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Abstract. This paper develops a method for splines on diffeomorphisms
for image regression. In contrast to previously proposed methods to cap-
ture image changes over time, such as geodesic regression, the method
can capture more complex spatio-temporal deformations. In particular,
it is a first step towards capturing periodic motions for example of the
heart or the lung. Starting from a variational formulation of splines the
proposed approach allows for the use of temporal control points to control
spline behavior. This necessitates the development of a shooting formu-
lation for splines. Experimental results are shown for synthetic and real
data. The performance of the method is compared to geodesic regression.

1 Introduction

With the now common availability of longitudinal and time-series image data,
models for their analysis are critically needed. In particular, spatial correspon-
dences need to be established through image registration for many medical image
analysis tasks. While this can be accomplished by pair-wise image registration
to a template image, such an approach neglects spatio-temporal data aspects.
Instead, explicitly accounting for spatial and temporal dependencies is desirable.

Methods that generalize Euclidean parametric regression models to mani-
folds have proven to be effective for modeling the dynamics of changes rep-
resented in time-series of medical images. For instance, methods of geodesic
image regression [6,9] and longitudinal models on images [10] generalize lin-
ear and hierarchical linear models, respectively. Although the idea of polynomi-
als [5] and splines [11] on landmark representation of shapes have been proposed,
these higher-order extensions for image regression remain deficient. While Hin-
kle et al. [5] develop general polynomial regression and demonstrate it on finite-
dimensional Lie groups, the infinite dimensional regression is demonstrated only
for the first-order geodesic image regression.

Contribution. We propose: (a) a shooting based solution to cubic image re-
gression in the large deformation (LDDMM) setting, (b) a method of shooting
cubic splines as smooth curves to fit complicated shape trends while keeping
data-independent (finite and few) parameters, and (c) a numerically practical
algorithm for regression of “non-geodesic” medical imaging data. This article is
structured as follows: § 2 reviews the variational approach to splines in Euclidean
space and motivate its shooting formulation for parametric regression. § 3 then
generalizes this concept of shooting splines for diffeomorphic image regression.
We discuss experimental results in § 4.



2 Shooting-splines in the Euclidean Case

Variational formulation. An acceleration controlled curve with time-dependent
states, (x1, x2, x3) such that, x2 = ẋ1 and x3 = ẋ2, defines a cubic curve in Eu-

clidean spaces. This curve minimizes an energy of the form, E = 1
2

∫ 1

0
‖x3‖2dt,

and solves an underlying constrained optimization problem,

minimize
x1,x2,x3

E(x3) subject to x2 = ẋ1 and x3 = ẋ2. (1)

Here x3 is referred to as the control variable that describes the acceleration of
the dynamics in this system. The unconstrained Lagrangian for the above is,

E(x1, x2, x3, µ1, µ2) =
1

2

∫ 1

0

‖x3‖2dt+

∫ 1

0

µT1 (ẋ1 − x2)dt+

∫ 1

0

µT2 (ẋ2 − x3)dt,

where µ1 and µ2 are the time-dependent Lagrangian variables or the adjoint
variables (also called duals) that enforce the dynamic constraints. Optimality
conditions on the gradients of the above Lagrangian with respect to the states,
(x1, x2, x3), result in the adjoint system of equations, µ̇1 = 0 and ẋ3 = −µ1 (µ2

gets eliminated). This allows for a relaxation solution to Eq. (1).
From relaxation to shooting. We write the shooting formulation by explicitly
adding the evolution of x3, obtained by solving the relaxation problem, as a
dynamical constraint. This increases the order of the dynamics. Denoting, x4 =
−µ1, results in the classical system of equations for shooting cubic curves,

ẋ1 = x2(t), ẋ2 = x3(t), ẋ3 = x4(t), ẋ4 = 0. (2)

The states, (x1, x2, x3, x4), at all times, are entirely determined by their initial

values (x01, x
0
2, x

0
3, x

0
4), and in particular, x1(t) = x01 + x02t+

x0
3

2 t
2 +

x0
4

6 t
3.

