
ARTICLE IN PRESS
JID: MEDIMA [m5G;May 13, 2015;16:34]

Medical Image Analysis 000 (2015) 1–16

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

Splines for diffeomorphisms

Nikhil Singh a,∗, François-Xavier Vialard b, Marc Niethammer a

a The University of North Carolina, Chapel Hill, NC 27514, USA
b University Paris-Dauphine, Paris, France

a r t i c l e i n f o

Article history:

Received 30 November 2014

Revised 6 April 2015

Accepted 9 April 2015

Available online xxx

Keywords:

LDDMM

Diffeomorphisms

Splines

Image regression

Polynomials

Time series

a b s t r a c t

This paper develops a method for higher order parametric regression on diffeomorphisms for image regres-

sion. We present a principled way to define curves with nonzero acceleration and nonzero jerk. This work

extends methods based on geodesics which have been developed during the last decade for computational

anatomy in the large deformation diffeomorphic image analysis framework. In contrast to previously pro-

posed methods to capture image changes over time, such as geodesic regression, the proposed method can

capture more complex spatio-temporal deformations.

We take a variational approach that is governed by an underlying energy formulation, which respects the

nonflat geometry of diffeomorphisms. Such an approach of minimal energy curve estimation also provides a

physical analogy to particle motion under a varying force field. This gives rise to the notion of the quadratic,

the cubic and the piecewise cubic splines on the manifold of diffeomorphisms. The variational formulation

of splines also allows for the use of temporal control points to control spline behavior. This necessitates the

development of a shooting formulation for splines.

The initial conditions of our proposed shooting polynomial paths in diffeomorphisms are analogous to the

Euclidean polynomial coefficients. We experimentally demonstrate the effectiveness of using the parametric

curves both for synthesizing polynomial paths and for regression of imaging data. The performance of the

method is compared to geodesic regression.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

With the now common availability of longitudinal and time series

mage data, models for their analysis are critically needed. In partic-

lar, spatial correspondences need to be established through image

egistration for many medical image analysis tasks. While this can be

ccomplished by pair-wise image registration to a template image,

uch an approach neglects spatio-temporal data aspects. Instead, ex-

licitly accounting for spatial and temporal dependencies is desirable.

A common way to describe differences in geometry of objects

n images is to summarize them using transformations. Transfor-

ations are fundamental mathematical objects and have long been

nown to effectively represent biological changes in organisms (Amit

t al., 1991; Thompson et al., 1942). The field of computational

natomy (Grenander and Miller, 1998; Miller, 2004; Miller et al., 1997;

hompson and Toga, 2002) provides a rich mathematical setting for

tatistical analysis of complex geometrical structures seen in 3D med-

cal images. At its core, computational anatomy is based on the rep-

esentation of anatomical shape and its variability using smooth and
∗ Corresponding author. Tel.: +1 8018192466.
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nvertible transformations that are elements of the nonflat manifold

f diffeomorphisms with an associated Riemannian structure. The

arge deformation diffeomorphic metric mapping (LDDMM) frame-

ork of computational anatomy exploits ideas from fluid mechan-

cs and builds maps of diffeomorphisms as flows of smooth velocity

elds (Younes, 2010; Younes et al., 2009).

Research in the last decade provideds several methods to rep-

esent natural biological variability by modeling them as nonlinear

ransformations in the manifold of diffeomorphisms. Their focus has

rimarily been on geodesic models. For example, methods of Fréchet

ean (Davis, 2008), geodesic regression (Niethammer et al., 2011)

nd hierarchical geodesic models (Singh et al., 2013a) are first order

odels that rely on computing geodesics within the space of dif-

eomorphisms. While such models have proven to be effective, their

se is limited to modeling only “geodesic-like” image data. How-

ver, geodesics are not always appropriate for regression modeling of

ime series data. In particular, nonmonotonous shape changes seen

n time sequence or videos of medical images of periodic breath-

ng, cardiac motion, or shape changes in the human brain during a

ong age range (10–90 years), do generally not adhere to constraints

f geodesicity. This necessitates the development of higher order

odels of regression within the space of diffeomorphic trans-

ormations. Computational anatomy has seen very little work on
for diffeomorphisms, Medical Image Analysis (2015),
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Fig. 1. Models of parametric regression for computational anatomy. Geodesic regression generalizes the notion of parametric linear regression in the Euclidean spaces (left) to the

group of diffeomorphisms (right). The model estimate comprises of the initial velocity, v(0), at the identify diffeomorphism, e, and completely parameterizes the best fit regression

geodesic path, φ(t). However, no such generalizations of the known Euclidean models of higher order parametric regression such as the cubics or the splines (left) exist for the

group of diffeomorphisms (right).
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higher-order models of registrations for modeling image time series

(Fig. 1).

Contribution. In this article we propose:

1. an acceleration-controlled model that generalizes the idea of cu-

bic curves to manifold of diffeomorphisms and is capable of mod-

eling nonmonotonic shape changes under the large deformation

(LDDMM) setting,

2. a shooting based solution to cubic curves that enables

parametrization of the full regression path using only initial

conditions,

3. a method of shooting cubic splines as smooth curves to fit complex

shape trends while keeping data-independent (finite and few) pa-

rameters, and

4. a numerically practical algorithm for regression of “non-geodesic”

medical imaging data.

The work described in this manuscript significantly extends our

work presented at MICCAI (Singh and Niethammer (2014)). In par-

ticular, (1) we make use of a new formulation directly advecting the

inverse of a diffeomorphism, (2) we provide extended discussions of

the approach, and (3) present a variety of new results to illustrate the

behavior of the approach.

1.1. Related work

Methods that generalize Euclidean parametric regression models

to manifolds have proven to be effective for modeling the dynam-

ics of changes represented in time series of medical images. For in-

stance, methods of geodesic image regression (Niethammer et al.,

2011; Singh et al., 2013b) and longitudinal models on images (Singh

et al., 2013a) generalize linear and hierarchical linear models, re-

spectively. Although the idea of polynomials (Hinkle et al., 2014)

and splines (Trouvé & Vialard, 2012) on the landmark representa-

tion of shapes has been proposed, higher-order extensions for im-

age regression remain deficient. While Hinkle et al. (2014) develop

an approach for general polynomial regression and demonstrate it

on finite-dimensional Lie groups, infinite dimensional regression is

demonstrated only for first-order geodesic image regression.

These parametric regression models are advantageous since their

estimated parameters can be used for further statistical analysis. For

instance, initial momenta obtained from Fréchet atlas construction of

a population of images can be treated as signature representations of

shape differences across the group and can be treated as features to

train classification and regression models (Singh et al., 2014).

Machado et al. (2006) also discuss the notion of first order varia-

tional fitting of curves to data on Riemannian manifolds. The solution

to the variational problem results in piecewise geodesics, where the

number of pieces is equal to the number of manifold data points.

Durrleman et al. (2013) present a method of regression analysis of

population of time series of shapes based on timewarping. This model
Please cite this article as: N. Singh et al., Splines
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s presented for regression of shapes that do not trivially general-

ze to the regression of image time series data. The model also re-

ults in piecewise geodesics to summarize individual spatiotemporal

rends such that the number of pieces is data dependent. Following

he earliest ideas presented in Noakes et al. (1989), Camarinha et al.

1995), Crouch and Leite (1995), the work of Machado et al. (2010)

urther develops the notion of variational fitting to estimating piece-

ise higher order curves on data in general Riemannian manifolds.

he solution involves estimating the Riemannian curvature tensor

nd is useful for finite dimensional manifolds where the tensor can

e evaluated analytically. Krakowski (2003) provides a theoretical

eview of variational splines and explores, in particular, splines on

nite-dimensional manifolds such as the space of rotations, SO(3),
nd the unit sphere, S

n.

Other regression methods include those by Davis et al. (2010),

orenzi et al. (2010), Vercauteren et al. (2009), Schwartz et al. (2015)

nd Gu et al. (2006). Davis et al. (2010) generalize the notion of kernel

egression to manifolds. Kernel regression is a nonparametric ap-

roach and hence does not provide a summary representation of the

egression fit in terms of a finite set of parameters for further analysis.

orenzi et al. (2010) propose a smooth spatiotemporal modeling of

mage time series data using the regression of pairwise registrations

nder the stationary velocity field (SVF) framework of LogDemons

Vercauteren et al., 2009). More recently, Schwartz et al. (2015) ex-

end this idea and propose locally linear regression under the SVF

ramework. Gu et al. (2006) develop the spline interpolation for the

ase when the domain of the independent variable itself is a mani-

old. This is useful for surface interpolation, for example, in graphics

r geometric design to interpolate surfaces represented on manifold

omains that give rise to shapes with arbitrary topologies.

Relevant background readings include those by Noakes et al.

