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Abstract. This document contains additional material supplementary
to the main article. It contains the derivations of the variations of the en-
ergy functional presented in the main article. In particular, we cover the
details for deriving the Euler-Lagrange equations for the relaxation prob-
lem on Diffeomorphisms as well as discuss the derivation for its shooting
extension. We also provide additional results such as the visualizations
for the estimated initial conditions that could not be included in the
main article due to space constraints.

A Euler-Lagrange for relaxation problem

We solve the Euler-Lagrange equation in the context of regression problem. The
energy takes the form,

E(g,m, v, u, I(0)) =
1

2σ2

N∑
i=1

‖I(0) ◦ g−1(ti)− Ji‖L2 +
1

2

∫ 1

0

‖u(t)‖2gdt (1)

The corresponding constrained energy minimization problem is,

minimize
g,m,v,u,I(0)

E(g,m, v, u, I(0))

subject to control u(t)− ṁ(t)− ad∗v(t)m(t) = 0

subject to right action ġ(t) = v ◦ g(t)

subject to image evolution I(t) = I(0) ◦ g−1(t)

subject to momenta duality v(t) = K ?m(t)

(2)

The right action and the image evolution constraint above can be combined
to write image evolution constraint as an image advection,

minimize
m,v,u,I

E(m, v, u, I)

subject to control u(t)− ṁ(t)− ad∗v(t)m(t) = 0

subject to image advection İ(t) +DI(t) · v(t) = 0

subject to momenta duality v(t)−K ?m(t) = 0

(3)



DI(t) represents the Jacobian of I(t) and,

E(m, v, I) =
1

2σ2

N∑
i=1

‖I(ti)− Ji‖L2 +
1

2

∫ 1

0

‖u(t)‖2gdt (4)

The unconstrained Lagrangian takes the form,

E(m, v, I, λ1, λ2, λ3) =
1

2σ2

N∑
i=1

‖I(ti)− Ji‖L2 +
1

2

∫ 1

0

‖u‖2gdt (5)

+

∫ 1

0

〈λ1, u− ṁ− ad∗vm〉L2dt

(6)

+

∫ 1

0

〈λ2, İ +DI · v〉L2dt (7)

+

∫ 1

0

〈λ3, v −K ?m〉L2dt (8)

A.1 Variations:

In what follows, unless specified, all inner products correspond to L2 pairing.
Computing variations of E with respect to adjoint variables will give us the
dynamic constraints back. Computing variations of E with respect to all state
variables give,

δmE = −〈λ1(1), δm(1)〉+ 〈λ1(0), δm(0)〉 (9)

+

∫ 1

0

〈λ̇1, δm〉dt−
∫ 1

0

〈adv λ1, δm〉dt−
∫ 1

0

〈K ? λ3, δm〉dt (10)

δvE =

∫ 1

0

〈ad∗λ1
m, δv〉dt+

∫ 1

0

〈λ2DI, δv〉+

∫ 1

0

〈λ3, δv〉dt (11)

δuE =

∫ 1

0

〈K ? u, δu〉dt+

∫ 1

0

〈λ1, δu〉dt (12)

δIE =
1

σ2

N∑
i=1

〈δI(ti), I(ti)− Ji〉+ 〈λ2(1), δI(1)〉 − 〈λ2(0), δI(0)〉 (13)

−
∫ 1

0

〈λ̇2, δI〉 −
∫ 1

0

〈∇ · (λ2v), δI〉 (14)

At the optimium the above must vanish. This results in the following adjoint
system,

λ̇1 − adv λ1 −K ? λ3 = 0 (15)

ad∗λ1
m+ λ2DI + λ3 = 0 (16)

K ? u+ λ1 = 0 (17)

−λ̇2 −∇ · (λ2v) = 0 (18)



with jumps in λ2 as λ2(t+i ) − λ2(t−i ) = 1
σ2 (I(ti) − Ji) at measurements, t = ti.

