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Abstract. With the advent of advanced imaging techniques, genotyp-
ing, and methods to assess clinical and biological progression, there is
a growing need for a unified framework that could exploit informa-
tion available from multiple sources to aid diagnosis and the identifica-
tion of early signs of Alzheimer’s disease (AD). We propose a modeling
strategy using supervised feature extraction to optimally combine high-
dimensional imaging modalities with several other low-dimensional dis-
ease risk factors. The motivation is to discover new imaging biomarkers
and use them in conjunction with other known biomarkers for prognosis
of individuals at high risk of developing AD. Our framework also has the
ability to assess the relative importance of imaging modalities for pre-
dicting AD conversion. We evaluate the proposed methodology on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database to predict
conversion of individuals with Mild Cognitive Impairment (MCI) to AD,
only using information available at baseline.

1 Introduction

Mild cognitive impairment (MCI) is an intermediate stage between healthy ag-
ing and dementia. Patients diagnosed with MCI are at high risk of developing
Alzheimer’s disease (AD), but not everyone with MCI will convert. Accurate
prognosis for MCI patients is an important prerequisite for providing the opti-
mal treatment and management of the disease. The complex anatomical shape
changes that occur during disease progression can be extracted from magnetic
resonance images (MRI) of the brain. Decreased synaptic response and brain
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function can be measured using functional imaging modalities, such as [18F]-
fluorodeoxyglucose Positron Emission Tomography (FDG-PET). Additional po-
tential risk biomarkers include blood and cerebrospinal fluid (CSF) markers,
including genetic susceptibility assessed by apolipoprotein E (APOE) genotype
and plaque deposition assessed by concentration of Aβ-42 and ptau181. The chal-
lenge for predicting conversion is to combine these heterogeneous data sources,
some of which are high-dimensional (MRI and PET) and some low-dimensional
(clinical, CSF, APOE carrier), by selecting features that optimally weight the
relative contribution from each modality.

Recent studies have examined the role of different classes of biomarkers, cogni-
tive measures, and genetic risk factors either in combination with a single imag-
ing modality or independently for predicting conversion from MCI to AD [1,2].
Weiner et. al [3] offer a comprehensive review of this ongoing research. Despite ev-
idence for the predictive capability of individual biomarkers, cognitive measures,
or neuroimaging data, relatively little attention has been given to combining in-
formation available from multiple imaging modalities with the biomarkers [4].
In one such study, Kohannim et. al [4] combine FDG-PET-derived numerical
summaries, MRI-derived volume measures, CSF biomarkers, APOE genotype,
and subject demographics for the task of discriminating MCI from AD. However,
their work did not address prediction of conversion to AD.

In this article, we present a unified framework to combine the high-dimensional
information available from multiple imaging modalities, anatomical shape atro-
phy (derived from MRI) and neuronal hypometabolism (derived from FDG-
PET), with other low-dimensional biomarkers, such as APOE carrier status,
Aβ-42 and ptau181 concentration. We use Partial Least Squares as a supervised
dimensionality-reduction technique to fuse the weighted combination of the two
imaging modalities together with the clinical information. This data-driven for-
mulation finds the optimal combination of these high-dimensional modalities
that best characterize the disease progression. The focus of this work is to assess
the combined predictive capability of this model for early detection of conversion
of MCI to AD by using only the information available at baseline.

2 Methodology

We use the general framework of computational anatomy [5] to characterize the
anatomical shape variation. Since the anatomical shape and neuronal metabolic
activity are two separate measures obtained from independent imaging modal-
ities, we combine the two to form a product space of the joint imaging modal-
ities. To make pattern analysis robust, we propose a supervised dimensionality
reduction to represent this high-dimensional data in terms of a few features,
specifically selected to best explain factors relevant to dementia. Further, the
extracted imaging features are used in conjuntion with APOE genotype and/or
CSF biomarkers for assessing the risk of conversion of an MCI individual to AD.
Fig. 1 summarizes our feature selection and classification framework.
Anatomical Shape Variations—Deformation Momenta: We follow
the now well-established framework of large deformation diffeomorphic
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Fig. 1. MCI-C/MCI-NC prediction framework. Block A: Feature extraction process
from high-dimensional imaging data. Block B: Classification.

transformations (LDDMM [5]) for capturing structural variation. A convenient
and natural machinery for generating diffeomorphic transformations is by the
integration of ordinary differential equations (ODE) on underlying coordinate
space, Ω defined via the smooth time-indexed velocity vector fields v(t, y) : (t ∈
[0, 1], y ∈ Ω) → R