1989), Camarinha et al. (1995), Crouch and Leite (1995), where the

otion of splines on general Riemannian manifolds were first intro-

uced. These series of papers discuss a theoretical characterization

f the general variational cubic curves and spline interpolation. In

his paper, we present a shooting based formulation of the classical

ariational spline formulation and derive its solution and numerical

stimation procedures for the group of diffeomorphisms.

The remainder of this article is structured as follows: Section 2

eviews the variational approach to splines in Euclidean space and

otivate its shooting formulation for parametric regression. Section 3

hen generalizes this concept of shooting splines for diffeomorphic

mage regression. We discuss experimental results in Section 4, and

onclude the article with a discussion of future work in Section 5.

. Shooting-splines in the Euclidean case

To motivate our formulation for splines on diffeomorphisms it is

nstructive to first revisit the variational formulation for splines in the

uclidean case. This facilitates a more straightforward presentation
for diffeomorphisms, Medical Image Analysis (2015),
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Fig. 2. Gluing together cubics to construct a piecewise cubic curve. This example uses

three partitions, I1,I2 and I3 defined by placing controls at two locations (C = 2).
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f the fundamental approach and allows to make direct connections

o the formulation for splines on diffeomorphisms.

.1. Variational formulation

An acceleration controlled curve with time-dependent states, (x1,

2, x3) such that, ẋ1 = x2 and ẋ2 = x3, defines a cubic curve in Eu-

lidean spaces for a constant acceleration, x3. Here, x1 denotes po-

ition and x2 velocity. In particular, such a cubic curve minimizes

n energy of the form, E = 1
2

∫ 1
0 ‖x3‖2dt subject to the dynamic con-

traints above. The corresponding constrained optimization problem

an be written as

inimize
x1,x2,x3

E(x3) subject to x2 = ẋ1 and x3 = ẋ2. (1)

ere x3 is referred to as the control variable that describes the accel-

ration of the dynamics in this system. The unconstrained Lagrangian

or the above is,

(x1, x2, x3,μ1,μ2) = 1

2

∫ 1

0

‖x3‖2dt +
∫ 1

0

μT
1(ẋ1 − x2)dt

+
∫ 1

0

μT
2(ẋ2 − x3)dt,

here μ1 and μ2 are the time-dependent Lagrangian variables or

he adjoint variables (also called duals) that enforce the dynamic

onstraints. Optimality conditions on the gradients of the above La-

rangian with respect to the states, (x1, x2, x3), result in the adjoint

ystem of equations, μ̇1 = 0 and ẋ3 = −μ1 (μ2 gets eliminated). This

llows for a relaxation solution to Eq. (1), where the state of the sys-

em is the full time-course of states, i.e., (x1(t), x2(t), x3(t)), and the

ondition x3(t) = const. will be fulfilled at convergence. However, we

ay also formulate this problem with respect to initial conditions

lone, amounting to a shooting solution as discussed in Section 2.2.

.2. From relaxation to shooting

A relaxation solution has originally been proposed for diffeo-

orphic image registration by Beg et al. (2005). Here, a full-spatio-

emporal velocity field was the variable to be estimated. Instead, a

hooting reformulation (Vialard et al., 2011) allowed to represent

he image registration problems by optimizing over an initial image

nd an initial momentum. In the scalar-valued setting the shooting-

ormulation corresponds to optimizing over the initial y-intercept

nd slope of a line, thereby searching over the space of straight lines

nstead of converging to a straight line as in the relaxation setting.

hooting thereby allowed the formulation of geodesic regression ap-

roaches (Niethammer et al., 2011) where one aims to determine

he best geodesic fitting the given data and optimized over the initial

onditions specifying the geodesic only. Hence, to allow for splines on

iffeomorphisms we also need a shooting formulation to be able to

ompactly represent splines and to express the equivalent of piece-

ise cubic curves. In the scalar-valued case such a shooting formula-

ion can be obtained by explicitly adding the evolution of x3, obtained

y solving the relaxation problem, as a dynamical constraint. This in-

reases the order of the dynamics. Denoting, x4 = −μ1, results in the

lassical system of equations for shooting cubic curves,

ẋ1 = x2(t), ẋ2 = x3(t), ẋ3 = x4(t), ẋ4 = 0. (2)

he states, (x1, x2, x3, x4), at all times, are entirely determined by

heir initial values (x0
1, x0

2, x0
3, x0

4), and in particular, x1(t) = x0
1 + x0

2t +
x0

3
2 t2 + x0

4
6 t3. Also note that x4 is the derivative of acceleration, x3, and

an therefore be interpreted as jerk. For a cubic the jerk is constant.

hen piecing together multiple cubic curves, as will be described in

ection 2.3, the jerk will be allowed to jump.
Please cite this article as: N. Singh et al., Splines
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.3. Shooting-splines with data-independent controls for regression

We now present our proposed method of regression using cubic

plines using the shooting equations. The goal is to define a smooth

urve that best fits the data in the least-squares sense. Since a cu-

ic polynomial by itself is restricted to only fit “cubic-like” data, we

ropose to add flexibility to the curve by piecing together piecewise

ubic polynomials. In other words, we define controls at pre-decided

ocations in time where the state x4 is allowed to jump.

Let, yi, for i = 1 . . . N, denote N measurements at timepoints, ti �
0, 1). Let tc � (0, 1), for c = 1 . . . C, denote C data-independent fixed

ontrol locations. For notational convenience, we assume there are no

easurements at the end points, {0, 1}, or at the control locations, {tc}.

he control locations also implicitly define C + 1 intervals or partitions

n (0, 1). Let us denote these intervals as Ic, for c = 1 . . . (C + 1). In

articular, since we assume no measurements at the end points and

t control locations, it is convenient to define each interval as an open

nterval, such that, I1 := (0, t1), I2 := (t1, t2), . . . , Ic := (tc−1, tc), . . . ,

C+1 := (tC, 1). The constrained energy minimization that solves the

egression problem with such a data configuration can be written as,

minimize
1(0),x2(0),x3(0),x4(0),{x4(tc)}

1

2σ 2

C+1∑
c=1

∑
i∈Ic

‖x1(ti)− yi‖2

.t. ẋ1 = x2(t), ẋ2 = x3(t), ẋ3 = x4(t), ẋ4 = 0,

within each interval, Ic), and

.t. x1, x2, and x3 are continuous across C.

he partitioning of the domain of independent variable for regression

or the case of three partitions using two control locations is depicted

n Fig. 2.

The unconstrained Lagrangian enforcing shooting and continuity

onstraints using time-dependent adjoint states, (λ1, λ2, λ3, λ4), and

uals, (ν1, ν2, ν3), is(
x0

1, x0
2, x0

3, x0
4, xtc

4 , λ1, λ2, λ3, λ4, ν1, ν2, ν3

) =
1

2σ 2

C+1∑
c=1

∑
i∈Ic

‖x1(ti)− yi‖2

+
∫ 1

0

(
λT

1(ẋ1 − x2)+ λT
2(ẋ2 − x3)+ λT

3(ẋ3 − x4)

+ λT
4ẋ4

)
dt + ν1(x

−
1 (tc)− x+

1 (tc))

+ ν2(x
−
2 (tc)− x+

2 (tc))+ ν3(x
−
3 (tc)− x+

3 (tc)).

he gradients of this Lagrangian with respect to the adjoint variables

esult in the forward dynamical constraints. However, the gradients

ith respect to the primal variables at the optimum result in the

djoint system of equations, λ̇1 = 0, λ̇2 = −λ1, λ̇3 = −λ2, λ̇4 = −λ3.

he gradients with respect to the initial conditions for states x0
l

or l = 1, . . . , 4 are, δ
x0

1
E = −λ1(0), δ

x0
2
E = −λ2(0), δ

x0
3
E = −λ3(0)

nd δ
x0

4
E = −λ4(0). The jerks at controls, xtc

4 , are updated using,

x
tc
4

E = −λ4(t
+
c ). The values of adjoint variables required in these gra-

ients are computed by integrating backward the adjoint system.
for diffeomorphisms, Medical Image Analysis (2015),

http://dx.doi.org/10.1016/j.media.2015.04.012
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Fig. 3. States for splines regression in Euclidean space with one control at t = 0.5.
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Note that λ1, λ2 and λ3 are continuous at joins, but λ1 jumps at the

data-point location as per, λ1(t
+
i
)− λ1(t

−
i
) = 1

σ 2 (x1(ti)− yi). During

backward integration, λ4 starts from zero at each interval at tc + 1 and

the accumulated value at tc is used for the gradient update of x4(tc).

It is critical to note that, along the time, t, such a formulation

guarantees that: (a) x4(t) is piecewise constant, (b) x3(t) is piecewise

linear, (c) x2(t) is piecewise quadratic, and (d) x1(t) is piecewise cubic.

Thus, this results in a cubic-spline curve. Fig. 3 demonstrates this

shooting spline fitting on scalar data. While it is not possible to explain

this data with a simple cubic curve alone, it suffices to allow one

control location to recover the meaningful underlying trend. The state,

x4, experiences a jump at the control location that integrates up thrice

to give a C2-continuous evolution for the state, x1.