The boundary conditions are,

δm(0) = λ1(0) (19)

δm(1) = −λ1(1) (20)

We eliminate λ1 from the above equations using λ1 = −K ? u, to get,

−K ? (u̇+ λ3) + advK ? u = 0 (21)

− ad∗K?um+ λ2DI + λ3 = 0 (22)

−λ̇2 −∇ · (λ2v) = 0 (23)

The above elimination uses the fact that the kernel, K, is independent of time.
Further, we eliminate λ3 using λ3 = ad∗K?um − λ2DI and apply K−1 thor-

oughout, to get,

u̇− λ2DI + ad∗K?um−K−1 advK ? u = 0 (24)

−λ̇2 −∇ · (λ2v) = 0 (25)

We write the above in g instead of in g∗. For this define, f ∈ g which is dual
to u, such that, f = K ? u. The adjoint system takes the form,

ḟ −K ? λ2DI +K ? ad∗f m− adv f = 0 (26)

−λ̇2 −∇ · (λ2v) = 0 (27)

And since the conjugate operator, ad†X is ad†X = K ? ad∗X L, we write,

ḟ −K ? λ2DI + ad†f v − adv f = 0 (28)

−λ̇2 −∇ · (λ2v) = 0 (29)

B Euler-Lagrange for shooting problem

Let, Ji, for i = 1 . . . N , denote N measured images at timepoints, ti ∈ (0, 1). Let
us assume there are no measurements at the end points, i.e., neither at t = 0,
nor at t = 1. Let tc ∈ (0, 1), for c = 1 . . . C, denote C data-independent fixed
control locations. The control locations also implicitly define C + 1 intervals or
partitions in (0, 1). Let us denote these intervals as Ic, for c = 1 . . . (C + 1).

For regression on such a data configuration, the least-squares energy takes
the form,

E(I) =
1

2σ2

C+1∑
c=1

∑
i∈Ic

‖I(ti)− Ji‖L2 (30)



Note, the L2 metric on images here can be replaced with the metric on G. Here
we will keep this simpler, and derive it for the L2 metric.

We first write the constrained energy minimization problem as,

minimize
I

E(I) (31)

subject to velocity evolution v̇ − f + ad†v v = 0

subject to force evolution ḟ −K ? PDI + ad†f v − adv f = 0

subject to P evolution Ṗ +∇ · (Pv) = 0

subject to image advection İ +DI · v = 0

Within each interval, Ic

subject to continuity of v, f , and I at C joins

Notice we could also write the energy minimization problem in terms of duals
of v, f ,

minimize
I

E(I) (32)

subject to momenta evolution ṁ− u+ ad∗vm = 0

subject to control evolution u̇− PDI + ad∗f m−K−1 adv f = 0

subject to P evolution Ṗ +∇ · (Pv) = 0

subject to image advection İ +DI · v = 0

subject to momenta duality v −K ?m = 0

subject to control duality f −K ? u = 0


Within each interval, Ic

subject to continuity of m, u, and I at C joins

The above avoids the ad† conjugate operator but uses additional duality condi-
tions. For this derivation, let us use (32) instead of (31).



The unconstrained Lagrangian takes the form,

E(m,u, P, I, v, f, λm, λu, λP , λI , λf , λv) =
1

2σ2

C+1∑
c=1

∑
i∈Ic

‖I(ti)− Ji‖L2

+

C+1∑
c=1

∫ 1

0

〈λmc, ṁc − uc + ad∗vc mc〉L2dt

+

C+1∑
c=1

∫ 1

0

〈λuc, u̇− PcDIc + ad∗fc mc −K−1 advc fc〉L2dt

+

C+1∑
c=1

∫ 1

0

〈λPc, Ṗc +∇ · (Pcvc)〉L2dt

+

C+1∑
c=1

∫ 1

0

〈λIc, İc +DIc · vc〉L2dt

+

C+1∑
c=1

∫ 1

0

〈λvc, vc −K ?mc〉L2dt

+

C+1∑
c=1

∫ 1

0

〈λfc, fc −K ? uc〉L2dt

+ subject to continuity of m, u, and I at C joins

B.1 Variations

We discuss each piece of this optimization separately and combine the result in
the end of this section. It is easy to first derive it without the data terms. The
unconstrained Lagrangian takes the form,

