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I t d tiIntroductionIntroduction

• Electron microscopy (EM) generates images with sufficient resolution in nanoscale for reconstruction of connectome i e neural circuit map Terabyte scale data• Electron microscopy (EM) generates images with sufficient resolution in nanoscale for reconstruction of connectome, i.e. neural circuit map. Terabyte-scale data 
makes manual analysis infeasible Automated image analysis is neededmakes manual analysis infeasible. Automated image analysis is needed.
Ch ll i d t i t i t i t ll l t t l h i ti d hi h d t i t (10 i l 50 i di ti )• Challenging due to intricate intra-cellular structures, large shape variations and high data anisotropy (10 nm in x-y plane, 50 nm in z direction). g g g p g py ( y p )

• 2D segmentation pipeline: supervised pixel-wise membrane detection + hierarchical segmentation• 2D segmentation pipeline: supervised pixel-wise membrane detection + hierarchical segmentation.

Watershed Merge Tree and Boundary ClassifierWatershed Merge Tree and Boundary Classifierg y

• Pixel-wise membrane detection: multi-scale context + serial ANNs [Seyedhosseini et al., 2011].Pixel wise membrane detection: multi scale context  serial ANNs [Seyedhosseini et al., 2011].
W t h d t f t i iti l t ti d i i hi h• Watershed transform generates initial over-segmentations and region merging hierarchy.

• Watershed merge tree: representation of region merging order• Watershed merge tree: representation of region merging order.
B d l ifi• Boundary classifier: y

• Predict about each merge/split• Predict about each merge/split.
• Random forest classifier with 141 features (geometry/intensity/texture/merge saliency).Random forest classifier with 141 features (geometry/intensity/texture/merge saliency).
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Fig. 1: Example of (a) original EM image, (b) membrane detection, (c) initial watershed over-segmentation, (d) region merging with water level rising and (e) watershed merge tree.Fig. 1: Example of (a) original EM image, (b) membrane detection, (c) initial watershed over segmentation, (d) region merging with water level rising and (e) watershed merge tree.

R l i M TResolving Merge TreeResolving Merge Tree

• Consistency constraint:• Consistency constraint: 
• Any pixel should be labeled only onceAny pixel should be labeled only once.

O d i l t d it t d d d t t b d• Once a node is selected, its ancestors and descendants must be removed.
• Node potential:• Node potential: 

• Probability that a node does not merge with its sibling and its children merge.Probability that a node does not merge with its sibling and its children merge. 
• In Fig 2 (b) P =(1 P )P• In Fig. 2 (b), P6=(1-P6,8)P1,2., ,

• Resolving merge tree via greedy optimization:Resolving merge tree via greedy optimization: 
Pi k th t t ti l d ( ) (b)• Pick the most potential node; (a) (b)p

• Remove its ancestors and descendants;• Remove its ancestors and descendants;
Fig 2: Illustration of how (a) final segmentation is acquired by

• Repeat until no nodes are left.
Fig. 2: Illustration of how (a) final segmentation is acquired by 

(b) l i tRepeat until no nodes are left. (b) resolving a merge tree.

T bl 1 S t ti R dTable 1: Segmentation Rand errors.
R lResults bin 2 bin 3 bin4 bin 5 avg.Results g

Thresholding 0 2749 0 2419 0 2115 0 2717 0 2500Thresholding 0.2749 0.2419 0.2115 0.2717 0.2500
• Data: 700 x 700 x 70 Merge tree 0.1529 0.1113 0.1029 0.1595 0.1316• Data: 700 x 700 x 70 g

SBFSEM mouse neuropilSBFSEM mouse neuropil
i (10 10 50images (10 x 10 x 50 nm Final segmentationMembrane detection Over-segmentationOriginalg (
resolution)

ggg
resolution).

• Use Rand error asUse Rand error as 
measurementmeasurement.  

• Cross validationCross validation.
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Fig. 3: Segmentation results of two image regions (zoomed in).g g g g ( )