3. Shooting-splines for diffeomorphisms

Our goal is to generalize the variational approach to cubic splines

to the group of diffeomorphism to define splines that can capture

for example complex image deformations over time. Our approach

is completely analogous to the scalar-valued case described in ear-

lier sections. Before presenting the formulation of cubic curves and

splines for diffeomorphisms we briefly review the necessary back-

ground in the next section.

3.1. Background on the Lie group of diffeomorphisms

Diffeomorphisms offer a way to represent smooth and invertible

spatial transformations that match one shape to another. For the pur-

pose of this paper, the shapes refer to objects embedded in 2D or 3D

images. We define an image, I, as a real-valued L2 function on a domain

� ⊂ R
d, where d = 2 or d = 3 for 2D or 3D images, respectively.

We define a diffeomorphism g as a mapping of � that assigns every

point x � � a new position x′ = φ(x) � �. Under this definition, we

restrict to transformations that satisfy the following rules of smooth

bijection, g should be:

1. Onto: All points in x′ � � should be image of some point in domain

�.

2. One-to-one: Two different points should not map to one single

point, i.e., g(x) = g(y) ⇐⇒ x = y.

3. Smooth: g is C� or more generally Ck, i.e., k differentiable.

4. Smooth inverse: φ−1 is C� or more generally Ck, i.e., k differen-

tiable.

The deformation of an image I by g is defined as the action of the

diffeomorphism, given by g · I = I ◦ g−1. A natural way for generating

diffeomorphic transformations is by the integration of ordinary dif-

ferential equations (ODE) on � defined via the smooth time-indexed

velocity vector fields v(t, x) : (t ∈ [0, 1], x ∈ �) → R
3. The function
Please cite this article as: N. Singh et al., Splines
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v(t, x) given by the solution of the ODE dy
dt

= v(t, y) with the initial

ondition y(0) = x defines a diffeomorphism of �. Diffeomorphisms

hus generated as flows of velocity fields form a group under the com-

osition operation and are denoted by Diff(�). For ease of notations

n this paper, we use G to denote this group. Such a definition imparts

wo important structures on this space, (a) a group structure and (b) a
� differentiable structure. This means, we can: (a) construct diffeo-

orphisms by integrating velocity fields, and (b) combine diffeomor-

hisms using compositions. This enables us to generate large defor-

ations while maintaining the diffeomorphic property. The smooth

ifferentiable structure on the group of diffeomorphisms makes it a

ie group. A Lie group is a group that is also a smooth manifold. Some

f the standard texts to review Lie groups include those by Chevalley

1999) and Adams (1969). In the next section, we discuss the Rieman-

ian structure of the group of diffeomorphisms.

.1.1. Lie algebra and Riemannian structure

The tangent space at identity also called the Lie algebra, g, of dif-

eomorphisms, consists of all vector fields with finite norm. Its dual

pace, g∗, consists of vector-valued distributions over �. The velocity,

∈ g, maps to its dual deformation momenta, m ∈ g∗, via the oper-

tor, L, such that, m = Lv and v = Km. The choice of a self-adjoint

ifferential operator, L, determines the right-invariant Riemannian

tructure on the collection of velocity fields with the norm defined

s, ‖v‖2
g = ∫

�(Lv(x), v(x))dx < ∞. The diffeomorphisms correspond-

ng to the flows of these velocity field with finite norm constitute

subgroup of Diff(�). The operator, K : g∗ → g, denotes the inverse

f L. The Jacobi–Lie bracket of the Lie algebra, which expresses the

ommutativity of vector fields in g can also be written in terms of the

djoint representation operator adv w of the Lie algebra. In particular,

he bracket takes the form,

v, w] = − adv w = Dvw − Dwv.

he adv operator and its conjugate, ad
∗
v, are fundamental to the group.

or example, ad
∗
v determines the geodesic evolution of curves in G via

he Euler Poincaré (EPDiff) evolution equation for geodesics (Younes

t al., 2009), obtained using the right invariant metric to give the

volution in the Lie algebra such that,

˙ + ad
∗
v m = 0.

e provide more details on the derivation of the conjugate of the ad

perator in Appendix A.

The operators for the adjoint representation of a group and its

ie algebra are fundamental to the transport of relational structures

uch as velocities and their duals. Some of the classic texts for a thor-

ugh understanding of representation theory include those by Curtis

nd Reiner (1962) and Fulton and Harris (1991). For a thorough re-

iew of the Riemannian structure on the group of diffeomorphisms,
for diffeomorphisms, Medical Image Analysis (2015),
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lease refer to Younes (2010), Arnol’d (1966) and Younes et al. (2009).

e present the formulation of variational cubic curves in diffeomor-

hisms in the next section.

.2. Variational formulation

Let us first introduce curves of minimal acceleration on a general

iemannian manifold (Camarinha et al., 1995; Crouch & Leite, 1995;

oakes et al., 1989) which are needed for the image case. As a bound-

ry value problem, Riemannian cubic splines are defined as curves

hat minimize the following energy E(g) = 1
2

∫ 1
0 ‖∇ġ ġ‖2

TgGdt subject

o boundary constraints g(0) = g0, ġ(0) = v0 and g(1) = g1, ġ(1) = v1.

ere, � denotes the Levi–Civita connection associated with the Rie-

annian metric denoted by ‖ · ‖TgG. The quantity, ∇ġ ġ, is the gener-

lization of the idea of acceleration to Riemannian manifolds. Note

hat the associated Euler–Lagrange equation is in the form

D3

Dt3
ẋ − R(ẋ,

D

Dt
ẋ)ẋ = 0, (3)

hich involves the curvature tensor R associated with the metric. An-

ther way to define the spline is by defining a time-dependent control

hat forces the curve g(t) to deviate from being a geodesic (Trouvé &

ialard, 2012). Such a control or a forcing variable, u(t) is then inte-

rated using the formula ∇ġ(t)ġ(t) = u(t). Notice, u(t) = 0 implies that

(t) is a geodesic.

Taking this idea forward to the group of diffeomorphisms, G, we

ropose to include a time-dependent forcing term that describes how

uch the ‘geodesic requirement’ deviates. Thus, we define the con-

rol directly on the known momenta EPDiff evolution equation for

eodesics (Younes et al., 2009), obtained using the right invariant met-

ic to give the evolution in the Lie algebra (in fact, the tangent space at

he identity deformation), g, as ṁ + ad
∗
v m = 0. As mentioned before,

he operator ad
∗

is the adjoint of the Jacobi–Lie bracket (Bruveris et al.,

011; Younes et al., 2009). After adding this control, the dynamics take

he form, ṁ + ad
∗
v m = u, where u ∈ g∗. Thus we allow the geodesic to

eviate from satisfying the EPDiff constraints and constrain it to mini-

ize an energy of the form, E = 1
2

∫ 1
0 ‖u(t)‖2

g∗ dt. It is important to note

hat such a formulation will avoid direct computation of curvature.

e bypass it when we control the EPDiff in g instead of controlling

ġ(t)ġ(t) in Tg(t)G.

The associated constrained energy minimization problem for

plines is then,

inimize
u

1

2

∫ 1

0

‖u(t)‖2
g∗ dt (4)

˙ (t)− u(t)+ ad
∗
Km(t) m(t) = 0, m(0) = m0 (5)

˙ (t)+ (Dh)Km = 0, h(0) = id (6)

ere we use, h(t) = g−1(t) for ease of notations and id denotes the iden-

ity map. Notice that this formulation in diffeomorphisms is analo-

ous to the Euclidean case in the sense that the Euclidean states (x1, x2,

3) → (h, m, u) in diffeomorphisms. The constraint in (5) is the control

nd (6) is a deformation advection constraint, which describes how

he inverse of the diffeomorphism evolves over time. This equation

ill also play a central role for the matching terms as it allows to

atch for example, images, landmarks, surfaces, etc.

Similar to the Euclidean case, the Euler–Lagrange equations for

he above optimization problem give an adjoint system that explains

he evolution of u, such that,

˙ − (Dh)�p − K−1 adKm Ku + ad
∗
Ku m = 0, (7)

˙ + ∇ · (p ⊗ Km) = 0. (8)

ere, p is the adjoint variable corresponding to the deformation evo-

ution constraint on g−1 in Eq. (6). The details of the derivation of the
Please cite this article as: N. Singh et al., Splines

http://dx.doi.org/10.1016/j.media.2015.04.012
bove Euler–Lagrange equations are presented in Appendix B. Note

owever that the existence of a minimizer to this variational prob-

em is still an open problem whereas the shooting splines solutions

ntroduced in the next section are well-defined.

.3. From relaxation to shooting.