Shooting-splines with data-independent controls for regression. We
now present our proposed method of regression using cubic splines using the
shooting equations. The goal is to define a smooth curve that best fits the data
in the least-squares sense. Since a cubic polynomial by itself is restricted to only
fit “cubic-like” data, we propose to add flexibility to the curve by piecing together
piecewise cubic polynomials. In other words, we define controls at pre-decided
locations in time where the state x4 is allowed to jump.

Let, yi, for i = 1 . . . N , denote N measurements at timepoints, ti ∈ (0, 1). Let
tc ∈ (0, 1), for c = 1 . . . C, denote C data-independent fixed control locations. For
notational convenience, we assume there are no measurements at the end points,
{0, 1}, or at the control locations, {tc}. The control locations also implicitly
define C + 1 intervals or partitions in (0, 1). Let us denote these intervals as
Ic, for c = 1 . . . (C + 1). The constrained energy minimization that solves the
regression problem with such a data configuration,

minimize
x1(0),x2(0),x3(0),x4(0),{x4(tc)}

1

2σ2

C+1∑
c=1

∑
i∈Ic

‖x1(ti)− yi‖2 (3)

s.t. ẋ1 = x2(t), ẋ2 = x3(t), ẋ3 = x4(t), ẋ4 = 0,
(
within each interval, Ic

)
, and

s.t. x1, x2, and x3 are continuous across C.
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Fig. 1: States for splines regression in Euclidean space with one control at t=0.5.

The unconstrained Lagrangian enforcing shooting and continuity constraints us-
ing time-dependent adjoint states, (λ1, λ2, λ3, λ4), and duals, (ν1, ν2, ν3), is

E(x01, x
0
2,x

0
3, x

0
4, x

tc
4 , λ1, λ2, λ3, λ4) =

1

2σ2

C+1∑
c=1

∑
i∈Ic

‖x1(ti)− yi‖2

+

∫ 1

0

(
λT1 (ẋ1 − x2) + λT2 (ẋ2 − x3) + λT3 (ẋ3 − x4) + λT4 ẋ4

)
dt

+ ν1(x−1 (tc)− x+1 (tc)) + ν2(x−2 (tc)− x+2 (tc)) + ν3(x−3 (tc)− x+3 (tc)).

The conditions of optimality on the gradients of the above Lagrangian result
in the adjoint system of equations, λ̇1 = 0, λ̇2 = −λ1, λ̇3 = −λ2, λ̇4 = −λ3.
The gradients with respect to the initial conditions for states x0l for l = 1, . . . , 4
are, δx0

1
E = −λ1(0), δx0

2
E = −λ2(0), δx0

3
E = −λ3(0) and δx0

4
E = −λ4(0).

The jerks at controls, xtc4 , are updated using, δxtc
4
E = −λ4(tc). The values

of adjoint variables required in these gradients are computed by integrating
backward the adjoint system. Note that λ1, λ2 and λ3 are continuous at joins,
but λ1 jumps at the data-point location as per, λ1(t+i )−λ1(t−i ) = 1

σ2 (x1(ti)−yi).
During backward integration, λ4 starts from zero at each interval at tc+1 and
the accumulated value at tc is used for the gradient update of x4(tc).

It is critical to note that, along the time, t, such a formulation guarantees
that: (a) x4(t) is piecewise constant, (b) x3(t) is piecewise linear, (c) x2(t) is
piecewise quadratic, and (d) x1(t) is piecewise cubic. Thus, this results in a
cubic-spline curve. Fig. 1 demonstrates this shooting spline fitting on scalar data.
While it is not possible to explain this data with a simple cubic curve alone, it
suffices to allow one control location to recover the meaningful underlying trend.
The state, x4, experiences a jump at the control location that integrates up
thrice to give a C2-continuous evolution for the state, x1.