E(m,u, P, I, v, f, λm, λu, λP , λI , λv, λf ) = +

∫ 1

0

〈λm, ṁ− u+ ad∗vm〉L2dt

+

∫ 1

0

〈λu, u̇− PDI + ad∗f m−K−1 adv f〉L2dt

+

∫ 1

0

〈λP , Ṗ +∇ · (Pv)〉L2dt

+

∫ 1

0

〈λI , İ +DI · v〉L2dt

+

∫ 1

0

〈λv, v −K ?m〉L2dt

+

∫ 1

0

〈λf , f −K ? u〉L2dt



We write the variations with respect to all the primals as:

δmE = 〈λm(1), δm(1)〉 − 〈λm(0), δm(0)〉

−
∫ 1

0

〈λ̇m, δm〉dt+

∫ 1

0

〈adv λm, δm〉dt+

∫ 1

0

〈adf λu, δm〉dt−
∫ 1

0

〈K ? λv, δm〉dt

δuE = 〈λu(1), δu(1)〉 − 〈λu(0), δu(0)〉

−
∫ 1

0

〈λm, δu〉dt−
∫ 1

0

〈λ̇u, δu〉dt−
∫ 1

0

〈K ? λf , δu〉dt

δPE = 〈λP (1), δP (1)〉 − 〈λP (0), δP (0)〉

−
∫ 1

0

〈DI · λu, δP 〉dt−
∫ 1

0

〈λ̇P , δP 〉dt−
∫ 1

0

〈DλP · v, δP 〉dt

δIE = 〈λI(1), δI(1)〉 − 〈λI(0), δI(0)〉

−
∫ 1

0

〈λ̇I , δI〉dt−
∫ 1

0

〈∇ · (λIv), δI〉dt+

∫ 1

0

〈∇ · (Pλu), δI〉dt

δvE = −
∫ 1

0

〈ad∗λm
m, δv〉dt+

∫ 1

0

〈ad∗f K
−1λu, δv〉dt+

∫ 1

0

〈λIDI, δv〉dt+

∫ 1

0

〈λv, δv〉dt

δfE = −
∫ 1

0

〈ad∗λu
m, δf〉dt−

∫ 1

0

〈ad∗vK
−1λu, δf〉dt+

∫ 1

0

〈λf , δf〉dt

At the optimum, the above must vanish. This results in the following adjoint
system:

−λ̇m + adv λm + adf λu −K ? λv = 0 (33)

−λm − λ̇u −K ? λf = 0 (34)

−DI · λu − λ̇P −DλP · v = 0 (35)

−λ̇I −∇ · (λIv) +∇ · (Pλu) = 0 (36)

− ad∗λm
m+ ad∗f K

−1λu + λIDI + λv = 0 (37)

− ad∗λu
m− ad∗vK

−1λu + λf = 0 (38)

The boundary conditions are,

δm(0)E = −λm(0) (39)

δm(1)E = λm(1) (40)

δu(0)E = −λu(0) (41)

δu(1)E = λu(1) (42)

δP (0)E = −λP (0) (43)

δP (1)E = λP (1) (44)

δI(0)E = −λI(0) (45)

δI(1)E = λI(1) (46)



We eliminate some variables from the above adjoint system. First we use,
λf = ad∗λu

m+ ad∗vK
−1λu,

−λ̇m + adv λm + adf λu −K ? λv = 0 (47)

−λm − λ̇u − ad†λu
v − ad†v λu = 0 (48)

−DI · λu − λ̇P −DλP · v = 0 (49)

−λ̇I −∇ · (λIv) +∇ · (Pλu) = 0 (50)

− ad∗λm
m+ ad∗f K

−1λu + λIDI + λv = 0 (51)

Next we use, λv = ad∗λm
m− ad∗f K

−1λu−λIDI, and rearrange the terms to
get,

λ̇m + adλm
v + ad†λm

v − adf λu − ad†f λu −K ? λIDI = 0 (52)

λ̇u + λm + ad†λu
v + ad†v λu = 0 (53)

λ̇P +DI · λu +DλP · v = 0 (54)

λ̇I +∇ · (λIv)−∇ · (Pλu) = 0 (55)

For dynamics and data fit constraints: We have presented the variations for
the similar energy functional as above but in the general case of single interval
without any data. The data fit constraints results in jumps in the backward
integration of the adjoint variable, λIc.