Notice that the above discussion is analogous to the discussion of

he relaxation formulation for the Euclidean case. We now convert

he adjoint state, p(t) to a primal state to form a forward shooting

ystem. Analogous to the Euclidean case, this increases the order of

he system by one. The shooting system for acceleration controlled

otion is,

ḣ + (Dh)Km = 0,

ṁ − u + ad
∗
Kmm = 0,

u̇ − (Dh)�p − K−1 adKm Ku + ad
∗
Ku m = 0,

ṗ + ∇ · (p ⊗ Km) = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9)

he image evolves (equivalently advects) as per the group action of g

n the initial image I0, i.e., I(t) = I0 ◦ g−1(t) = I0 ◦ h(t). Here, the vector

uantity, p is analogous to x4.

.4. Shooting-splines with data-independent controls for regression

Similar to the data configuration in the Euclidean example, in the

ontext of regression, let, Ji, for i = 1 . . . N, denote N measured images

t timepoints, ti � (0, 1). The goal now is to define finite and relatively

ewer points than the number of measurements in the interval, (0, 1)

here p is allowed to jump. In other words, p does not jump at every

easurement but instead, is allowed to be free at predefined time-

oints that are decided independently of the data. Thus, we construct

curve g(t), similar to the Euclidean case, in G, along the time, t, such

hat it guarantees, (a) p may jump at predefined time-points only, (b)

is C0-continuous, (c) m is C1-continuous, and (d) g is C2-continuous.

The unconstrained Lagrangian for spline regression for a fixed ini-

ial image I0 takes the form:

(h, m, u, p, ptc , λh, λm, λu, λp) = (10)

1

2σ 2
I

C+1∑
c=1

∑
i∈Ic

d2(I0 ◦ h(ti), Ji)+ 1

2σ 2
u

∫ 1

0

〈u, Ku〉L2 dt

+
C+1∑
c=1

∫
Ic

〈λhc, ḣc + (Dhc)Kmc〉L2 dt

+
C+1∑
c=1

∫
Ic

〈λmc, ṁc − uc + ad
∗
Kmc

mc〉L2 dt

+
C+1∑
c=1

∫
Ic

〈λuc, u̇c − (Dhc)
�pc − K−1 adKmc

Kuc + ad
∗
Kuc

mc〉L2 dt

+
C+1∑
c=1

∫
Ic

〈λpc, ṗc + ∇ · (pc ⊗ Kmc)〉L2 dt, and

subject to continuity of h, m and u at C joins.

ote that we use subscript c to denote that the variables, hc, mc, uc

nd pc, and their corresponding adjoints are defined in their respec-

ive intervals Ic and they stitch together to give h, m, u and p, defined

n (0,1). Also notice the second term is the relaxation energy term, i.e.,

u‖2
g∗ = 〈u, Ku〉L2 , which acts as a regularizer on the force along the

ull path in diffeomorphisms. It is helpful to make a note of the under-

ying spaces for the variables parametrizing the spline. In particular, h

G, while all the other states are in the coalgebra, i.e., m, u, p, ptc ∈ g∗.
for diffeomorphisms, Medical Image Analysis (2015),
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3.5. Gradients

The optimality conditions on the gradients of the above energy

functional show that the adjoint variables, λh, λm, λu, are continuous

at all C joins. The gradients with respect to the initial conditions are,

δm0
1
E = −λm1(0), δu0

1
E = −λu1(0), δp0

1
E = −λp1(0).

We compute the gradients by integrating the adjoint system of equa-

tions within each interval backward in time,

λ̇hc − ∇ · (pc ⊗ λuc − λhc ⊗ Kmc) = 0,

λ̇mc − adKmc
λmc − adKuc

λuc

+K ad
∗
λmc

mc − K ad
∗
Kuc

K−1λuc

+K((Dλpc)
�pc)− K((Dhc)

�λhc) = 0,

λ̇uc − 1

σ 2
u

Kuc + λmc + K ad
∗
Kmc

K−1λuc

+K ad
∗
λuc

mc = 0,

λ̇pc + (Dhc)λuc + (Dλpc)Kmc = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

The details of the derivation of the above Euler–Lagrange equations

are presented in Appendix C.

All variables start from zero as their initial conditions for this

backward integration. Similar to the Euclidean case, we add jumps in

λh as,

λhc(t
+
i
)− λhc(t

−
i
) = 1

σ 2
I

(I0 ◦ h(ti)− Ji)∇Iti ,

at measurements, t = ti if we use a sum-of-squared differences sim-

ilarity measure for d2(·, ·) between the measured images {Ji} and the

estimated images {I0 ◦ h(ti)}. More general similarity measures could

easily be used and would only change these jump conditions. We en-

sure the continuity of λhc, λmc, and λuc at the joins and λpc starts from

zero at every join. We use the accumulated λpc + 1 to update the jerk,

pc(tk), at the control location with,

δpc+1(tc)(tc)E = −λpc+1(t
+
c ).

Note this is the ‘data independent’ control that we motivated our

formulation with. This determines the initial condition of the forward

system for each interval and needs to be estimated numerically. Also

note that other regularizers can be added on the initial momenta, m0
1,

initial jerk, p0
1, and jerks at controls, ptc

c+1, by restricting their Sobolev

norms. In this case, the gradient includes additional terms of the form,

Km0
1, Kp0

1, and Kptc
c+1, respectively. The estimate for the force term,

u0, does not need to be regularized since minimizing the norm on

u(t) along the path itself acts as a regularizer. Finally, all the above

gradients generalize trivially in case we have data measurements at

the end points or at control locations. This results in additional jumps

(limit from the right) in the adjoint variable at these measurement

locations during the backward integration.

4. Results

We evaluate our proposed model using synthetic data and two

real time-sequence imaging data sets. One of the real imaging data

examples is from cellular imaging of snapshots acquired for a deform-

ing cell imaged using atomic force microscopy. The other is from the

Sunnybrook cardiac MR database (Radau et al., 2009). In all our exper-

iments, we fix the initial image, I(0), and estimate initial states, m(0),

u(0), p(0) and p(tc) at control locations that completely determine the

spline curve g(t) from t = 0 to t = 1.

Implementation details and discretization schemes. The experiments

constitute of estimating the parameters of the best fitting regression

curves in diffeomorphisms for a sequence of images, as well as of gen-

erating or synthesizing the new curves based on the given parameters
Please cite this article as: N. Singh et al., Splines
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ndependent of any image data. The primary component for imple-

enting the cubic and spline curve estimation involves the forward

ntegration of the set of ODEs in Eq. (9), representing the forward

urve evolution, and the backward integration of the set of ODEs in

q. (11), representing the adjoint evolution. The adjoint states in the

djoint system, in turn, provide the gradients for updating the param-

ters of the curves during the optimization. Note that synthesizing

urves given the parameters only involves integrating the forward

ystem in Eq. (9). The terms in all of these ODEs including the terms

ith ‘ad’ operators, involve computing finite difference approxima-

ions of the pixel/voxel-level spatial gradients, divergences, and their

ombinations.

We use a fourth order Runge-Kutta method with 40 timesteps to

ntegrate the primal states forward and to integrate the correspond-

ng adjoint states backwards. We use finite difference approximations

ith central differences for all pixel/voxel-level gradient, Jacobians

nd divergence computations. Also, note that for computing the ad-

oint of the Jacobi–Lie bracket, ad
∗
v m = (Dv)T m + ∇ · (m ⊗ Km), the

econd term is essentially the divergence of the tensor field. The ten-

or divergence of the field S is expressed using Einstein summation

s,

· S = ∂Ski

∂xi

ek.

n the case where the tensor field is represented as a pixel/voxel-wise

ronecker product of 3D vector fields, u and v, the tensor divergence

akes the form,

· (u ⊗ v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂u1v1

∂x
+ ∂u1v2

∂y
+ ∂u1v3

∂z

∂u2v1

∂x
+ ∂u2v2

∂y
+ ∂u2v3

∂z

∂u3v1

∂x
+ ∂u3v2

∂y
+ ∂u3v3

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

gain, we use finite difference approximations with central differ-

nces for evaluating the above spatial partial derivatives.

We use a line search with gradient descent to estimate the opti-

al initial states of spline curves and the controls and the kernel, K,

orresponds to the invertible and self-adjoint Sobolev operator, L =
j�2 − k�(� · ) + l, with j = 0.2, k = 0.2, and l = 0.001.

A typical runtime for executing a full line search gradient de-

cent optimization algorithm on a sequence of 10 2D 84 × 84

ized images is about 20 min for 100 iterations on the Quadro

200 NVIDIA GPU. The CPU–GPU implementations of the shoot-

ng splines for 2D and 3D image sequences can be obtained from

ttp://git@bitbucket.org:nikhilsingh/diffeosplines.git.

In our validations, we first experimentally demonstrate that the

hooting equations for evolving cubic curves in diffeomorphisms as

er the set of ODEs in Eq. (9) are indeed analogous to the classical

ystem of shooting cubic curves in Euclidean as given in Eq. (2) and to

he cubic equation, y = ax3 + bx2 + cx + d. We discuss these results in

ec. 4.1. Next, we present our experiments for regression with splines

sing synthetic data, the deforming cell imaging data and the cardiac

maging data in Sec. 4.2.

