

Monte Carlo EM With Hidden Markov Models To Detect Functional Networks In Resting-State fMRI

Contribution

- Resting State functional MRI can be used to detect intrinsic activity of human brain, and helps the study of functional network connectivity.
- We use a Bayesian framework with Markov random field as prior, and mixture of von Mises-Fisher distribution as likelihood, for partitioning the brain cortex into distinct functional networks.
- Use Monte Carlo EM algorithm to approximate intractable expectation over all possible labelings. MCEM solutions are superior to mode approximation.
- Able to identify visual, motor, salience, and default mode networks with consistency between subjects.

Likelihood

- Normalization $x \leftarrow (x \overline{x}) / \sigma_x$. The sample correlation between normalized time courses is equal to their inner product.
- Model the likelihood function $P(\boldsymbol{x}_i|z_i)$ using the von Mises-Fisher distribution

$$f(\boldsymbol{x}_i; \boldsymbol{\mu}_l, \kappa_l | z_i = l) = C_p(\kappa_l) \exp\left(\kappa_l \boldsymbol{\mu}_l^T \boldsymbol{x}_i\right).$$

• Also define distributions on parameters. We assume that $\forall l \in \mathcal{L}, \, \kappa_l \sim \mathcal{N}(\mu_\kappa, \sigma_\kappa^2)$. This prior enforces constraints that the clusters should not have extremely high or low concentration parameters.

Priors

• Functional network spatial smoothness assumption is model by Markov Random Field

$$P(\mathbf{z}) = \frac{1}{C} \exp\left(-\beta \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{N}_i} T(z_i \neq z_j)\right).$$

- Spatially smooth functional map has higher probability.
- The Markov-Gibbs equivalence implies that the conditional distribution of z_i at site *i* is:

$$P(z_i | \mathbf{z}_{-i}) = P(z_i | z_{\mathcal{N}_i})$$

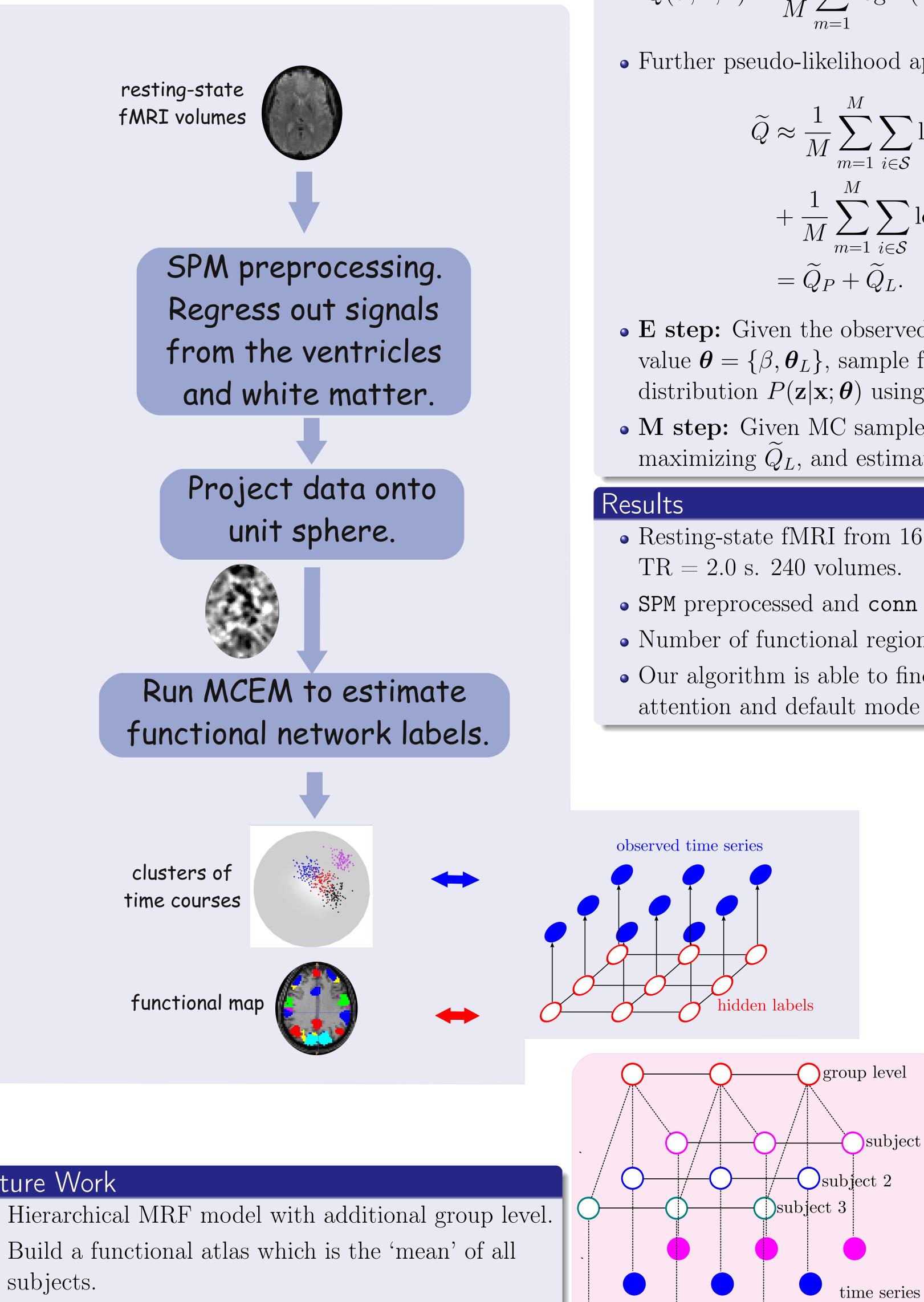
=
$$\frac{\exp\left(-\beta \sum_{j \in \mathcal{N}_i} T(z_i \neq z_j)\right)}{\sum_{l \in \mathcal{L}} \exp\left(-\beta \sum_{j \in \mathcal{N}_i} T(l \neq z_j)\right)}$$

