize residual diffeomorphisms p; from y(t).

The augmented Lagrangian for the group geodesic as presented in
Equation (8) is:

&=6+

1 1 1
/ (s, it + adim) 2 + / (10 + V1) pdi + / (9,m— Lv) pdi+
0 0 0
N 1 1
Z/o (ﬁi7l'7i+ad,’;[Pi>L2dS+/0 (@i, pi — Lu;) 2 ds
i=1

1
+/0 (pi-piop; " —ui)2ds.

The added constraints in the form of integrals represent geodesic
constraints on y(¢) and p; for i = 1,...,N. Notice, 67 and 67 repre-
sent the variances corresponding to the likelihood for the intercept and
slope terms, respectively. Also, p; - 1(¢;) is the group action of the resid-
ual diffeomorphism p; on the image, (1), and p; - m(t;) is its group
action on the momenta, m(t;). This group action on momenta also co-
incides with the co-adjoint transport in the group of diffeomorphisms.
This optimization problem corresponds to jointly estimating the group
geodesic flow, y, and residual geodesic flows, p;, and the group base-
line template, 1(0).

The variation of the energy functional & with respect to all time
dependent variables results in ODEs in the form of dependent adjoint
equations with boundary conditions and added jump conditions. We
first report derivatives for the residual geodesics followed by that for
the group geodesic.

C.1.1 For the residual geodesics, p; parameterized by s

For the sake of clarity we omit script i representing each residual for an
individual. For each of the residual geodesics, the derivation proceeds
as follows:

For the variation of the energy, &, with respect to momenta, p, we
have:

d
de

+/0 (127p+85p—Lu>>

9,6 =

1
([ 000+ 3+ a0s(o-+ 57)
=0

1 1
~ [ (p8p+adien) + | (@.5p)

—/ p,5p+/ p,ad5p+/ (4,8 p)

f<p,5p> / (p,6p) +/ (ad,p, 6 p) +/ i,8p)

s=0

Thus the variation takes the form:
9p& = (p(1),8p(1)) — (p(0),5p(0))
! A A ! A
~[[hon+ [ waup.dn+ [ @) @

For the variation of the energy, &, with respect to p, we have:

5_ 0 1 A e N WP [
apéa_ae S:0<2612<[(t)op£ 7-]7](’)0/38 J)
1 * i * i i
+ﬁ<Ad _om(th) — n,K*(AdpE,m(t)—n))

+./0 (P, pep; ! —u>)

= (30, (1) op™ — 1YV op )
1

1 . . .
+ 5 (SAd ym(r'), K x (Ad_im(t') —n))

Og
+ [ 0. 5oa0 "~ (pp (300 ™)
ap)=6ilz<6p,<l<ﬂ> IV op )
1

+ gg(—adépop,lAdpm(I ),K*(Adps,lm(t )—n'))

/ (6.4 5pp™") ~adu(3pp)
=g<5p,u<r">op — IV ep~))
1

! g A ), ~adgpep 1K x (AL m(t) 1))

+/ —fp ad;p,8pp~")
Thus the variation takes the form:

ap<5~a—0<5p(() pl =IOV op))
1

1 * i —
+ 7<Adpm(t )7adK*(Ad*7| m(ti)—z1i)6p op 1>
GS Pe

+./01<—%p—ad*p spp")
=%<6p,<1<r">op — V(@) op~)

S <ad;<*(Ad* lm(ﬂ)fﬂj)Ad;;m(;i)7 Spop™h

1
+/ (—Lp—adip,5pp") (45)
0 ds
For the variation of the energy, &, with respect to u, we have:

.
K = de

+ [ o0 —(u+séu>>)

:/()I(*adﬁ3u7p>+/ol<ﬁ, 7L(3u)>+/01<ﬁ Su)

-1 Al 1
- /0 (—adsp, Su) — /0 (Lit, 5u) + /0 p.6u) 46)

1 1
([ 0+ adisagu + [ (0Ll e
e=0 \ /0 0

Collecting variations together, the resulting adjoint systems for the
residual geodesics fori=1,...,N are:
i — pi+ad, p; =0
pi— Lij —adj pi =0 (47)
—pi—ad; pi =0
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with boundary conditions:

5i(1) =0, and ,s,.a):fdi]z[( (1) o —1)] V(@) opi )

~o? (adK*[Ad;;lm(t,-)fn,-]Adeilm(ti))

(43)

The gradients for update of initial momenta, p; for residual diffeomor-
phisms are:

.1 .
Spi0)¢ = glzK *pi(0) — pi(0). (49)

C.1.2 For the group geodesic parameterized by t

The derivation of the adjoint system for the group geodesic is exactly
same as that for the individual geodesic regression except for the extra
slope match term that results in added jumps for the adjoint equation
for momenta.

For the variation of the energy, &, with respect to m, we have:
Iné = (8m(0),K xm(0))
d 1 Ml ; . :
—| == Ad*_ (m(t') +edm(t')) —n'
6| 207 & (Ad tn(e) - emie) o'

K (A, (m(t') +&8m(r') —n')

1 1
+/ (n%,z?,(m—&—sSm)+adf,(m+£5m)>+/ (V,m+€8m—Lv)
Jo 0

M—1
— (5m(0), K *m(0)) + Gisz X (A m0) K x (Ady i) 1)

r1 1
n / (i, Srit + ad’Sm) + / (9, 8m)
0 0

M-
= (6m(0), K +m(0) 7 Z 1'),Ady 1 Kx (Ady ym(r') —n'))
05 0
1
+/0(r?l +/ mad5m+/
= (8m(0), K xm(0) Z 1'),Ad,- 1K % (Ady m(t h—

o /01<rﬁ,5m>+ /0 (ad, i, Sm) + /0 1(\3,5m>

m) + /O (9, 8m) (50)

1), Ady 1 Kx (Ady ym(1') —n'))

For the variation of the energy, &, with respect to image, I, we
have:

~ 1 M—1 ; l p) 1
08 = o5 T @010~ + 5| ([N atresn +vsean-)
1! i\ 7(si i Yy
:?%,«:o“’(””(’)‘”*‘/o (1,814 V61-v)
1 M—1 ; . -1 . -1 R
= 57 L (81 —J>+/0 <1751>+/0 (1, VS1-v)
1 M—1 ; ; ; N t=1 1, 1
= 7 L (81).1() = 1)+ (1. 81) ,=of/o <1,51>+/0 (1,V81-v)
1 5 U 1 1 7 2 1 A
= 57 L (B0 =)+ 101 81(1) = (10),81(0)) - | @50
+ 1(1v,V61>

Thus, the variation takes the form:

lMl

A6 = —5 ¥ (SI) 1) ')+ {£(1),81(1)) — ({(0),51(0))

1 i=0
—/1<i,51> —/l<v.(iv),51> (51)
0 0

For the variation of the energy, &, with respect to velocity, v, we
have:

1 1
9,6 = (/0 <m,m+ad’;+£6,,m)>+/0 (I +VI-(v+e8v))2
e=0

9
Je
/ 9 me(ereSv)))

1 1
=5l ([ @acamam)+ [ 0191w e80)
9€ |, \Jo Jo

+ /0l (V,m fL(v+85v)))

= % (/01<_adr;,(v+€5v),m>+ /01<i,1‘+V1'(V+€5V)>L2
1 o |

+/0 <\9,me(1;+£§\;)>)

- ./01<—ad,;,6v,m) +./01<i,v1.5v) +/01(19, —L(8v))

1 1 1
- / (—adtm, 8v) + / (IV1,8v) — / (L, 8v) (52)
0 JO 0

Collecting all variations together resulting adjoint system for the
group geodesic:

—i+adyf+9=—0
[V (lv)=-0 (53)
adfym+IVI—Lp =0
with boundary conditions:
I(1) =0, and (1) =0, (54)
with added jumps at measurements, ¢#;, such that,

. L 1
1)~ 16 = L iopia op ~ ) op,
1
(55)
(e*) — (e = %Adp;1 (K (Ad'm(t) ~n)
S 1

Finally, the gradients for update of the initial group momentum is:

8(0)& = Kxm(0) —m(0) (56)
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