
Reduced Dual-Formulation for Analytical Anisotropic Single Scattering

Figure 3:  A lighthouse in thick brume with an anisotropic two-lobed spotlight rendered in real-time.

3 Results & Conclusion
The method was implemented in a fragment shader using OpenGL and Cg running on an NVIDIA 
GeForce  GTX 280 under Windows Vista 64-bit. The integral was evaluated independently for each 
color channel, hence 3 times per fragment at a resolution of 512x512 as illustrated in figure 3. 
While the previous method renders at 63 FPS, our new evaluation scheme achieves a frame rate of 
77 FPS and consequently yields a speed-up of 1.22X.

In conclusion, we have shown how to reduce the evaluations involved in analytically solving the 
dual-formulation of the air-light integral for anisotropic single scattering from point light sources 
in homogeneous media. Moreover, we have provided a practical implementation and demonstrated 
substantial gains in performance.
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Abstract
An analytical approach to solving anisotropic single scattering from point light sources in ho-
mogeneous media was recently derived via a dual-formulation of the air-light integral. In this 
paper, we demonstrate how to reduce the evaluation of the terms involved in the solution and 
provide an efficient and practical implementation substantially increasing the real-time perfor-
mance characteristics.
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1 Introduction & Related Work
[Pegoraro and Parker 2009] recently derived a closed-form solution to single scattering in homo-
geneous isotropic media. They subsequently extended the analytical approach to anisotropic 
phase functions and light distributions via domain partitioning of the air-light integral [Pegoraro 
et al. 2009]. Solving the resulting dual-formulation however requires multiple evaluations of the 
computationally costly complex-valued exponential integral function.

In this paper, we reformulate the terms involved in solving the dual-formulation and reduce the 
computation to only 3 evaluations of the complex-valued exponential integral instead of 4. In ad-
dition, we provide an efficient implementation yielding a substantial speed-up of the real-time 
performance achieved on graphics hardware.

I0(−H, vh, va ) = i0(−H, va ) − i0(−H, vh )  (1)
I1(−H, vh, va ) = i1(−H, va ) − i1(−H, vh )  (2)
J0(H, wh, wb ) = j0(H, wb ) − j0(H, wh )   (3)
J1(H, wh, wb ) = j1(H, wb ) − j1(H, wh )   (4)

Je(H, wh, wb ) =          (5)Ei ( H
wb

) − Ei ( H
wh

)

with H the optical distance from the light to the ray and where

We here highlight that 1/w = −v, that cos(−a) = cos(a) and sin(−a) = −sin(a), and that 
Ei(z) = Ei(z) yielding the identities

          j0(a,w) = i0(−a, v)      (6)
          j1(a,w) = i1(−a, v) − Ei(−av)   (7)

i0(a, v) = sin(a)   (Ei(av + ıa)) − cos(a)   (Ei(av + ıa))
i1(a, v) = cos(a)   (Ei(av + ıa)) + sin(a)   (Ei(av + ıa))

j0(a,w) = −sin(a) (Ei ( a
w + ıa )) + cos(a) (Ei ( a

w + ıa ))
j1(a,w) =   cos(a) (Ei ( a

w + ıa )) + sin(a) (Ei ( a
w + ıa )) − Ei ( a

w) .

2 Reduced Evaluation & Implementation
Defining u as the variable of integration in the simplified form of the air-light integral as illus-
trated in figure 1, [Pegoraro et al. 2009] proposed the changes of variable v = u+√1 + u2 and
w = u − √1 + u2, and formulated a solution requiring 4 evaluations of the complex-valued expo-
nential integral Ei with the parameters va, vh, wb and wh involved by the computation of the fol-
lowing terms

from which directly follows that the terms involving the complex-valued exponential integral 
at vh and wh are identical. This reduces the computation to only 3 evaluations of the latter func-
tion as illustrated in figure 2 which additionally explicitly sets uh = 0.

ComputeIJ(va, wb, H)

Figure 1:  Illustration of the terms involved in the computation of the air-light integral.

1.  co = cos(−H);
2.  si = sin(−H);
3.  {re, im} = Ei(−Hva,−H);
4.  I0 = si * re − co * im;
5.  I1 = co * re + si * im;
6.  {re, im} = Ei(H/wb,H);
7.  J0 = si * re + co * im;
8.  J1 = co * re − si * im;

9.  {re, im} = Ei(−H,−H);
10.  I0− = si * re − co * im;
11.  J0− = si * re − co * im;
12.  I1− = co * re + si * im;
13.  J1− = co * re + si * im;
14.  Je = E1(H)−E1(−H/wb);
15.  J1− = Je;
16.  return{I0, I1, J0, J1, Je};

Figure 2: Pseudo-code of the reduced evaluation.
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