This work was funded in part by NIH Grant R01 DA020269 (Yurgelun-Todd).

Wei Liu, Suyash P. Awate, Jeffrey S. Anderson, Deborah Yurgelun-Todd, and P. Thomas Fletcher Scientific Computing and Imaging Institute, University of Utah, USA

Generative Model

- We assume spatial configuration \mathbf{z} of functional networks is Gibbs distribution.
- Assume each voxel's fMRI time course \boldsymbol{x} is generated conditioned on its network membership.
- Finding the functional connectivity network is equivalent to maximize the posterior probability of functional labels given data.



Future Work

- Hierarchical MRF model with additional group level. • Build a functional atlas which is the 'mean' of all
- Still allowing individual's flexibility.

Monte Carlo EM

• Use expectation maximization (EM) to estimate the model parameters and the hidden labels.

• The combinatorial number of configurations for \mathbf{z} makes the expectation $\mathbb{E}_{P(\mathbf{z}|\mathbf{x})}[\log P(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})]$ intractable, hence a variant of EM called Monte Carlo EM (MCEM).

$$\boldsymbol{\theta}; \mathbf{x}, \mathbf{z}) \approx \frac{1}{M} \sum_{m=1}^{M} \log P(\mathbf{z}^m; \beta) + \log P(\mathbf{x} | \mathbf{z}^m; \boldsymbol{\theta}_L).$$

• Further pseudo-likelihood approximation gives

$$\widetilde{Q} \approx \frac{1}{M} \sum_{m=1}^{M} \sum_{i \in S} \log P(z_i | z_{\mathcal{N}_i}; \beta)$$

+
$$\frac{1}{M} \sum_{m=1}^{M} \sum_{i \in S} \log P(\boldsymbol{x}_i | z_i; \boldsymbol{\theta}_L)$$