3. The function φv(t, x) given by the solution of the ODE
dy
dt = v(t, y) with the initial condition y(0) = x defines a diffeomorphism of Ω.
Following [6], we use a group-wise approach and build the mean population-

based atlas, Ī. We quantify the structural variability of the individual by register-
ing the atlas to each image via estimating geodesic diffeomorphic transformations.
Given a collection of anatomical images {Ii, i = 1, · · · , N}, the minimum mean
squared energy atlas construction problem is that of jointly estimating an image
Ī and N individual deformations:

Ī = argmin
I,φi

1

N

N∑

i=1

∫

Ω

||I ◦ φ−1
i − Ii||2dx+ d(id, φi)

2, (1)

where d is the Riemannian metric defined on the space of diffeomorphisms and
id is the identity diffeomorphism. For each of the N LDDMM image matching
problems the geodesic evolution are given in terms of deformation momenta,
αi(t), by:

vi(t)+K �∇Itαi(t) = 0, ∂tα
i(t)+∇· (αi(t)vi(t)) = 0 and ∂tIt +∇It · vi(t) = 0

where K is the kernel associated with the metric d. The second equation is the
conservation of momenta while the third is the infinitesimal action of the velocity
field, v on the image. This results in the estimate of N geodesics emanating from
the atlas towards each image. The geodesic equations are completely determined
via the scalar initial momenta, αi(0) in the atlas space corresponding to each
individual image deformation direction. The LDDMM image matching prob-
lem is solved using the iterative backward-integration based gradient descent
algorithm. The gradient of the energy functional in (1) is expressed in terms
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of time-dependent Lagrangian multiplier or adjoint variables over the path of
geodesics resulting in a set of adjoint equations (details in [7]).

FDG-PET Metabolism Activity—SSP: As the disease advances the pro-
gressive neurodegeneration is accompanied by reduced neuronal metabolism
and increased synaptic dysfunction. This results in decreased uptake of [18F]-
fluorodeoxyglucose (FDG) measured by Positron Emission Tomography (PET)
functional imaging. ADNI FDG-PET images are co-registered to the talaraich
atlas space using Neurostat [8]. Peak pixel values are selected and 3D-stereotactic
surface projection (3D-SSP) maps of glucose metabolism are computed relative
to pons. Corresponding statistical maps of Z-scores, pi(i = 1, · · · , N), are gen-
erated in comparison to cognitively normal control subjects (μage = 69.6± 7.7).

Combining Structure & Function: The shape space represented by the space
of deformation momenta, S, and the space of neuronal metabolic activity rep-
resented by 3D-SSP, P , are both high-dimensional spaces. Since the anatomical
shape and metabolic activity are two separate measures obtained from indepen-
dent imaging modalities, we combine the two spaces to form a product space that
defines the combined space of imaging modalities,M such that: M = S ×P . In-
ner product between a pair mi = (αi, pi) ∈M and mj = (αj , pj) ∈M is defined
via a their convex combination as: 〈mi,mj〉M = η〈αi, αj〉S + (1 − η)〈pi, pj〉P .
The factor, η is interpretable as a relative weight when both the modalaties are
normalized to have unit variance.

Supervised Dimensionality Reduction via Partial Least Squares: The
structural and functional information extracted from two imaging modalities
results in a feature space with much higher dimension than the population size.
Although classifiers utilizing kernel approaches such as Support Vector Machines
(SVM) could work in the high-dimensional imaging feature space, for Linear
Discriminant Analysis (LDA), dimensionality reduction has to be performed.
We adopt a well known methodology for regression called Partial Least Squares
(PLS) [9][10]. The Partial Least Squares can be interpreted as a supervised
dimensionality reduction technique based on latent decomposition model. We
adapt the PLS methodology for the purpose of extracting relevant features from
the combination of shape and 3D-SSP data supervised by the clinical scores such
as MMSE, ADAS, CDR and clinical cognitive status that are treated as global
measures of dementia. We find directions m̂ in the combined product space of
imaging modalities,M, and directions ŷ in the clinical response space, Y, that
explain their association in the sense of their common variance. The projections
of shape and pet data along the directions, m̂i are treated as the features for the
classifier. The PLS problem is given by:

max cov(〈m̂,mi〉, 〈ŷ, yi〉) subject to ‖m̂‖ = 1 , ‖ŷ‖ = 1 (2)