For continuity constraints: We derive the variations of the energy functional
for the joins and study the continuity of the adjoint system in the interval (0, 1).
We first rewrite the above functional here as,

E = + fit of the data within each interval, Ic (56)

+ dynamics within each interval, Ic (57)

+

C∑
c=1

〈αmc,mc(tc)−mc+1(tc)〉L2 (58)

+

C∑
c=1

〈αuc, uc(tc)− uc+1(tc)〉L2 (59)

+

C∑
c=1

〈αIc, Ic(tc)− Ic+1(tc)〉L2 (60)



We write the variations with respect to all the primals at joins as:

δmc(tc)E = λmc(tc) + αm (61)

δmc+1(tc)E = −λmc+1(tc)− αm (62)

δuc(tc)E = λuc(tc) + αu (63)

δuc+1(tc)E = −λuc(tc)− αu (64)

δIc(tc)E = λIc(tc) + αI (65)

δIc+1(tc)E = −λIc(tc) + αI (66)

Equating all the above variations to zero and eliminating variables, we get,

λmc(tc) = λmc+1(tc) (67)

λuc(tc) = λuc+1(tc) (68)

λIc(tc) = λIc+1(tc) (69)

This means that λmc, λuc and λIc are continuous at the boundaries of the
control point locations.

Gradient computation using backward integration We summarize the
optimization here. The gradients with respect to the initial conditions are,

δm1(0)E = −λm1(0) (70)

δu1(0)E = −λu1(0) (71)

δP1(0)E = −λP1(0) (72)

δI1(0)E = −λI1(0) (73)

We compute the gradients by integrating the adjoint system of equations within
each interval backward in time,

λ̇mc + adλmc
vc + ad†λmc

vc − adfc λuc
− ad†fc λuc −K ? λIcDIc = 0 (74)

λ̇uc + λmc + ad†λuc
vc + ad†vc λuc = 0 (75)

λ̇Pc +DIc · λuc +DλPc · vc = 0 (76)

λ̇Ic +∇ · (λIcvc)−∇ · (Pcλuc) = 0 (77)

All variables start from zero as their initial conditions for this backward
integration.

Note 1. true for non-periodic case only We add jumps in λI as λIc(t
+
i )−λIc(t−i ) =

1
σ2 (Ic(ti) − Ji) at measurements, t = ti. We ensure the continuity of λmc, λuc,
and λIc at the joins. However, λPc starts from zero at every join.

The accumulated λPc+1 is used to update the Pc(tk) as per the gradient,

δPc+1(tc)(tc)
E = −λPc+1(tc) (78)

Note this is the ‘data independent’ control that we motivated our formulation
with. This determintes the initial condition of the forward system for each in-
terval and needs to be estimated by gradient descent.



C Supplementary results

m(0)

u(0)

P(0) P(0.5)

Fig. 1: Estimated states for regression using splines with one control for synthetic data.
Top row: initial momenta at t=0. Middle row: initial acceleration or control at t=0.
Bottom left: jerk at t=0, and bottom right: jerk at t=0.5.
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P(0)
Fig. 2: Estimated states for regression using splines without control for synthetic data.
Top row: initial momenta at t=0. Middle row: initial acceleration or control at t=0.
Bottom left: jerk at t=0.
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Fig. 3: Full-page version of spline regression results on cardiac MRI breathing data.
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Fig. 4: Estimated states for regression using splines with one control for cardiac data.
Top row: initial momenta at t=0. Middle row: initial acceleration or control at t=0.
Bottom left: jerk at t=0, and bottom right: jerk at t=0.5.
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Fig. 5: Estimated states for regression using splines without control for cardiac data.
Top row: initial momenta at t=0. Middle row: initial acceleration or control at t=0.
Bottom left: jerk at t=0.
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