

Efficient Implementation of Smoothness-Increasing Accuracy Conserving (SIAC) Filters for Discontinuous Galerkin (DG) Solutions

Why SIAC Filtering

 The discontinuous Galerkin method continues to maintain heightened levels of interest within the simulation community because of its discretization flexibility. • This flexibility causes a plethora of difficulties in simulation post-processing such as streamlining.

• SIAC filtering enhances the smoothness of the field by eliminating the discontinuity between elements. High-order accuracy is preserved and in many cases increased.

Figure 1. Point-wise errors in log scale for constant coefficient advection equation over a structured DG triangular mesh.

Implementation

The filtered solution is the result of the convolution of the DG approximation and a B-spline based kernel. In 1D:

$$u^{\star}(x) = \frac{1}{h} \int_{-\infty}^{\infty} K\left(\frac{y-x}{h}\right) u_{h}(y) dy$$

 In higher dimensions the kernel is formed by tensor products of one-dimensional kernels.

Acknowledgments

This project is sponsored in part by the Air Force Office of Scientific Research (AFOSR), Computational Mathematics Program, under grant number FA9550-08-1-0156 and the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA8655-09-1-3055.

Hanieh Mirzaee University of Utah

Jennifer K. Ryan Delft University of Technology

Implementation (continued)

Figure 3. Kernel-mesh intersection. (a) integration regions in the exact evaluation. (b) integration region in the approximate evaluation.

• Only one integration region is considered in the approximate evaluation, however, more quadrature points might be required.

• Near the boundaries a (partly) one-sided form of the kernel is used.

Figure 4. One-sided vs. Symmetric filtering.

 A switch between one-sided and symmetric will take place as soon as possible to avoid extra computational costs.

Robert M. Kirby University of Utah

References

H. Mirzaee, J. Ryan, R. Kirby, "Quantification of errors introduced in the numerical approximation and implementation of SIAC filtering of DG field", Journal of Scientific Computing 45 (2010) 447-470.

Parallelization

• Evaluating the post-processed solution at one point is independent of the other. • Only a few compiler directives are required to gain close to perfect scaling on a shared-memory multiprocessors machine using OpenMP.

\mathbb{P}^2					
mesh	th = 1	th = 2	th = 4	th = 8	th = 16
$20^2 \times 2$	17.64	8.81	4.49	2.23	1.17
$40^2 \times 2$	67.41	33.73	16.90	8.54	4.43
$80^2 \times 2$	266.86	133.66	66.95	33.65	17.17
\mathbb{P}^3					
$20^2 \times 2$	93.27	46.19	22.90	11.49	5.82
$40^2 \times 2$	344.85	172.60	86.26	44.25	21.93
$80^2 \times 2$	1358.81	681.31	339.55	170.48	85.24

Figure 5. Timings results in seconds for filtering a DG projection problem over a smoothly-varying triangular mesh. th represents the number of threads.

Figure 6. Performance scaling.