The subsequent directions are found by removing the component extracted (de-
flating the data) both in space,M and the clinical response space, Y as:

mi ← mi − 〈m̂,mi〉Mm̂ and yi ← yi − 〈ŷ, yi〉Y ŷ
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The solution to this covariance maximization problem is the Singular Value
Decomposition (SVD) of the cross covariance matrix. The corresponding direc-
tion vectors m̂’s and ŷ’s are the respective left and right singular vectors. The
maximum number of possible latent vectors are limited by the inherent dimen-
sionality of the two spaces, i.e., by min(dim(M), dim(Y)).

Note that the efficient implementations of solution to the PLS via SVD uses
the Gram matrix of inner products of the data. If we denote the Gram matrix
of momenta by GS and that of 3D-SSP by GP , the fused Gram matrix for
the product space weighted by η can be written as: GM = ηGS + (1 − η)GP .
The projection scores, thus obtained by PLS, have combined information of
anatomical shape and glucose metabolic activity that is used as features together
with low-dimensional modalities such as genetic biomarkers of APOE carrier
status and/or CSF biomarker available from spinal tap tests.

APOE Carrier Status—Genetic Biomarker: A confirmed risk factor for
Alzheimer’s disease is the status of apolipoprotein E (APOE) gene in an indi-
vidual. APOE exhibit polymorphisms with three major isomorphisms or alleles:
APOE ε2, APOE ε3 and APOE ε4. Majority of the population with late-onset of
AD is found to be dominant in APOE ε4 allele. APOE carrier status is computed
based on the allele copy inherited from parents in an individual. We consider
the binary status for APOE genetic risk based on whether the individual has at
least one copy of allele ε4 and treat those subjects as APOE-carrier.

Prediction of Conversion to AD: Distinguishing the probable convertors
from the population of MCI is a binary classification problem. While there are
several ways to look at this problem, we present here a formulation of the classi-
fier supervised by the AD group and healthy control group (NL). In other words,
the classifier is trained on the AD and NL but is used as a “recommender” for
the test MCI subject. Based on the classification score obtained on the MCI
subject, the prediction of the classifier is interpreted. We denote the test MCI
subject as “AD-like” when the classifier recommends AD and treated as pre-
dicted MCI-C otherwise termed as “Stable-MCI” or predicted MCI-NC. The
classifier accuracy is assessed by comparing the predicted MCI-C or MCI-NC
status with the conversion status from the follow-up study for that test MCI
subject. The proposed methodology is evaluated using the LDA, its quadratic
variant–Quadratic Discriminant Analysis (QDA), and SVM as binary classifiers.

3 Results and Discussion

Data Preprocessing: All the baseline and screening T1 weighted, bias-field-
corrected and N3 scaled structural Magnetic Resonance Images were downloaded
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Prepro-
cessing the MRI involved skull stripping and registration to talairach coordinates
as a part of the ADNI preprocessing pipeline. Tissue-wise intensity normalization
for white matter, gray matter, and cerebrospinal fluid was performed using the
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Fig. 2. Shape and PET weighting factor, η for different classifiers based on AUC

Table 1. ADNI data details

Diagnosis 54 Stable NL controls, 127 MCI, 61 AD

Education μ = 15.27 and σ = 3.23

Age μ = 75.56 and σ = 6.65

Gender 98 Females and 144 Males

Handedness 229 Right and 13 Left

APOE positive 13 NL’s, 70 MCI’s, 41 AD’s

Follow-up From baseline upto 48 months

MCI-C/NC status 54 out of 127 MCI converted to AD

Table 2. MCI-C vs. MCI-NC classifi-
cation results for ηOPT

AUC Acc (%) Sen(%) Spec(%) η

QDA 0.72 66.14 64.81 67.12 0.7

LDA 0.69 63.78 74.07 56.16 0.8

SVM 0.69 64.57 72.20 58.90 0.8

expectation maximization based segmentation followed by the piecewise poly-
nomial histogram matching algorithm. The FDG-PET data was processed to
get 3D-SSP as detailed in Section 2. The corresponding clinical test score, the
CSF-biomarker data and the APOE genotype information were also retrieved.
The baseline subjects that had all the clinical, APOE genotyping, FDG-PET
imaging and MRI imaging data from the ADNI database comprised of a total
of 242 individuals. Table 1 reports the details about the subject demographics,
diagnosis, apoe carrier status and future conversion status.