.1. Assessment of shooting higher order curves

We first study the interpretation of the new states proposed in

his paper: the force denoted by u(t) and the jerk denoted by p(t) for

he evolution of curves in diffeomorphisms. It is informative to study

he simplest case of regression first: the image matching problem be-

ween a set of two images, such that it solves the variational problem

n Eq. (10) in the absence of any control locations, i.e., C = 0. Since,

here are only two points, the energy minimizing curve is a geodesic

ath but one that allows changes in velocity and in acceleration. The
for diffeomorphisms, Medical Image Analysis (2015),

http://git@bitbucket.org:nikhilsingh/diffeosplines.git
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along the path but m(t) accelerates from zero initial condition, i.e., m(0) = 0. This matching only estimates initial force, u(0). (c) Bottom row corresponds to jerk only matching

such that both m(t) and u(t) accelerate from zero initial conditions, i.e., m(0) = u(0) = 0. This matching only estimates initial jerk, p(0). The length of arrows is proportional to their

scales. On the right is the convergence of gradient descent with line search for the three optimization problems.
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ourth derivative, jerk, however must conserve mass during its trans-

ort. Also note that if we only constrain the jerk state to be zero at all

imes, such that p(t) = 0, the diffeomorphism evolves in a “quadratic”

orm. Along with the jerk, if we also constrain the force state to be

ero at all times, such that u(t) = 0, the diffeomorphism evolves in

he standard geodesic form.

To investigate this, we decompose our analysis into three simpler

xperiments. We first solve the problem of matching two images by

onstraining the force and the jerk states to be zero at all times and

nly estimate the initial momenta that describe the geodesic. We call

his the momenta only matching (Fig. 4, top row). Images on the left

re the initial states: image, momenta, force and jerk at t = 0, and on

he right are the final states: image, momenta, force and jerk at t = 1.

his is simply solving the classical image matching problem using the

eodesic shooting equations. In this case, the momenta evolution sat-

sfies the standard EPDiff evolution. In the view of classical mechanics

nd particle motion, it is also analogous to describing the motion of

particle with constant velocity under the absence of any external

orce. Next, we solve the problem of matching the same images by

onstraining the starting momenta to be zero at t = 0, and the jerk

tates to be zero at all times, and estimate only the initial force. We

all this the force only matching (Fig. 4, middle row). This is analogous

o the motion of a stationary particle under constant force such that

t starts from zero velocity and then constantly accelerates. Finally, we

olve the problem of matching the same two images by constraining

he starting momenta and force to be zero at t = 0, and estimate only

he initial jerk. We call this the jerk only matching (Fig. 4, bottom row).

his is analogous to describing the motion of a stationary particle with

continuous impulse such that it starts moving from zero velocity, and

ero acceleration and then its acceleration increases constantly and its

elocity increases in second order. The simple gradient descent with

ine search optimization converges for these three experiments. As

xpected, the momenta at the end point of the matching path for the

erk only matching are larger than that observed at the end point for

orce only matching. Also, the final force state for jerk only matching

nds up being larger in magnitude than the force state for force only

atching. Note that for all three curves the start point (the identity

eformation) and the end points (the best matching deformation) are

dentical. The matching only differs in the order of motion along the

ath the curve traces in diffeomorphisms.
Please cite this article as: N. Singh et al., Splines
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To further understand the Euclidean analogy of our proposed

hooting equations in Eq. (9) we combine the three estimates and

bserve the resulting evolution. In particular, the above three experi-

ents result in the three coefficients that follow similar scaling rules

s the standard cubic curves, y = ax3 + bx2 + cx + d, where a is equiv-

lent to p(0) estimated for jerk only matching, b to u(0) estimated for

orce only matching, and c to m(0) obtained for momenta only match-

ng. We can now conveniently synthesize different parametric curves

sing the scaling of these coefficients. In Fig. 5, we demonstrate the

uadratic and the cubic polynomial curves in diffeomorphisms syn-

hesized using these estimates obtained from matching.

To simulate a curve similar to the Euclidean quadratic, y = x2 −
, we integrate Eq. (9) starting from the initial momenta of m(0) and

nitial force of − u(0). We observe that the diffeomorphic path traces

quadratic path which is analogous to the motion of a particle un-

er constant force. This is similar to the motion of a particle with a

iven initial velocity at t = 0 but opposite force such that the parti-

le decelerates initially, comes to a rest state exactly at t = 0.5 and

hen accelerates to return back to the exact initial position at t = 1.0

Fig. 5(a)). The shooting equations are accurate such that the diffeo-

orphisms end at the identity transformation at t = 0. Another way

o visualize this path in diffeomorphisms is to observe the motion of

pixel at the boundary of the image as it deforms from t = 0 to t = 1.

or this we display stacked-up 1D cross sections (middle row of the

mage). This forms a 2D matrix displayed as a picture in Fig. 5(c), such

hat the rows are stacked up in increasing order of time from bottom

o top. We notice that the pixels trace a quadratic curve as the image

eforms along this path.

To demonstrate a cubic-like behavior, we scale the coefficients to

enerate a Bernoulli polynomial of degree 3 that takes the form, y =
3 − 3

2 x2 + 1
2 x. For this, we integrate Eq. (9) starting with scaled initial

onditions in the same proportion as the Bernoulli coefficients and

se the initial momenta of m(0), initial force of − 3u(0) and the initial

erk of 2p(0). We observe that the diffeomorphic path traces a cubic

ath such that the shape first compresses in one direction and then

xpands and reaches back to a state that it started with and continues

o expand until it finally shrinks back (Fig. 5(b)). This is analogous

o the behavior a Euclidean Bernoulli polynomial of degree 3 follows

ith the exact same coefficients. Also, similar to the visualization of

he quadratic curve, the cross sectional boundary pixel visualization
for diffeomorphisms, Medical Image Analysis (2015),

http://dx.doi.org/10.1016/j.media.2015.04.012
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of this curve results in a Bernoulli path that resembles a Bernoulli

cubic (Fig. 5(d)).

4.1.1. Quadratic and cubic regression

Next, to assess the strength of regression using these parametric

shooting equations, we generate (N = 9) sampled shapes to simu-

late non-monotonic quadratic and cubic like dynamics from t = 0 to

t = 1 (Fig. 6(a) and (c), respectively) using the shooting methods de-

scribed above. The corresponding quadratic and cubic regression fit

are shown in Fig. 6(b) and (d), respectively.

A note on initialization. A good initialization is necessary since the

variational problem is non-convex. A possible strategy for the ini-

tialization is to first compute the initial momenta, m̃, for matching

the first image (source image) with the next image in sequence that

looks to be the most deformed image (target image) relative to the

initial image. In the case of quadratic data in row (a), a good can-

didate for the target image could be the one at t = 0.5 while for

the cubic data in row (c), a possible candidate for the target image

could be the one at t = 0.25. A good initialization for the quadratic

regression gradient descent optimization problem could then use this

momenta direction estimated only from the data to initialize both the

initial quadratic states, for example, using approximately scaled m̃:

mk(0) = 2m̃ and uk(0) = −4m̃ at first iteration for k = 1. Similarly, for

the cubic regression variational problem, such an initialization could

be used to also initialize all the initial states of momenta, force and

jerk for the first iteration at k = 1 of the gradient descent, for ex-

ample, using approximately scaled: mk(0) = 2m̃, uk(0) = −12m̃ and

pk(0) = 24m̃, where m̃ denotes the momenta corresponding to the

geodesic matching problem of matching initial image with the image

at t = 0.25. Note these factors correspond to quadratic and Bernoulli

cubics respectively along with additional scalings to compensate for

the shorter length of the path for which m̃ is computed.

We emphasize that the above strategies use only the data to de-

cide initial conditions of a curve that could be close to the possible

minimizing least square polynomial curve. This provides a practical

way to find good initialization for the fitting problem for any given
Please cite this article as: N. Singh et al., Splines
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ata set. We notice that using such initializations the optimization

onverges within 100 iterations for both the quadratic and the cubic

egression variational problems (Fig. 6(f) and (h)).

For the quadratic regression, we notice that the estimated fit cap-

ures the trend and results in a smoothly shrinking followed by ex-

anding grids along the regression path to closely match the data.

he boundary pixel also traces a quadratic curve when the image de-

orms (Fig. 6(e)). Similarly, for the cubic regression, the estimated fit

aptures the two inflections of the motion to best fit the data. The

oundary pixel also traces a quadratic curve when the image deforms

Fig. 6(e)).

.2. Assessment of spline regression

In this section, we investigate the performance of spline regres-

ion on synthetic and real data. For the synthetic data, we generate the

ata such that a cubic-like dynamic alone is not sufficient to explain

he trends in shape changes and therefore necessitates adding a con-

rol for the spline fit. For the real data, we perform spline regression

xperiments using cell and cardiac images.