3 Shooting-splines for Diffeomorphisms

Notations and preliminaries. We denote the group of diffeomorphisms by G
and its elements by g; the tangent space at g by TgG; and the Lie algebra, TeG,
by g. Let Ω be the coordinate space of the image, I. A diffeomorphism, g(t), is



constructed by integrating an ordinary differential equation (ODE) on Ω defined
via a smooth, time-indexed velocity field, v(t). The deformation of an image I
by g is defined as the action of the diffeomorphism, given by g · I = I ◦ g−1. The
choice of a self-adjoint differential operator, L, determines the right-invariant
Riemannian structure on the collection of velocity fields with the norm defined
as, ‖v‖2g =

∫
Ω

(Lv(x), v(x))dx. The velocity, v ∈ g, maps to its dual deformation
momenta, m ∈ g∗, via the operator L such that m = Lv and v = K ? m. The
operator K : g∗ → g denotes the inverse of L. For a thorough review of the
Riemannian structure on the group of diffeomorphisms, please refer to [12,1,13].
Variational formulation. As an end-point problem, a Riemannian cubic spline
is defined by the curve g(t), that minimizes an energy of the form, E(g) =
1
2

∫ 1

0
‖∇ġ ġ‖2TgG

dt, where ∇ denotes the Levi-Civita connection and ‖ · ‖TgG is
the metric on the manifold at g. The quantity, ∇ġ ġ, is the generalization of
the idea of acceleration to Riemannian manifolds [7,3]. Another way to define
the spline is by defining a time dependent control that forces the curve g(t) to
deviate from being a geodesic [11]. Such a control or a forcing variable, u(t),
takes the form, ∇ġ(t)ġ(t) = u(t). Notice, u(t) = 0 implies that g(t) is a geodesic.

Taking this idea forward to the group of diffeomorphisms, G, we propose to
include a time-dependent forcing term that describes how much the ‘geodesic re-
quirement’ deviates. Thus, we define the control directly on the known momenta
EPDiff evolution equation for geodesics[13], obtained using the right invariant
metric to give the evolution in Lie algebra, g, as ṁ+ ad∗vm = 0. Here, the oper-
ator ad∗ is the adjoint of the Jacobi-Lie bracket [2,13]. After adding this control,
the dynamics take the form, ṁ + ad∗vm = u, where u ∈ g∗. Thus we allow the
geodesic to deviate from satisfying the EPDiff constraints and constrain it to

minimize an energy of the form, E = 1
2

∫ 1

0
‖u(t)‖2gdt. It is important to note that

such a formulation will avoid direct computation of curvature. In other words,
since the Levi-Civita connection is expressed in terms of curvature, we bypass it
when we control the EPDiff in g instead of controlling ∇ġ(t)ġ(t) in Tg(t)G.

The constrained energy minimization problem for splines is,

minimize
u

1

2

∫ 1

0

‖u(t)‖2gdt

subject to control u(t)− ṁ(t)− ad∗v(t)m(t) = 0,

subject to right action ġ(t) = v ◦ g(t),

subject to image evolution I(t) = I(0) ◦ g−1(t),

subject to momenta duality v(t) = K ?m(t).

(4)

Similar to the Euclidean case, the Euler-Lagrange equations for the above op-
timization problem give an adjoint system that explains the evolution of u, or
equivalently its dual, f ∈ g (f = K?u), such that, ḟ−K?PDI+ad†f v−adv f = 0,

and Ṗ +∇· (Pv) = 0. Here, P is the adjoint variable corresponding to the image

evolution constraint and the conjugate operator is, ad†X(·) = K ? adX L(·).
From relaxation to shooting. Notice that the above discussion is analogous
to the discussion of the relaxation formulation for the Euclidean case in the



sense that the Euclidean states (x1, x2, x3) 7→ (g, v, f) in diffeomorphisms. We
now convert the adjoint state, P (t) to a primal state to form a forward shooting
system. Analogous to the Euclidean case, this increases the order of the system
by one. The shooting system for acceleration controlled motion is

ġ − v ◦ g = 0, v̇ − f + ad†v v = 0,

ḟ −K ? PDI + ad†f v − adv f = 0, Ṗ +∇ · (Pv) = 0.