=
$$\widetilde{Q}_P + \widetilde{Q}_L.$$

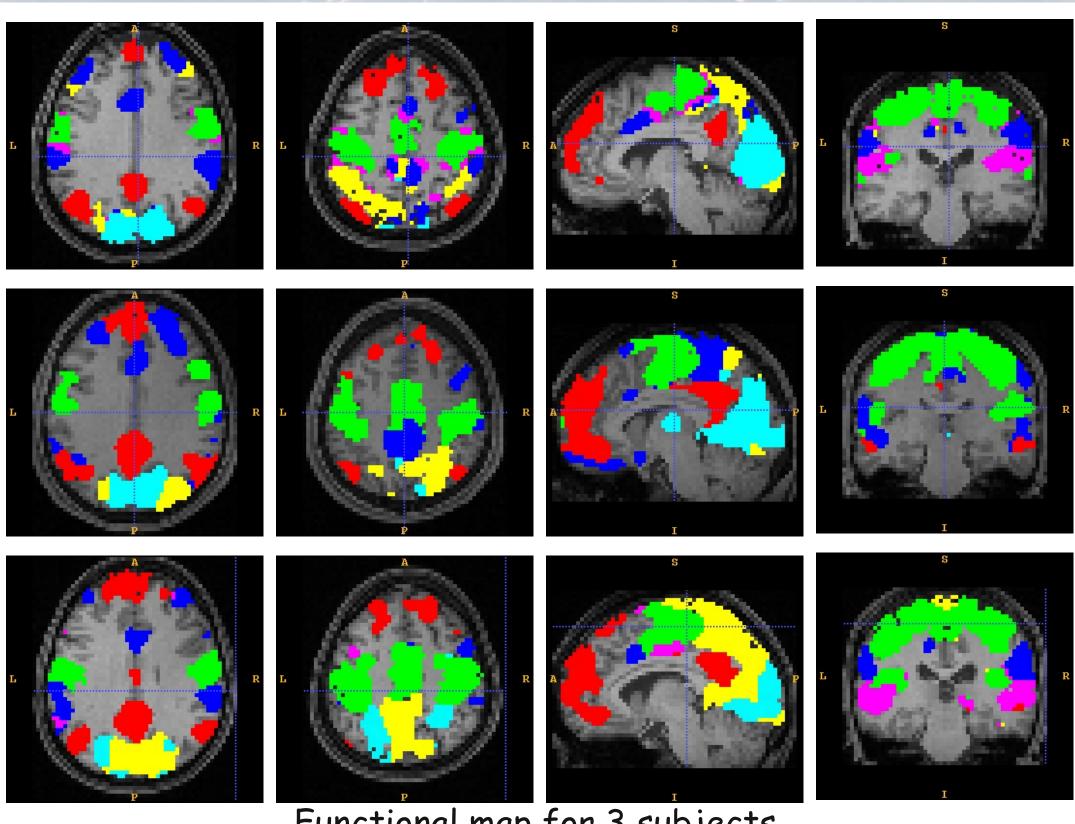
• E step: Given the observed data \mathbf{x} and parameter value $\boldsymbol{\theta} = \{\beta, \boldsymbol{\theta}_L\}$, sample from the posterior distribution $P(\mathbf{z}|\mathbf{x};\boldsymbol{\theta})$ using Metropolis sampling. • M step: Given MC samples, estimate μ and σ by maximizing Q_L , and estimate β by maximizing Q_P .

• Resting-state fMRI from 16 healthy control subjects.

• SPM preprocessed and conn processed.

• Number of functional regions set to 8.