.2.1. Synthetic data

To assess the strength of spline regression for non-geodesic image

ata, we create a synthetic sequence of N = 13 shapes to simulate non-

onotonic changes with more than two inflection points from t = 0

o t = 1 (Fig. 7(a)). The synthetic shape first shrinks and then expands

ill t = 0.5, and then again shrinks and finally expands back again till

t reaches the end point, at t = 1.0. The last image in the sequence

n Fig. 7(a), shows another visualization in the form of stacked-up

D cross sections (middle row of the input images). This forms a 2D

atrix displayed as a picture, such that the rows are stacked up in

ncreasing order of time from bottom to top with blank rows for the

imes for which there is no data. Using such data, we attempt to

imulate dynamics such that a cubic alone would not be sufficient

o trace through the inflection. For optimization, we follow a similar

trategy we discussed in Section 4.1.1 for cubic regression to initialize
for diffeomorphisms, Medical Image Analysis (2015),
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Regression using a quadratic path in diffeomorphisms

(a
)

D
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a
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Regression using a cubic path in diffeomorphisms

(c
)

D
at

a
(d

)
F
it

t = 0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

(e) Fit cross-section (f) Convergence (g) Fit cross-section (h) Convergence

Fig. 6. Regression of quadratic and cubic like data. Top two rows (a) and (b) detail the quadratic like sparsely sampled data and the corresponding quadratic regression fit,

respectively, and (e) and (f) show the cross-sectional view of movement of a boundary point along the quadratic fit and the convergence of the optimization, respectively. Similarly,

rows (c) and (d) detail the cubic-like sparsely sampled data and the corresponding cubic regression fit, respectively, and (g) and (h) show the cross-sectional view of movement of

a boundary point along the cubic fit and its convergence, respectively.

Table 1

Total squared error of fit.

Spline fit (one control) Spline fit (no control) Geodesic fit

Synthetic 40.50 139.77 162.39

Cell data 70.68 71.36 307.18

Cardiac data 962.75 975.15 1440.58
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omenta, force and jerk at t = 0 but just switch the sign on the jerk

tate, p at the control location to add another inflection.

We report a quantitative comparison of the three fits in the first

ow of Table 1. The reported error of fit corresponds to L2 image resid-

al as per the data-likelihood in Eq. (10). We observe that adding a

ingle spline control at the mid point results in the best fit that sum-

arizes the smooth dynamics of change (Fig. 7(b)). The estimated

iffeomorphism successfully captures the two cycles of trends in the

hrinking shape, followed by expansion. Without adding any control,

he resulting spline trend, even though a cubic, fails to capture the

ynamics and fails to recover the inflection points in the rate of shape

hange (Fig. 7(c)). Finally, being the most inflexible, geodesic regres-

ion performs worst, and barely captures any real spatio-temporal

rend (Fig. 7(d)). The visualization of the motion of boundary pixels

lso confirms (last column) the flexible diffeomorphism fit obtained

or the spline regression with one control. For further details on the

nalysis of the regression fit, please see the visualizations in the sup-

lementary material that include the gif video of the fit and the mosaic

verlay of the original data with the regressed trend.
Please cite this article as: N. Singh et al., Splines
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.2.2. Deforming cell data

The cell time-sequence data corresponds to 11 snapshots at equal

ntervals a deforming cell imaged using an atomic force micro-

cope. We preprocessed the images using total variation denois-

ng (Chambolle, 2004) to preserve edges (Fig. 10). Note that the orig-

nal images are noisy with a grainy texture while the denoised image

ffectively retains the regions of high gradients, which are useful for

riving the spline regression. The images depict a trend in which the

hape of the cell deforms such that its left boundary first bends inward

nd then resumes back to its original shape (Fig. 8(a)).

A visual assessment of the cell images suggests that this data

hould have an inflection in the dynamics of shape changes. The re-

ression fit using one control and no control results in a very sim-

lar fit (Fig. 8(b) and (c)). However, the geodesic fit only results in

monotonous compression of the cell and fails to capture the ex-

ansion in the last half of the dynamics (Fig. 8(d). We also notice in

able 1 that the spline regressions with one control and without a con-

rol result in comparable L2 error of fit as per the data likelihood. The

eodesic fit, however, clearly performs worst in terms of the residual

rror of fit. We present more details on the analysis of the regression

t in the visualizations in the supplementary material that include

he gif video of the fit and the mosaic overlay of the original data with

he regressed trend.

.2.3. Cardiac data

The cardiac time-sequence data corresponds to 20 snapshots at

qual intervals of the beating heart of a normal individual with age =
3 years (Subject Id: SCD0003701). We cropped all the axial images to
for diffeomorphisms, Medical Image Analysis (2015),

http://dx.doi.org/10.1016/j.media.2015.04.012
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(a) Original data

t = 0.000 0.083 0.166 0.250 0.333 0.416 0.500

0.583 0.666 0.750 0.833 0.916 1.000
(b) Spline fit (control at t = 0.5)

(c) Spline fit (no control)

(d) Geodesic fit

Fig. 7. Comparison of regression models on the synthetic data. (a) The original synthetic shapes that go through non-monotonic deformations simulating three inflection points.

The last image in this sequence visualizes the pixel at the boundary, in the middle 1D horizontal slice of each of these 2D input image, such that the black region represents no data.

(b) The spline fit using a control at location t = 0.5 overlaid with the corresponding deformed grid. The last image in the sequence visualizes the motion of a pixel at the boundary,

in the middle 1D horizontal slice of the deforming 2D image, as we move along the regression fit in diffeomorphisms. (c) and (d) The spline and the geodesic fit, respectively.

s

p

h

s

d

5

t

a common rectangular region around the heart followed by histogram

matching to align intensities of all the timepoints to the image at t = 0.

Fig. 9 shows the original scans (first row) and the result of regression

models (second to fourth row). We only display half of the timepoints

of the ones actually used to fit the model. Similar to the synthetic

data, we observe that the original data exhibits a non-geodesic and

non-monotonic trend in changing shape of the beating heart. The

comparison in terms of the error of fit for all models suggests that both

spline curves perform better than the geodesic. Although visually the

fits look similar for splines, we obtained a marginal improvement of

fit for the spline curve with single control when compared to the
 q

Please cite this article as: N. Singh et al., Splines
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pline curve without any control (Table 1). The geodesic fit again

erforms worst out of the three models. The dynamics of the beating

eart for these models are best seen in the multimedia file in the

upplementary material and the mosaic overlay image of the original

ata with the regressed trend.

. Discussion

In this article, we developed a theory for higher order curves

hat generalizes the notion of parametric curves such as the

uadratic, the cubic and the piecewise cubics to the manifold of
for diffeomorphisms, Medical Image Analysis (2015),
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(a) Original data

t = 0.000 0.100 0.200 0.300 0.400 0.500

0.600 0.700 0.800 0.900 1.000
(b) Spline fit (control at t = 0.5)

(c) Spline fit (no control)

(d) Geodesic fit

Fig. 8. Comparison of regression models on the deforming cell data. (a) The original cell images that shrink and then expand back. (b) The spline fit using a control at location t =
0.5 overlaid with the corresponding deformed grid. (c) and (d) The spline with no control and the geodesic fit, respectively.
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(a) Original data

t = 0.000 0.100 0.200 0.300 0.400 0.500

0.600 0.700 0.800 0.900 1.000
(b) Spline fit (control at t = 0.5)

(c) Spline fit (no control)

(d) Geodesic fit

Fig. 9. Comparison of regression models on the cardiac motion data. (a) The original cardiac snapshots. (b) The spline fit using a control at location t = 0.5 overlaid with the

corresponding deformed grid. (c) and (d) The spline with no control and the geodesic fit, respectively.

i
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t

p

f

s

c

diffeomorphisms. We provided a principled way to define curves

with nonzero acceleration and nonzero jerk, which is the natu-

ral next step of extension to geodesic-based methods developed

during the last decade for computational anatomy in the large

deformation diffeomorphic image analysis framework. We took a

variational approach that is governed by an underlying energy for-

mulation, which respects the nonflat geometry of diffeomorphisms.

Such an approach of minimal energy curve estimation also pro-

vides a physical analogy with particle motion under a varying force

field.
Please cite this article as: N. Singh et al., Splines
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As a consequence, the initial conditions of our variational quadrat-

cs and cubics are interpretable similar to the initial conditions of their

orresponding Euclidean parametric counterparts. To validate this,

e demonstrated that evolving the curves according to scaled ini-

ial conditions also results in the same behavior as a scalar Euclidean

arametric curve would exhibit under these scalings. We tested this

or different scalings and presented the results for quadratic parabolic

calings and for Bernoulli cubic scalings.