The image evolves (equivalently advects) as per the group action of g on I(0).
Here, the vector quantity, K ? PDI is analogous to x4.
Shooting-splines with data-independent controls for regression. Similar
to the data configuration in the Euclidean example, in the context of regression,
let, Ji, for i = 1 . . . N , denote N measured images at timepoints, ti ∈ (0, 1).
The goal now is to define finite and relatively fewer points than the number of
measurements in the interval, (0, 1) where K ?PDI is allowed to jump. In other
words, P does not jump at every measurement but instead, is allowed to be free
at predefined time-points that are decided independently of the data. Thus, we
construct a curve g(t), similar to the Euclidean case, in G, along the time, t,
such that it guarantees, (a) K ? PDI is not continuous, (b) f is C0-continuous,
(c) v is C1-continuous, and (d) g is C2-continuous.

The unconstrained Lagrangian for spline regression takes the form:

E(m0, u0, P 0, I0, P tc , λm, λu, λP , λI) =
1

2σ2

C+1∑
c=1

∑
i∈Ic

‖I(ti)− Ji‖2 (5)

+

C+1∑
c=1

∫ 1

0

〈λmc, ṁc − uc + ad∗vc mc〉+ 〈λuc, u̇− PcDIc + ad∗fc mc −K−1 advc fc〉dt

+

C+1∑
c=1

∫ 1

0

〈λPc, Ṗc +∇ · (Pcvc)〉+ 〈λIc, İc +DIc · vc〉+ 〈λvc, vc −K ?mc〉dt

+

C+1∑
c=1

∫ 1

0

〈λfc, fc −K ? uc〉dt+ subject to continuity of m, u, and I at C joins.

Gradients. The optimality conditions on the gradients of the above energy
functional show that the adjoint variables, λm, λu, λI , are continuous at all C
joins. The gradients with respect to the initial conditions are,

δm0
1
E = −λm1(0), δu0

1
E = −λu1(0), δP 0

1
E = −λP1(0), δI01E = −λI1(0).

We compute the gradients by integrating the adjoint system of equations within
each interval backward in time,

λ̇mc + adλmc
vc + ad†λmc

vc − adfc λuc
− ad†fc λuc −K ? λIcDIc = 0, (6)

λ̇uc + λmc + ad†λuc
vc + ad†vc λuc = 0, (7)

λ̇Pc +DIc · λuc +DλPc · vc = 0, (8)

λ̇Ic +∇ · (λIcvc)−∇ · (Pcλuc) = 0. (9)



All variables start from zero as their initial conditions for this backward
integration. Similar to the Euclidean case, we add jumps in λI as λIc(t

+
i ) −

λIc(t
−
i ) = 1

σ2 (Ic(ti) − Ji) at measurements, t = ti. We ensure the continuity of
λmc, λuc, and λIc at the joins and λPc starts from zero at every join. We use
the accumulated λPc+1 to update the jerk, Pc(tk), at the control location with,

δPc+1(tc)(tc)
E = −λPc+1(tc). (10)

Note this is the ‘data independent’ control that we motivated our formulation
with. This determines the initial condition of the forward system for each interval
and needs to be estimated numerically. Also note that a regularizer can be added
on the initial momenta, m0

1 by restricting its Sobolev norm, in which case, the
gradient includes an additional term and takes the form, δm0

1
E = Km0

1−λm1(0).

