
Visualizing Reference Traces
A.N.M. Imroz Choudhury1, Steven G. Parker1,2

1 Scientific Computing and Imaging Institute,
 University of Utah
2 NVIDIA

Introduction

It can be arranged for a running program to record its full interaction with memory. The result is a list of Read/Write codes associated with
memory addresses: a large amount of data that is difficult to understand by direct inspection. Though it represents the full and complete inter-
action with the memory subsystem, it lacks both framing and context. The standard way to reduce the amount of data to a manageable form
is to run the trace through a cache simulator, which then reports aggregate numbers of hits and misses, for a summarizing, monolithic view
of program performance.

Our very current work involves using the output of the program in the vi-
sualization of its memory behavior. This is the same reference trace data
once more, but displayed in terms of the particles being physically simu-
lated. Here we see an elastic bar hanging from a ceiling, discretized into
several material particles, and loaded by gravity. The references are still
simulated through a cache, and now each particle shows a history of the
cache effects its accesses have caused, flowing around the edge of its
glyph, with brighter colors indicating more recent accesses. A marker
also shows which particle was the last to be accessed. By correlating
events in the trace with the end of a particular simulation timestep, MTV
is able to load new simulation output data from disk at the appropriate
time, providing a new application-specific context for the reference trace
data. This approach essentially attempts to marry together traditional sci-
entific visualization with a new source of data. By examining the resulting
patterns, our hope is that the memory performance of data structures and
computation approaches can be "debugged".

The first MTV system provides the array view, in which the user selects
some regions of memory to watch; the program registers to disk the base
and limit addresses, and the size of the datatype, for each of these re-
gions. This view performs cache simulation with all the trace records,
and displays the reads and writes that occur within the user-selected re-
gions, along with the "cache result"—hit or miss—encoded as blue-to-red
lights under each region's data representation.

This example shows a trace for a particle simulation code; currently, the
particles' velocity gradient values are being updated, as evidenced by the
reads followed by writes to that region. This view gives some temporal
cues to help the user understand the recent history of the trace: note the
fading trails left by older references as they age. This view provides a
good way to frame the reference trace, but the only context provided is
very general, in terms of the individual effects the references have in a
simulated cache.

Reference Traces

Physical View

Array View

[1] A. I. Choudhury, K. C. Potter, and S. G. Parker. Interactive visualization for memory reference traces. Computer Graphics Forum, 27(3):815–822, May 2008.
[2] D. Weinstein, S. Parker, J. Simpson, K. Zimmerman, and G. Jones. Visualization in the scirun problem-solving environment. In C. Hansen and C. Johnson, editors, The Visualization Handbook, pages
615–632. Elsevier, 2005.

Visualization of program behavior is an important ap-
proach to helping construct high-performance software, as
needed in fields such as scientific computing, where large
problem sizes and scarce supercomputer time demand the
highest possible performance from client applications. Ex-
isting performance analysis tools, such as code profilers,
can indicate the places in a program that lead to runtime
slowdowns, but they often offer little or no help in analyzing
the underlying causes of such slowdowns. Our approach
has been to identify one contributor to performance
slowdowns—namely, the memory subsystem—and to de-
velop methods and tools for (1) extracting viable data
sources related to memory and (2) transforming and visu-

alizing these sources in order to help develop insight about
performance problems that may arise from poor use of the
memory subsystem.

The centerpiece of this effort is a visualization system, the
Memory Trace Visualizer (MTV)1, with a modular design in-
spired by the SCIRun system2. So far, this system handles
memory reference traces generated by CPU programs by
casting the references in terms of pre-defined arrays in
memory containing data the user wishes to focus on, al-
lowing for the visualization of access patterns as they
appear in memory itself.

Currently, we are investigating an extension of this idea,
namely, using application-specific information to re-frame
the same reference trace data in a new way. An example
showing a first attempt at this approach on a particle simula-
tion appears below. We also have plans to extend this
system to handle GPU programs. Finally, because such
traces are very large, yet contain relatively little information
(due to the spatiotemporal locality that is the hallmark of
memory references in typical programs) we are also looking
into methods for capturing such traces in a sparse manner,
without overly degrading their quality (i.e., accuracy), with
the goal of both fast and accurate trace collection.

How do we capture program behavior?