Our proposed system of evolution equations for higher order

urves can be used for regression. The benefit of using these forward
for diffeomorphisms, Medical Image Analysis (2015),
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Original image Denoised image

Fig. 10. An example of the cell image data before and after the total variation denoising.
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hooting equations in an optimal control setting is that the solution to

he resulting regression problem is given only in terms of a few initial

onditions. We emphasize that in all our experiments, the full dif-

eomorphic paths and the evolution of all states along the estimated

urves are completely parameterized by very few parameters (four

or spline fits with one control and three for spline fits without any

ontrol) that are independent of the study size.

.1. Open questions and extensions

Regression models are expected to fit better with an increasing

umber of control points. This necessitates model selection proce-

ures. In other words, a criterion to assess the balance of increasing

odel complexity to obtain better data fit needs to be developed. Eu-

lidean methods of model selection such as the Akaike information

riterion (AIC) and the Bayesian information criteria (BIC), both re-

uire the notion of distribution and hence are difficult to generalize

o diffeomorphisms. Nonparametric approaches such as permutation

ests may provide a possible way to define and approximate null

istributions empirically and to test the significance of models for a

iven dataset. Alternatively, cross-validation could be used for model

election.

Due to the limitations of our current optimization method, i.e.,

radient descent, our spline estimation experiments used at most one

ontrol point only. A possible future work would be to explore better

ptimization strategies and to develop second order methods utilizing

imited memory for the optimization of splines (Byrd et al., 1995). We

xpect improved convergence for example by using a quasi-Newton

ethods such as lBFGS.

Note that adding an extra control point may not always result in a

oticeable improvement for practical scenarios. The need for control

oints will be data-set dependent. For example, adding a control point

enerally shows clear improvements for the cases when the data ex-

ibits more than one inflection point. However, in our experiments

oth the real datasets exhibit trends that show only one directional

hange in velocity, e.g., the ventricles in the heart expand and then

hrink for only one cycle. Similarly, the cell exhibits a shrinkage fol-

owed by an expansion back to its original position. However, our

ynthetic example clearly demonstrates the benefit of adding a con-

rol point for a dataset that has more than one inflection point. Hence,

e expect control points also to be useful for real data for sufficiently

omplex deformations.

We developed the regression problem for a fixed initial image.

dding template estimation would add another parameter to the es-

imation problem. With better optimization strategies, it should also

e possible to develop an alternate optimization algorithm for tem-

late estimation (Singh et al., 2013b).

The position of control points is also a modeling choice. The uni-

orm placement of control points on the axis of the regressor variable

s convenient and facilitates model comparisons and interpretability

n medical imaging population studies. However, it remains an open

roblem to also optimize for the locations of control points. The pos-

ible challenges will include investigating the differentiability of the
Please cite this article as: N. Singh et al., Splines
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nergy functional in Eq. (10) with respect to the location of the jump

n the jerk state.

Another aspect could be investigating possibilities of combining

ur model on diffeomorphisms with the higher order models on

hapes (Gay-Balmaz et al., 2012; Trouvé & Vialard, 2012).

One of the most critical contributions in this research is the ability

o trace a path in diffeomorphisms with nonzero acceleration. This

ould be immensely useful for medical studies of growth or decline

here the rate of change gets affected and the emphasis is on acceler-

ted tissue growth or decline. One future possible application for the

uadratic models could be to study differences in aging of individuals

ith or without dementia and investigating the ages and local re-

ion in the brain exhibiting the most accelerated atrophy. This would

dd second order information on tissue atrophy to the information

urrently being obtained using contemporary first order geodesic re-

ression methods and deformation based morphometry analysis.

Another use of higher order models is for the recently pro-

osed longitudinal models for diffeomorphisms such as hierarchical

eodesic models (HGM) (Singh et al., 2013a). Even though for brain

tudies, a geodesic-like trend is expected to be a good approximation

f changes in the brain for a single individual when the measurements

re taken within a span of five years, the geodesic assumption on the

verage group trend of the entire population data for staggered de-

igns may not be the best modeling choice. Thus, our proposed higher

rder curves would provide a better model for the longitudinal sum-

ary of a group spanning a wide range of ages from, say, 60–90 years.

Our method of shooting splines in diffeomorphisms lays a founda-

ion to model flexible dynamics of shape changes seen in time series

f medical images, and also opens the possibility to model periodic

ata by adding periodicity constraints.
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ppendix A. Conjugate of the Lie algebra adjoint representation

We denote the Jacobian operator by D( · ) and the pixel/voxel-wise

ronecker product of two vectors by �. We use the Riesz representa-

ion theorem to first define the dual pairing as a linear operation for

ntegrations on domain � (Rudin, 1986, 1991). For a scalar function,

� Cc(X), let X be a locally compact Hausdorff space. For any positive

inear functional, ψ on Cc(X), there is a unique Borel regular measure,

on X, such that,

(f ) =
∫

X

f (x)dμ(x).

We extend it for our case where f is continuous vector valued, say

, and not a scalar function. The dual pairing written for the m(v) as

m, v) is written as:

m, v) =
∫
�

v(x)dm.

otice, m = uμ where u is a smooth vector field and μ is the Lebesgue

easure on �. The above pairing can also be written as:

uμ, v) =
∫
�

v(x) · u(x)dμ,

here ‘ · ’ is the dot product operation.
for diffeomorphisms, Medical Image Analysis (2015),
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The definition of the conjugate of adw is:

(ad
∗
w m, v) = (m, adw v).

The right hand side of the above equation takes the form,

(m, adw v) =
∫
�

adw v(x)dm,

=
∫
�

adw v(x) · u(x)dμ.

The conjugation of the operator, adw, is computed as follows:

(ad
∗
w m, v) =

∫
�
(Dwv − Dvw)(x) · u(x)dμ,

=
∫
�
((Dw)T u)(x) · v(x)dμ

−
∫
�
(Dvw)(x) · u(x)dμ.

We have isolated, v for the first term. For the second term, we use the

relation of the Frobenius norm, where for a matrix A, and vectors, b

and c,

Ab · c = 〈A, c ⊗ b〉F ,

where F represents the Frobenius inner product. Thus,

(ad
∗
w m, v) =

∫
�
((Dw)T u)(x) · v(x)dμ

−
∫
�
〈Dv(x), u(x)⊗ w(x)〉Fdμ.

Moreover, since the conjugate of the Jacobian operator, D, is the neg-

ative of the divergence, we obtain,

(ad
∗
w m, v) =

∫
�
((Dw)T u)(x) · v(x)dμ

+
∫
�
〈v(x),∇ · (u(x)⊗ w(x))〉Fdμ.

The above relation implies that as an operator,

ad
∗
w μ = (Dw)Tμ + ∇ · (μ ⊗ w).

Note that the second term is the pixel/voxel-wise tensor divergence

and it can further be split as,

∇ · (μ ⊗ w) = Dμw + μ∇ · w.

Appendix B. Euler–Lagrange for relaxation problem

We determine the Euler–Lagrange equation in the context of the

regression problem. We write the problem of regression for the fixed

initial image I0 and use h(t) to denote the inverse deformation g−1(t).

For readability we drop the argument, t, for all the time dependent

states, h(t), m(t) and u(t). The constrained energy minimization for

the relaxation problem of minimizing the elastic energy for the force

controlled curve takes the form,

Ẽ(h, m, u, λh, λm, λu) = 1

2

∫ 1

0

〈u, Ku〉L2 dt

+
∫ 1

0

〈λh, ḣ + (Dh)Km〉L2 dt

+
∫ 1

0

〈λm, ṁ − u + ad
∗
Km m〉L2 dt,

where K correspond to the time independent metric kernels for u and

m, and d( ·, ·) is the metric on images. Note that the metric on images

can also be the metric on G, here we will keep this simpler, and derive
2
our results for the L metric.

Please cite this article as: N. Singh et al., Splines
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1. Variations

In what follows, unless specified otherwise, all inner products cor-

espond to the L2 pairing. Computing variations of Ẽ with respect to

djoint variables will give us the dynamic constraints back. Comput-

ng variations of Ẽ with respect to all state variables gives,

δhẼ = 〈λh(1), δh(1)〉 − 〈λh(0), δh(0)〉
+

∫ 1

0

〈−λ̇h − ∇ · (λh ⊗ Km), δh〉dt

mẼ = 〈λm(1), δm(1)〉 − 〈λm(0), δm(0)〉
+

∫ 1

0

〈−λ̇m + K((Dh)�λh)+ adKm λm

− K ad
∗
λm

m, δm〉dt

δuẼ =
∫ 1

0

〈Ku − λm, δu〉dt

t the optimum the above must vanish. This results in the following

djoint system,

λ̇h + ∇ · (λh ⊗ Km) = 0

˙
m − K((Dh)�λh)− adKm λm + K ad

∗
λm

m = 0

Ku − λm = 0

otice that, similar to the Euclidean case where the adjoint variable

orresponding to the second state, x2, turned out to be equal to the

hird state x3, here λm = Ku.