4 Results and Discussion

We evaluate our proposed model using synthetic data and time-sequence data
from the Sunnybrook cardiac MR database [8]. In these experiments, the kernel,
K, corresponds to the invertible and self-adjoint Sobolev operator, L = −a∇2−
b∇(∇·) + c, with a = 0.01, b = 0.01, and c = 0.001. We use fourth order Runge-
Kutta to integrate the primal states forward and to integrate the corresponding
adjoint states backwards. We use a constant stepsize gradient descent to estimate
optimal initial states of spline curves and the controls. We fix the initial image,
I(0), and estimate initial states, m(0), u(0), P (0) and P (tc) at control locations
that completely determine the spline curve g(t) from t = 0 to t = 1.
Experiments with synthetic data. To assess the strength of spline regression
on non-geodesic image data, we create a synthetic sequence of N = 10 shapes
to simulate non-monotonic dynamics from t = 0 to t = 1 (Fig. 2, first row).
The synthetic shape expands till t = 0.2 and then contracts till t = 0.7 and
finally expands again till it reaches the end point, at t = 1.0. Using such data,
we attempt to simulate an inflection point in the velocity or the rate of shape
change at t = 0.5. We observe that adding a single spline control (second row)
in the mid point results in the best fit that summarizes the smooth dynamics
of change. The reported error of fit corresponds to L2 image residual as per the
data-likelihood in Eq. (5). The estimated diffeomorphism successfully captures
the initial trend of expanding shape, followed by its contraction and finally cul-
minating in expansion. Without adding any control, the resulting spline trend,
even though non-monotonic, exhibits a less flexible dynamics and fails to recover
the inflection point in the rate of shape change. Finally, being the most inflexible,
geodesic regression performs worst, and barely captures any real spatio-temporal
trend.
Experiments with cardiac data. The cardiac time-sequence data corresponds
to 20 snapshots at equal intervals of the beating heart of a normal individual
with age=63 years (Subject Id: SCD0003701). We cropped all the axial images to
a common rectangular region around the heart followed by histogram matching
to align intensities of all the timepoints to the image at t = 0. Fig. 3 shows the
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Fig. 2: Comparison of spline regression models: identical stepsizes and number of iter-
ations of gradient descent were used for all models on synthetic data. More information
about all estimated states and video visualizations are in the supplementary material.

original scans (first row) and the result of regression models (second to fourth
row). We only display half of the timepoints than those actually used to fit the
model. Similar to the synthetic data, we observe that the original data exhibit a
non-geodesic and non-monotonic trend in changing shape of the beating heart.
The comparison in terms of the error of fit for all models suggests that both
spline curves perform better than the geodesic. In other words, we obtained a
slightly better fit for the spline curve with single control when compared to the
spline curve without any control. The geodesic fit again performs worst out of
the three models. The dynamics of the beating heart for these models are best
seen in the multimedia file in the supplementary material. 1

We stress that in all our experiments, the full diffeomorphic paths and the
evolution of all states along the estimated curves are completely parameterized
by very few parameters (4 for spline fit with 1 control and 3 for spline fit with-
out any control) that are independent of the study size. The estimated models
are expected to fit better with increasing number of control points, which will
necessitate model selection methods. Due to the limitations of our current op-
timization method, i.e., the constant stepsize gradient descent, we did not try
spline estimations with more than one control point. This will be the subject
of future work. Another aspect could be investigating possibilities of combining
our model on diffeomorphisms with the higher order models on shapes [4,11].
This method of shooting splines in diffeomorphisms lays a foundation to model
flexible dynamics of shape changes seen in time series of medical images, and
in particular, opens the possibility to model periodic data by adding periodicity
constraints.

Acknowledgments. This research is supported by grants, NSF EECS-1148870,
NSF EECS-0925875, and NIH R01-MH091645.

1 Supplementary material including derivations, video visualizations, and the
CPU/GPU implementations of the shooting splines for 2D and 3D image sequences
is at https://nikhilsingh@bitbucket.org/nikhilsingh/diffeosplines.git

https://nikhilsingh@bitbucket.org/nikhilsingh/diffeosplines.git
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Fig. 3: Spline regression models on cardiac MRI breathing data. Comparison is better
seen in the video visualizations in supplementary material.
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