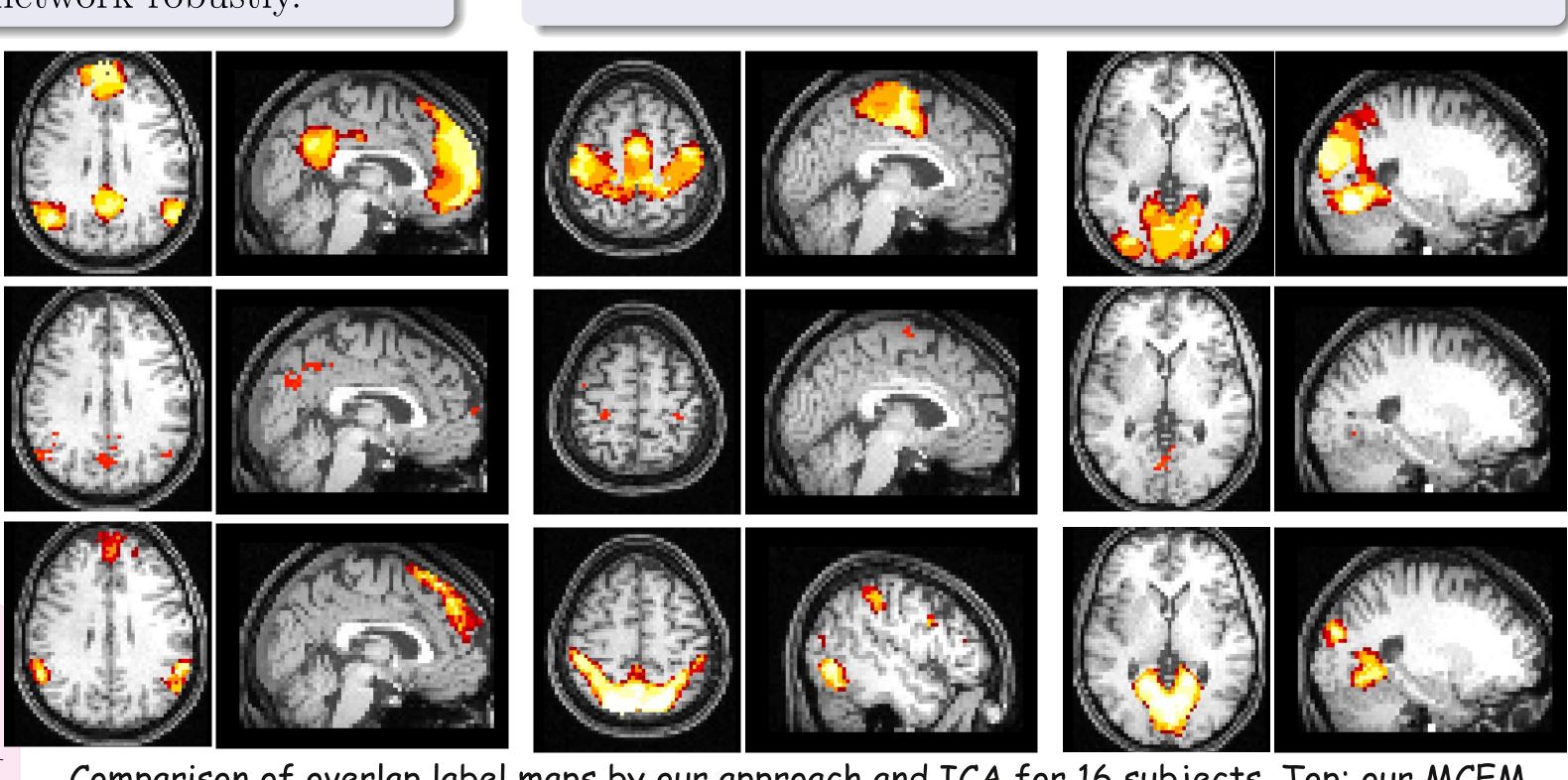
• Our algorithm is able to find visual, motor dorsal attention and default mode network robustly.



Comparison with ICA

- 16 subjects.

Table: The number of voxels with value greater than 8 in the overlapped label map.



Comparison of overlap label maps by our approach and ICA for 16 subjects. Top: our MCEM approach, middle: Individual ICA, bottom: Group ICA. Color ranges from 8 (red) to 16 (yellow).

References

[1] Wei, G., Tanner, M.: A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association 85(411), 699-704 (1990) [2] Liu, W., Zhu, P., Anderson, J., Yurgelun-Todd, D., Fletcher, P.: Spatial regularization of functional connectivity using high-dimensional Markov random fields. MICCAI 2010 pp. 363-370 (2010)

Functional map for 3 subjects.

• Individual ICA and group ICA applied to 3 subjects. Number of components = 16. component map converted to z score and thresholded at 1.

• Compute an overlap map for each functional network by adding the corresponding binary label maps of all

• Look at each method's overlapped label map and count the number of voxels whose value are greater than 8 as shown in the table.

	DMN	Motor	Attention	Visual
CEM	5043	7003	3731	5844
lividual ICA	114	167	228	134
oup ICA	3075	5314	3901	3509