λ̇h + ∇ · (λh ⊗ Km) = 0

u̇ − K((Dh)�λh)− adKm Ku + K ad
∗
Ku m = 0

gain, analogous to the Euclidean state, where the adjoint variable

orresponding to the first state, x1, was renamed as the primal state,

4, for the shooting evolution, we rename λh to be p to describe the

volution of u for shooting cubics to give:

ṗ + ∇ · (p ⊗ Km) = 0

u̇ − K((Dh)�p)− adKm Ku + K ad
∗
Ku m = 0

hus the forward evolution of the cubic system is determined by the

ollowing set of four PDEs:

ḣ + (Dh)Km = 0

ṁ − u + ad
∗
Km m = 0

˙ − (Dh)�p − K−1 adKm Ku + ad
∗
Ku m = 0

ṗ + ∇ · (p ⊗ Km) = 0

ext we discuss how to use these shooting equations for the cubic

volution to define the cubic regression problem.

ppendix C. Euler–Lagrange for shooting problem

Let, Ji, for i = 1 . . . N, denote N measured images at timepoints,

i � (0, 1). Let us assume there are no measurements at the end points,

.e., neither at t = 0, nor at t = 1. Let tc � (0, 1), for c = 1 . . . C, denote C

ata-independent fixed control locations. The control locations also

mplicitly define C + 1 intervals or partitions in (0, 1). Let us denote

hese intervals as Ic, for c = 1 . . . (C + 1).

For regression on such a data configuration, the least-squares en-

rgy takes the form,

(h) = 1

2σI
2

C+1∑
c=1

∑
i∈Ic

d2(I0 ◦ h(ti), Ji),

ubject to the dynamic constraints.

We first write the constrained energy minimization problem as,

minimize
h,m,u

E(h) (C.1)
for diffeomorphisms, Medical Image Analysis (2015),
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ḣ + (Dh)Km = 0

ṁ − u + ad
∗
Km m = 0

u̇ − (Dh)�p − K−1 adKm Ku + ad
∗
Ku m = 0

ṗ + ∇ · (p ⊗ Km) = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for each
interval, Ic

subject to continuity of h, m, and u at C joins.

he unconstrained Lagrangian for spline regression for a fixed initial

mage I0 takes the form:

˜(h, m, u, p, ptc , λh, λm, λu, λp)

= 1

2σ 2
I

C+1∑
c=1

∑
i∈Ic

d2(I0 ◦ h(ti), Ji)+ 1

2σ 2
u

∫ 1

0

〈u, Ku〉L2 dt

+
C+1∑
c=1

∫
Ic

〈λhc, ḣc + (Dhc)Kmc〉L2 dt

+
C+1∑
c=1

∫
Ic

〈λmc, ṁc − uc + ad
∗
Kmc

mc〉L2 dt

+
C+1∑
c=1

∫
Ic

〈λuc, u̇c − (Dhc)
�pc − K−1 adKmc

Kuc + ad
∗
Kuc

mc〉L2 dt

+
C+1∑
c=1

∫
Ic

〈λpc, ṗc + ∇ · (pc ⊗ Kmc)〉L2 dt, and

subject to continuity of h, m, and u at C joins.

he second term is the relaxation energy term, ‖u‖2
g∗ . This term acts

s a regularizer on the force along the full path in diffeomorphisms.

1. Variations

We discuss each piece of this optimization separately and combine

he result in the end of this section. It is convenient to first derive it

or the case with no controls, i.e., C = 0. The unconstrained Lagrangian

akes the form,

˜(h, m, u, p, λh, λm, λu, λp) = 1

2σ 2
I

N∑
i=1

d2(I0 ◦ h(ti), Ji)

+ 1

2σ 2
u

∫ 1

0

〈u, Ku〉L2 dt +
∫ 1

0

〈λh, ḣ + (Dh)Km〉L2 dt

+
∫ 1

0

〈λm, ṁ − u + ad
∗
Km m〉L2 dt

+
∫ 1

0

〈λu, u̇ − (Dh)�p − K−1 adKm Ku + ad
∗
Ku m〉L2 dt

+
∫ 1

0

〈λp, ṗ + ∇ · (p ⊗ Km)〉L2 dt

he variations with respect to dual adjoint variables give the dynamic

onstraints back. We write the variations with respect to all the pri-

als as:

δhẼ =
N∑

i=1

〈
1

σ 2
I

∇h(ti)d(I0 ◦ h(ti), Ji), δh(ti)〉

+ 〈λh(1), δh(1)〉 − 〈λh(0), δh(0)

〉

+
∫ 1

0

〈−λ̇h + ∇ · (p ⊗ λu − λh ⊗ Km), δh〉dt

mẼ = 〈λm(1), δm(1)〉 − 〈λm(0), δm(0)〉
+

∫ 1

0

〈−λ̇m + K((Dh)�λh)+ adKm λm − K ad
∗
λm

m

+ K ad
∗
Ku K−1λu + adKu λu − K((Dλp)

�p), δm〉dt
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δuẼ = 〈λu(1), δu(1)〉 − 〈λu(0), δu(0)〉
+

∫ 1

0

〈
−λ̇u + 1

σ 2
u

Ku −λm − K ad
∗
Km K−1λu − K ad

∗
λu

m, δu

〉
dt

δpẼ = 〈λp(1), δp(1)〉 − 〈λp(0), δp(0)〉
+

∫ 1

0

〈−λ̇p − (Dh)λu − (Dλp)Km, δp〉dt

t the optimum, the above must vanish. Thus, this results in the

djoint system presented in (11) for the general case with C controls.

The boundary conditions are,

δh(0)E = −λh(0) δh(1)E = λh(1)
δm(0)E = −λm(0) δm(1)E = λm(1)
δu(0)E = −λu(0) δu(1)E = λu(1)
δp(0)E = −λp(0) δp(1)E = λp(1)

otice that we can also rewrite the adjoint system in (11) for C = 0

y removing the K operator and using their duals, v = Km and f = Ku,

nd the conjugate operator, ad
†
X is ad

†
X = K ad

∗
X L, such that:

˙
h − ∇ · (p ⊗ λu − λh ⊗ v) = 0

˙
m − adv λm + ad

†
λm

v − ad
†
f
λu

− adf λu + K((Dλp)
�p)− K((Dh)�λh) = 0

˙
u − 1

σ 2
u

f + λm + ad
†
v λu + ad

†
λu

v = 0

˙
p + (Dh)λu + (Dλp)v = 0

1.1. For the data fit constraints

The gradient of the data match term with respect to h is:

1

2σ 2
I

〈∇h(ti)d(I0 ◦ h(ti), Ji), δh(ti)〉

= 1

σ 2
I

〈(I0 ◦ h(ti)− Ji),∇h(ti)(I
0 ◦ h(ti))δh(ti)〉

= 1

σ 2
I

〈(I0 ◦ h(ti)− Ji),∇Itiδh(ti)〉

ote there is no application of the chain rule in the last step above

or the term, ∇h(ti)
(I0 ◦ h(ti)) because the gradient is computed with

espect to h(ti). This is equivalent to the substitution of h(ti) as y, which

hen is equivalent to taking the derivative of I(y) with respect to y.

hus, this gradient of the data fit constraints with respect to h, results

n jumps during the backward integration of the adjoint variable, λh,

s,

h(t
+
i
)− λh(t

−
i
) = 1

σ 2
I

(I0 ◦ h(ti)− Ji)∇Iti .

1.2. For the continuity constraints

We derive the variations of the energy functional for the joins and

tudy the continuity of the adjoint system in the interval (0, 1). For this

nalysis, we introduce again the subscripts c to denote the intervals.

e first rewrite the above functional here as,

˜ = fit of the data within each interval, Ic

+ dynamics within each interval, Ic

+
C∑

c=1

〈αhc, hc(tc)− hc+1(tc)〉L2

+
C∑

c=1

〈αmc, mc(tc)− mc+1(tc)〉L2

+
C∑

c=1

〈αuc, uc(tc)− uc+1(tc)〉L2
for diffeomorphisms, Medical Image Analysis (2015),
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Notice that the Lagrangian adjoint variables, αhc, αmc and αuc, do not

vary with time. We write the variations with respect to all the primals

at joins as:

δhc(tc)Ẽ = λhc(tc)+ αhc

δhc+1(tc)Ẽ = −λhc+1(tc)− αhc

δmc(tc)Ẽ = λmc(tc)+ αmc

δmc+1(tc)Ẽ = −λmc+1(tc)− αmc

δuc(tc)Ẽ = λuc(tc)+ αuc

δuc+1(tc)Ẽ = −λuc(tc)− αuc

Equating all the above variations to zero and algebraically eliminating

variables, we get,

λhc(tc) = λhc+1(tc)

λmc(tc) = λmc+1(tc)

λuc(tc) = λuc+1(tc)

This proves that λhc, λmc and λuc are continuous at the boundaries of

the control point locations.

Supplementary materials

Supplementary material associated with this article can be found,

in the online version, at 10.1016/j.media.2015.04.012.
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