To extract the anatomical shape features, the unbiased atlas, Ī is constructed
from the preprocessed baseline MR brain images on the Graphical Processing
Unit (GPU) [6]. The geodesics emanating from this estimated atlas towards
each subject are estimated by warping Ī to each of the baseline subjects to
give initial deformation momenta, αi(0)(i = 1, · · · , N) [7]. The corresponding
3D-stereotactic surface projection (3D-SSP) maps, pi(i = 0, · · · , N), of glucose
metabolism from FDG-PET are computed using Neurostat [8] to give Z-score
maps. The supervised PLS dimensionality reduction is applied on combined
imaging data of AD and NL subjects. Since the response is 4-D, the result-
ing feature space is 4-D and is represented by m̂i (i = 1, · · · , 4). The imaging
features are then combined together with low-dimensional biomarkers such as
APOE carrier status to train the binary classifier for AD/NL classification.

The independent test MCI subject is projected into the shape and PET feature
space defined by the training AD and NL group in terms of m̂i’s. The imaging
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Fig. 3. Receiver operating characterstic curves (ROC) for MCI-C/MCI-NC classifica-
tion with only shape information, only PET information and optimal combination of
shape and PET as per ηOPT

features for the test MCI subject are combined with its APOE carrier status.
The trained AD/NL-classifier’s prediction on MCI baseline features is then used
as a recommendation for future conversion to AD. Note that, for the test MCI
subject, no clinical scores such as ADAS, MMSE, CDR or diagnostic information
in any form is used during feature extraction from imaging data or classifier
prediction. The accuracy of prediction is evaluated by comparing against the
actual conversion status using the follow-up diagnosis data.

Fig. 2 shows area under the receiver operating characterstic curve (AUC) as a
function of the weighting factor, η, for the three separate classifiers discriminat-
ing MCI-C vs MCI-NC. The accuracy of prediction of MCI to AD conversion and
the associated η is given in Table 2. The reported numbers correspond to opti-
mal η, based on AUC. QDA performed the best with accuracy of 66% and AUC
of 0.72 at η = 0.8. Also, the optimal combination of PET and shape performed
much better as compared to only using PET or anatomical shape information
irrespective of the choice of classifier used (Fig. 3). Besides APOE carrier status,
the above analysis was also done after adding log transformed CSF-biomarkers:
Aβ-42 and ptau181 concentration, which reduced the study sample-size to only:
29 NL, 36 AD and 59 MCI. With CSF-biomarkers, a slight increase in accuracy
was observed for QDA: accuracy=68% and AUC= 0.72 (η = 0.8).

The log Jacobians of the deformation, overlayed on atlas image Ī, resulting
from evolving Ī along the geodesic represented by the classifier weights are shown
in Fig. 4. The selected slices from this 3D overlay shown here capture relevant
regions of the neuro-anatomical structures, such as hippocampus, pertinent to
cognitive impairment in Alzheimer’s and related dementia. Similarly, the PET
classifier weights are translated back in the Z-score space of 3D-SSP (Fig. 5).

The major contribution of this article is the ability to extract, in order of
relevance, the disease-characterizing patterns from multiple imaging modalities.
The presented framework has broad applicability to data analysis studies in-
volving heterogeneous data sources, both in terms of modalities and dimensions.
We observed that the shape component dominated the model with up to 80%
contribution compared to only 20% contribution from the PET component, irre-
spective of the classifier used. The spatial patterns of anatomical shape changes
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R-sagittal L-sagittal Axial

Fig. 4. Shape: Discriminating regions obtained from classifier weights for prediction
of MCI conversion to AD. Log of Jacobians overlayed on atlas. Red denotes regions of
local expansion and blue denotes regions of local contraction.

R-Lateral L-Lateral Superior Inferior Anterior Posterior R-Medial L-Medial

Fig. 5. FDG-PET: Discriminating regions obtained from classifier weights for predic-
tion of MCI conversion to AD in 3D-SSP Z-score space.

were primarily the expansion of lateral ventricles and CSF, together with the
shrinkage of the cortical surface.Another critical observation was the clearly ev-
ident shrinkage of the hippocampus and cortical and sub-cortical gray matter
along the discriminating directions. Such patterns of atrophy are well known to
characterize the disease progression in AD and related dementia.
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