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Objectives for a streaming KPCA

I Small space requirement
I Small training time (process training data)
I Small testing time (evaluate unseen test data)
I Bound on potential error
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Algorithm: SKPCA

Input: Data A ∈ Rn×d, kernel K, `,m ∈ Z+

Output: RFF maps [f1, · · · , fm], subspace W
[f1, · · · , fm] = RFF(K,m)
B← 0`×m

for i ∈ [n] do

zi =
√

2
m

[f1(ai), · · · , fm(ai)] } RFF projection

B← zi

if B has no zero valued rows then
[Y,Σ,W]← svd(B)

B←
√

max{0,Σ2 − Σ2
`/2,`/2I`} ·WT

end if
end for
Return [f1, · · · , fm] and W
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Theorem 1: Spectral error bound

Let G = ΦΦT be the exact kernel matrix over n points. Let
G̃ = ZWTWZT be the result of Z from m = O((1/ε2) log(n/δ))
RFFand W from running Algorithm SKPCA with ` = 4/ε. Then with
probability at least 1− δ, we have ‖G− G̃‖2 ≤ εn.

Theorem 2: Frobenius error bound

Given that ‖G− G′‖2 ≤ εn we can bound
‖G− G′k‖F ≤ ‖G− Gk‖F + ε

√
kn.

Runtime bounds to obtain ‖G′− G‖2 ≤ εn

Train time Test time
KPCA O(n2(n + d)) O(n(d + n2))

Nyström O(nd + n/ε2 + 1/ε4) O(d/ε2 + 1/ε4)
RNCA O(n((d/ε2) log n + (1/ε4) log2 n)) O((1/ε2)(d + n) log n)

SKPCA O(n log n(d/ε2 + 1/ε3)) O((d + 1/ε)/ε2 log n)

Space bounds to obtain ‖G′− G‖2 ≤ εn

Space
KPCA O(n2 + nd)

Nyström O(d/ε2 + 1/ε4)
RNCA O((d/ε2)n log n)

SKPCA O(((d + 1/ε)/ε2) log n)

Previous work

I Existing approaches to streaming/online KPCA either provide no error
bound, require substantial space during training time, or have an expensive
matrix inverse at test time.

I Incremental KPCA techniques update the eigenspace of kernel PCA without
storing training data, but suffer from unbounded compound error in
intermediate approximations of the eigenspace on adversarial data sets.

I Nystrom approximation methods approximate the kernel (Gram) matrix
G = CW†kCT, by sampling columns of G in a non-streaming setting, but
require a costly matrix inverse at test time.

I Randomized Nonlinear Component Analysis (RNCA) uses a Random Fourier
Feature (RFF) approximation to G via randomized feature maps by directly
approximating the lifting function, but use an exact (costly) covariance
computation.

I We propose Streaming KPCA (SKPCA), combining the computational
benefits of Random Fourier Features (RFF) and approximation bounds of
Frequent Directions (FD) to achieve the stated goals.

Datasets

I Methods were compared on real and synthetic datasets, including three real
datasets below from the UCI machine learning repository.

I The kernel matrix was found using an RBF kernel (or RFF equivalent) with
the bandwidth set to the averge inter-point distance – the spectra and input
data sizes from the three datasets are shown below.

CPU
7373× 21

FOREST
523910× 54

ADULT
33561× 123

Results

RNCA Nystrom SKPCA (2) SKPCA (5) SKPCA (10) SKPCA (20) SKPCA (30) SKPCA (50)
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I Frobenius error is the approximation error, ‖G′ − G‖F.
I The size of the sketch, `, is a parameter and we compare several choices,
` = {2, 5, 10, 20, 30, 50}, indicated by parenthesis in the legend.

Discussion

I Nyström: fast training time (random sampling), considerably slower testing
time due to sample Gram matrix inversion.

I RNCA: fast testing time (matrix multiplication), training slower because
complete covariance accumulation as data are observed

I SKPCA: obtains a more balanced runtime where both training and testing
are competitive
. Error is competitive with previous methods (all methods less than 10−3 in

error)
. Improved error vs space for RFF based methods
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